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Abstract To understand the genetic basis and selective forces acting on longevity, it is useful to
examine lifespan variation among closely related species, or ecologically diverse isolates of the same
species, within a controlled environment. In particular, this approach may lead to understanding
mechanisms underlying natural variation in lifespan. Here, we analyzed 76 ecologically diverse wild
yeast isolates and discovered a wide diversity of replicative lifespan (RLS). Phylogenetic analyses
pointed to genes and environmental factors that strongly interact to modulate the observed aging
patterns. We then identified genetic networks causally associated with natural variation in RLS across
wild yeast isolates, as well as genes, metabolites, and pathways, many of which have never been
associated with yeast lifespan in laboratory settings. In addition, a combined analysis of lifespan-
associated metabolic and transcriptomic changes revealed unique adaptations to interconnected
amino acid biosynthesis, glutamate metabolism, and mitochondrial function in long-lived strains.
Overall, our multiomic and lifespan analyses across diverse isolates of the same species shows how
gene—environment interactions shape cellular processes involved in phenotypic variation such as
lifespan.

Editor's evaluation

This manuscript characterizes differences in replicative lifespan across a collection of natural
yeast isolates. Additionally, it provides transcriptional and metabolomic resources that help shed
important new light on the mechanistic bases of functional differences among the wild yeast
isolates. The revised version further tests the impact on lifespan in short- and long-lived strains of
target genes identified. This work has important implications for the fields biology of aging and
potentially evolutionary biology.
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Introduction

Diverse selective forces (mutation, selection, and drift) generate enormous variation within and among
species (Via and Lande, 1985; Li et al., 2018). Consequently, many morphological, behavioral, and
physiological phenotypes (traits) vary within and between species in natural populations (Wagner and
Zhang, 2011; Sambandan et al., 2008; Malagén et al., 2014; Caswell, 2007; Fusco and Minelli,
2010). For example, genetic variation in natural populations of many organisms can differentially
affect their neural and endocrine functions, leading to variation in quantitative life-history traits such
as fitness and age at maturation (Bonier et al., 2009, Finch and Rose, 1995). Variation in another
fitness trait, lifespan, has also attracted much attention (Arking et al., 1996; Libert and Pletcher,
2007, Ratikainen and Kokko, 2019). Across eukaryotic species, longevity can differ over many orders
of magnitude, from days to centuries, for example the Greenland shark (Somniosus microcephalus)
may live for more than 500 years whereas some species live only several days (Mortimer and John-
ston, 1959, Nielsen et al., 2016; Jones et al., 2014). Longevity also varies among individuals of the
same species, indicating that variability of lifespan is not constrained at the level of species, and that
the molecular determinants of lifespan vary within the same genetic pool (Finch and Pike, 1996;
Klass, 1983; Kaya et al., 2015; Ma et al., 2018; Dato et al., 2018; Wright et al., 2019).

What, then, are the factors that determine the lifespan of individuals? The molecular pathways
that underlie the genetic and environmental determinants of lifespan are among the most intensely
studied areas in the aging field (Kaya et al., 2015; Ma et al., 2018; de Magalhaes et al., 2012; Li
and de Magalhaes, 2013; Ma and Gladyshev, 2017; van Dongen et al., 2016; Dato et al., 2016).
Laboratory animal models have shown that longevity can be extended by environmental (Dillon et al.,
2007, Johnston and Snell, 2016; Packer and Fuehr, 1977, Bisschops et al., 2015), dietary (Alic and
Partridge, 2011; Stefana et al., 2017; Kitada et al., 2019), pharmacological (Bitto et al., 2016;
Novelle et al., 2016; Rajman et al., 2018; Nadon et al., 2017), and genetic interventions (Zwaan,
1999, Vijg and Suh, 2005; Singh et al., 2019). However, many of these laboratory-adapted popula-
tions are constrained by genetic and environmental background (Harper, 2008; de Magalhaes, 2014,
Reichard, 2016). For example, artificially created mutant strains may show longer lifespan under labo-
ratory settings but demonstrate reduced fitness in their natural environment (Bartke et al., 2001,
Jenkins et al., 2004, Chen et al., 2007, Delaney et al., 2011). A more integrated approach is needed
to understand how the natural environment and natural selection interact to shape lifespan and asso-
ciated life-history traits.

In order to better understand the impact of natural genetic variation on lifespan, we studied 76 wild
isolates of the budding yeast to capture the molecular signatures of evolved diversity of lifespan. This
collection included 40 diploid isolates of Saccharomyces cerevisiae and 36 diploid isolates of Saccha-
romyces paradoxus (Hyma and Fay, 2013; Liti et al., 2009). Their niches include human-associated
environments, such as breweries and bakeries, and different types of wild ecological niches, such as
trees, fruits, vineyards, and soils across different continents. There was also a group of clinical isolates;
S. cerevisiae strains isolated from immunocompromised patients. S. cerevisiae and S. paradoxus are
closely related (share a common ancestor between 0.4 and 3 million years ago), with 90% genome
identity, and can mate and produce viable progeny (Liti et al., 2006; Tirosh et al., 2009). Earlier
genome sequencing of these isolates revealed allelic profiles, their ploidy status, and a phylogeny of
these isolates (Hyma and Fay, 2013; Liti et al., 2009, Liti et al., 2006). Based on these studies, it was
shown that while some of these strains fall into distinct lineages with unique genetic variants, almost
half of the strains have mosaic recombinant genomes arising from outcrosses between genetically
distinct lineages of the same species (Liti et al., 2009). Because of their wide ecological, geographical,
and genetic diversity, natural isolates of the budding yeast Saccharomyces have become an important
model system for population/evolutionary genomics (Liti, 2015) and to study the complex genetic
architecture of lifespan (Kaya et al., 2015; Stumpferl et al., 2012, Kwan et al., 2013; Janssens
and Veenhoff, 2016; Jung et al., 2018, Barré et al., 2020). Therefore, these strains offer a powerful
genetic pool to understand how natural genetic variation may shape lifespan variation.

Accordingly, we assayed the RLS of ~3,000 individual cells representing these isolates under two
different conditions: yeast peptone dextrose (YPD, with 2 % glucose), and yeast peptone glycerol
(YPG, 3 % glycerol as a respiratory carbon source), and identified up to 10-fold variation in median
RLS under each condition. Although little is known about the life histories of these wild isolates they
face different, niche-specific evolutionary pressures for adaptation to different stresses (Liti et al.,
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2009, Liti et al., 2006; Tirosh et al., 2009; Liti, 2015). To understand how different genotypes arrive
at different lifespan phenotypes, we further analyzed endophenotypes (gene expression, metabo-
lite abundance) to characterize the molecular patterns associated with condition-specific lifespan
variation. Following characterization of transcripts and metabolites with significant association with
longevity, we identified pathways associated with median RLS across these isolates. Our data showed
that the naturally arising variation in genotype can cause large differences in lifespan, which are asso-
ciated with distinct patterns of gene expression and metabolite abundances. These analyses revealed
connected pathways that have not been previously associated with lifespan variation in a laboratory
setting. Altogether, we present the most comprehensive analysis to date of how the environment and
genetic variation interact to shape aging and the associated life-history traits.
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Figure 1. Doubling time and replicative lifespan of yeast wild isolates. (A) Distribution of mean doubling time (DT, in minutes) on yeast peptone
dextrose (YPD; 2 % glucose) and yeast peptone glycerol (YPG; 3 % glycerol). (B) Examples of lifespan curves for the selected strains. Black curve shows
lifespan under YPD conditions, and red curve under YPG conditions. (C) Median replicative lifespan (RLS) distribution across S. cerevisiae (red) and S.
paradoxus (turquoise) isolates grown in YPD. (D) Distribution of median RLS across different conditions. Source data are provided as Supplementary
file 1.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Replicative lifespan (RLS) phenotype across wild isolates.
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Results

Growth characteristics and lifespan variation across wild isolates

First, we monitored growth characteristics of natural yeast isolates on standard glucose media (i.e.,
during fermentation) and on media with a nonfermentable substrate, glycerol, as a carbon source (i.e.,
during respiration), using an automated growth analyzer, and calculated the doubling time. Most wild
isolates grew faster than the diploid laboratory wild-type (WT) BY4743 strain under both conditions,
with an average doubling time of 65 min in YPD and 125 min in YPG (Figure 1A, Supplementary file
1). Importantly, most of these strains grew at a similar rate on YPD, and variation in growth rate on
YPG was also relatively small among them, indicating that these laboratory-optimized culture condi-
tions are suitable for supporting nutritional needs of these strains and for RLS analysis (Figure 1A).

Next, we assayed RLS of these isolates at 30 °C on both growth conditions (YPD and YPG media).
Under the YPD condition, we observed a remarkable ~10-fold variation in median and maximum RLS
(Pearson correlation coefficient = 0.65 between median and maximum RLS, p < 0.00001) across these
isolates (Figure 1B, C, Figure 1—figure supplement 1A, Supplementary file 1). The average median
RLS of S. paradoxus strains (29.7) was significantly higher (p = 2.7 x 107°) than the average median
RLS of S. cerevisiae strains (22.7) (Figure 1C, Figure 1—figure supplement 1A). Among the 76 strains
analyzed, S. paradoxus strain Y7 showed the longest median RLS (RLS = 42), whereas S. cerevisiae
strain Y10 exhibited the shortest median RLS, with 50 % of Y10 cells ceasing division after producing
only four daughters (Supplementary file 1).

Glycerol as a growth substrate can extend both RLS and chronological lifespan (CLS; Burtner
et al., 2009; Kaeberlein et al., 2005a). In the case of CLS, the increased longevity is caused by a
switch from fermentation to respiration Burtner et al., 2009; however, mechanisms by which glycerol
affects RLS are unclear, since respiratory metabolism is not always required for RLS extension in labo-
ratory WT strains (Kaeberlein et al., 2005a). While we observed a significant (p < 0.05, Wilcoxon rank
sum test) median RLS increase in 32 strains on YPG with 24 strains significantly decreased median RLS;
and the remaining 7 strains showed no significant changes (Figure 1—figure supplement 1B, Supple-
mentary file 1). For example, S. cerevisiae strain BC187 showed a significantly increased median RLS
on glycerol (37.5 in YPG versus 32 in YPD), and S. paradoxus strain KPN3829 also showed a similar
increase (21 in YPD and 35 in YPG). On the other hand, S. cerevisiae strain YJM975 showed a signifi-
cant decrease (median RLS = 31 in YPD and 23 in YPG) (Supplementary file 1).

We further dissected the effect of carbon source on RLS by comparing median RLS variation
between YPD and YPG conditions. Interestingly, strains with the shortest RLS on YPD tended to
achieve the longest lifespans on YPG, while the long-lived strains on YPD generally did not show a
further RLS increase (Figure 1—figure supplement 1B, C) (Pearson correlation coefficient = —0.51
between median RLS on YPD and median RLS on YPG, p < 0.0001). A similar observation was shown
under CR conditions in the case of single-gene deletions, where the shortest-lived strains tended to
yield the largest lifespan extension when subjected to CR (Schleit et al., 2013). Overall, we observed
significant differences in lifespan across these strains on both conditions. The observed lifespan
pattern on YPG conditions in comparison to those on YPD suggests that long-lived strains might
reside in environments with low fermentable carbon sources, so that they undergo distinct metabolic
regulation to metabolize respiratory carbon sources. As such, they did not show further RLS extension
when grown in glycerol.

Endophenotype variation across wild isolates

While many previous large-scale omics studies on aging have focused on genome-wide association
(Stumpferl et al., 2012, Burke et al., 2014; Wilson et al., 2020, Deelen et al., 2019), recent compar-
ative studies on transcriptomics (Fushan et al., 2015; Fuentealba et al., 2021), proteomics (Yang
et al., 2008; Tanaka et al., 2018; Heinze et al., 2018), metabolomics (Laye et al., 2015; Ma et al.,
2015b; Cheng et al., 2015), and ionomics Ma et al., 2015a have begun to shed light on molecular
patterns and mechanisms associated with the aging process. For example, it has been suggested that
natural variation is associated with extensive changes in gene expression, translation, and metabolic
regulation, which in turn may affect fitness under different stress conditions (Whitehead, 2006; Vu
et al., 2015). In fact, gene expression variation has repeatedly been postulated to play a major role in
adaptive evolution and phenotypic plasticity (Vu et al., 2015; Gilad et al., 2006), as well as specific
phenotypic outcomes such as changes in morphology (Beldade et al., 2002) and lifespan (Whitaker
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Figure 2. Endophenotypic variation across strains. (A) Phylogenetic relationship based on the transcriptome data of 76 strains of 2 species. Principal
component analysis (PCA) of (B) transcriptomics and (C) metabolomics. Percent variance explained by each principal component (PC) is shown in
parentheses. Pathway enrichment analysis for combined top genes and metabolites contributing to (D) PC1 and (E) PC2. Some of the enriched Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways are shown in each panel. Source data are provided as Supplementary file 3.

The online version of this article includes the following figure supplement(s) for figure 2:
Figure supplement 1. Read alignment rate for RNA-seq data.
Figure supplement 2. Correlation of genome-wide transcript levels across wild isolates.

Figure supplement 3. Principal component analysis.

et al., 2014). Similarly, comparative studies of metabolite profiles have been utilized to describe the
genotype to phenotype relations in model organisms (Guijas et al., 2018; Harrison et al., 2020).
Accordingly, we aimed to explain lifespan differences among these wild-derived yeast isolates by
analyzing their gene expression variation (based on transcriptomics analyses) and differences in their
metabolite levels (based on metabolomics analyses).

In the case of the transcriptome, we obtained >5 million 150 bp paired-end RNA-seq reads for
each strain grown on YPD. For metabolomics analyses, we applied targeted metabolite profiling
using liquid chromatography-mass spectrometry (LC-MS). After filtering and quality control, the
dataset contained RNA-seq reads for 5376 genes and 166 metabolites identified commonly across all
isolates (Supplementary file 2). The expression profiles between strains were similar to one another,
with Spearman correlation coefficients of strain pairs ranging between 0.59 and 0.93 (except the
pairing involving Q59.1, CBS5829, YPS606, and UFRJ50791, with the range between 0.21 and 0.79)
(Figure 2—figure supplements 1 and 2). To determine whether the previously published sequence-
based evolutionary relationships (Liti et al., 2009) were reflected in their gene expression variation,
we constructed gene expression phylograms using a distance matrix of 1 minus Spearman correla-
tion coefficients and the neighbor-joining method (Brawand et al., 2011). The resulting topology of
species-specific trends was largely consistent with their phylogeny with a clear separation between S.
cerevisiae and S. paradoxus strains (Figure 2A); however, at the intraspecies level, the topology was
not consistent with the phylograms of genomic data.
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To visualize endophenotypic variation between these two species and across the strains of the
same species, we performed principal component analysis (PCA) on each type of data. PCA of the
transcriptome revealed a pattern resembling the phylogenetic relationship, with the first three prin-
cipal components (PCs explaining ~49 % of total variance in gene expression (Figure 2—figure
supplement 3A)). Although some S. paradoxus strains clustered with S. cerevisiae, we observed clear
species segregation based on PC2 (except for some outlier strains that were separated by PC1). PCA
of metabolomics data revealed a similar structure with the first three PCs explaining ~41 % of total
variance in metabolite levels, and PC2 somewhat separating the species (Figure 2—figure supple-
ment 3B).

To understand the basis of this segregation pattern, we performed pathway enrichment analysis by
combining the 500 top genes (250 with positive weights and 250 with negative weights) and 40 top
metabolites (20 with positive weights and 20 with negative weights) contributing to each PC, respec-
tively. This integrative analysis of genes and metabolites (see Materials and methods) contributing to
PC1 revealed a distinct set of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including
RNA degradation, mitogen-activated protein kinase (MAPK) signaling pathway, cell cycle, pantoth-
enate and CoA biosynthesis, ribosome biogenesis, and pentose phosphate pathway (Figure 2D,
Supplementary file 3). The analysis of genes and metabolites for PC2 revealed the KEGG pathways
related to ribosome, autophagy, endocytosis, cell cycle, mRNA surveillance, and nucleotide exci-
sion repair (Figure 2E, Supplementary file 3). These results suggest that these processes diverged
most significantly across the wild isolates of two species of Saccharomyces genus and may account
for their phenotypic diversity, including lifespan. It should be noted, however, that we do not know
exactly what each PC represents, unless it perfectly aligns or correlates with some known variables. In
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Figure 3. Selected genes whose expression correlates with median replicative lifespan (RLS). (A) Gene expression level (log2-cpm) of CMR3, ZRG8, and
PNCT1 positively correlates with median RLS. (B) Transcript abundance of PHO85, RTT107, and BNAZ2 negatively correlates with median RLS. Regression
slope p values can be found in Supplementary file 2, which is also the source data file for these analyses.
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addition, either biological (e.g., phylogenetic structure), technical (e.g., data normalization or batch
effect), or mixed effects of both may render PCA biased (Uyeda et al., 2015).

Relationship between endophenotypes and lifespan
To identify endophenotypes (transcripts and metabolites) correlating with lifespan variation across
wild isolates, we applied the phylogenetic generalized least squares (PGLS) method to account for
phylogenetic relationships among the strains and test for different models of trait evolution (Felsen-
stein, 1985, Freckleton et al., 2002). Regression was performed between endophenotypic values
and median RLS under different models of trait evolution and the best-fit model was then selected
based on maximal likelihood. To assess the robustness of these relationships, we repeated the regres-
sion after taking out one yeast strain at a time and only those regressions that remained significant
were further considered. This ensured the overall relationship did not depend on a particular isolate.

With the PGLS approach, we identified 73 transcripts with significant correlation with median RLS
(Paqy < 0.01; 39 with positive correlation and 34 with negative correlation) (Supplementary file 2).
Among the top hits with positive correlation were a putative zinc finger protein coding gene CMR3
(Pagj = 3.3 x 1079, histone acetyltransferase (HAT) gene HPAZ2 (p,q = 0.0002), transcription factor TEC1
(Pagy = 9.3 x 107, and zing regulated protein gene ZRG8 (p.q; = 0.006) (Figure 3A, Supplementary
file 2). The top hits with negative correlation included the genes coding for cyclin-dependent kinase
Pho85p interacting proteins PCL1 (p,q = 0.0008) and PCL2 (p,q = 0.001), regulator of Ty1 transposon
protein coding gene RTT107 (p,q = 0.007), and inositol monophosphatase gene INM1 (p,q = 0.006)
(Figure 3B, Supplementary file 2). Next, to assess if any of our transcript hits were previously impli-
cated in yeast lifespan, we extended our list of significant genes to 357 genes by selecting a cutoff at
Paq; = 0.05 and compared these with the genes associated with RLS in laboratory WT strain listed in the
GenAge database (de Magalhaes, 2009). GenAge identifies 611 genes from the published literature
with effects on RLS (decreased or increased) of laboratory yeast strains (595 deletion mutants and 16
overexpressed genes) (Supplementary file 4). Of 5376 genes whose expression was measured across
the wild isolates, there were 39 genes present in both our list and GenAge, 23 of which showed the
same direction of correlation with RLS. For example, INM1, RTT107, PPH3, and BSC1 genes increase
RLS when deleted GenAge database (Supplementary file 4) and are associated with increased RLS
when their transcript levels decrease across wild isolates (this study). However, the overall pattern of
overlapping genes as well as the direction of correlation did not reach statistical significance (Fisher's
exact test, p > 0.05). It should be noted that many of the RLS-associated genes listed in GeneAge
are reported from single-gene knockout (KO) studies and there has been no comprehensive studies
examining gene overexpression on a genome-wide scale. This raises a possibility that the genes we
identified here might not necessarily be overrepresented among the lifespan-related genes from other
studies. It is also possible that the genetic architecture of trait variation in natural populations may
differ from that which is assumed from studies of lab strains, including extensive single-gene studies
of lifespan variation in yeast (McCormick et al., 2015). The lack of overlap between the genes whose
expression correlates with lifespan variation in wild isolates and genes that affect RLS in single-mutant
studies on laboratory WT background supports this possibility. Considering this, we then asked if
trait variation in wild isolates and lab strains may converge at the transcriptome in a way that may
be detectable at the level of gene expression, or at the level of biological pathway. To do this we
examined the gene expression patterns across wild isolates with those of 1376 laboratory KO strains
Kemmeren et al., 2014 whose RLS was quantified (McCormick et al., 2015) previously (Figure 4—
figure supplement 1, Supplementary file 1). We calculated an association of gene expression with
different measures of RLS (mean RLS, median RLS, and maximum RLS) across KO strains. Our analysis
revealed around 400 significant genes (p,q = 0.05) associated with three types of RLS measures, and
more than 1000 genes associated with median RLS (Figure 4A, Supplementary file 2). To compare
the RLS-associated transcriptomes of wild isolates and lab strains, we then calculated a correlation
matrix of RLS-associated gene expression changes across KO strains and wild isolates (Figure 4A). We
found no positive correlation between RLS-associated gene expression changes across KO strains and
RLS-associated gene expression changes across natural isolates (Figure 4B).

We then performed functional enrichment (gene set enrichment analysis, GSEA) of genes asso-
ciated with RLS across deletion and wild isolates to see if associations with RLS may converge at
the level of the biological pathway. We find that the transcripts associated with RLS in these two
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mean replicative lifespan (RLS; or log maximum, median, and mean) across deletion strains based on transcriptomics data obtained from 1376 KO
strains. Genes positively and negatively associated with RLS (upregulated and downregulated, respectively) are significantly shared across different
metrics of RLS (Fisher’s exact test, p < 0.05). (B) Denoised correlation matrix of gene expression effects across single-gene deletion strains (KO), and
those that we measure across the wild isolates that are associated with RLS. Correlation coefficient is calculated using union of top 1000 statistically
significant genes for each pair of signatures with Spearman method. LM: linear model; PGLS: phylogenetic regression least squares. (C) Functional
enrichment of genes associated with RLS across deletion and natural strains. Cells are colored based on normalized enrichment score (NES).
Supplementary files 1 and 2 are provided as source data files for these analyses.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Replicative lifespan (RLS) phenotype of yeast knockout strains.

populations enrich distinct sets of biological pathways (Figure 4C, Supplementary file 2). For the
genes correlating positively with longevity across the KO strains, the enriched terms included cellular
responses to stress, ribosome, translation, cellular senescence, and DNA repair (Figure 4C, Supple-
mentary file 2). On the other hand, terms enriched in wild isolates included TCA cycle, oxidative
phosphorylation, and lipid metabolic process, regulation of apoptosis, and autophagy (Figure 4C,
Supplementary file 2). Overall, our comparative analyses of lifespan-associated gene expression
signatures in laboratory-adapted yeast strains versus wild isolates suggest that different genetic
trajectories might have evolved at transcript level across wild isolates to regulate lifespan.

Next, we searched for metabolites whose abundances associate with RLS across wild yeast isolates.
The metabolome represents a snapshot of regulation downstream of both the transcriptome and
proteome, and it has been effectively used for characterizing phenotypic variation that includes lifespan
(Laye et al., 2015; Ma et al., 2015b; Cheng et al., 2015). Among 166 metabolites that we examined,
31 exhibited significant association with median RLS (p.yq < 0.05) (Supplementary file 2). Among
the top hits, tryptophan, lactate, 2-hydroxyglutarate, 3-hydroxypropionic acid, 2-hydroxyisobutyrate,
2-hydroxybutyrate, and phenyl-lactic acid (PLA) correlated positively (Figure 5A), whereas lysine,
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Figure 5. Selected metabolites correlating with median replicative lifespan (RLS). (A) Abundance (liquid chromatography-mass spectrometry [LC-MS]
counts) of lactate, tryptophan (Trp), and hydroxyisobutyrate that positively correlate, and (B) abundance of quinolinic acid, lysine (Lys), and NAD that
negatively correlate with median RLS. Regression slope p values can be found in Supplementary file 2. This file is also provided as a source data file for

these analyses.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Correlation of LYS20 and LYS21 genes with median replicative lifespan (RLS).

quinolinic acid (QA), propionate, Se-methylselenocysteine showed negative correlation (Figure 5—
figure supplement 1). Our metabolite list also included several related short-chain fatty acids, with posi-
tive correlation to RLS short cahin fatty acids (SCFAs: 3-hydroxypropionic acid, 2-hydroxyisobutyrate,
2-hydroxybutyrate, and 2-hydroxyglutarate), which are known to be involved in redox regulations,
epigenetic modification, and energy generation (He et al., 2020; Tan et al., 2014). Having identified
transcripts and metabolites associated with lifespan, we aimed to investigate interaction among them

to better understand biological causes of lifespan variation and mechanisms of longevity across the
wild isolates.

Molecular signatures of lifespan extension across wild isolates

To understand the molecular basis of RLS variation in wild isolates, we applied an integrated pathway
approach (Pang et al., 2021). A combined metabolomics and transcriptomics data analysis revealed a
potential role for differential metabolic regulation of tryptophan (Trp), lysine (Lys), and branched chain
amino acid (BCAAs) biosynthesis as well as valine (Val) and isoleucine (Iso) (Figure 6—figure supple-
ments 1-3). For example, our metabolome data revealed that Trp abundance correlates positively
with RLS (Figure 5A). In addition, we found that QA, an intermediate in the Trp catabolic pathway
(also known as the kynurenine [KYN] pathway) (Platten et al., 2019; Pinson et al., 2019) correlates
negatively with median RLS (Figure 5B), suggesting a possible inhibition of Trp degradation, corre-
sponding to an increased Trp abundance in long-lived strains. Further evidence for metabolic regu-
lation of Trp in long-lived strains came from our transcriptome data wherein BNA2 (indoleamine
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2,3-dioxygenase) gene, which supports the first rate-limiting step of Trp catabolism (Pinson et al.,
2019), was significantly downregulated (p,q = 0.02) in long-lived wild isolates (Figure 3B). These
observations draw a complete picture for the observed Trp abundance in long-lived strains.

Similarly, a link between our transcriptome and metabolome data provided insights into Lys metab-
olism. We observed a negative correlation between Lys abundance and lifespan (i.e., long-lived strains
tend to have less Lys) (Figure 5B). Additionally, our transcriptome data showed negative correlations
of two homocitrate synthase genes, LYS20 and LYS21, controlling the first rate-limiting step of Lys
biosynthesis by catalyzing condensation of Acetyl-CoA and alpha-ketoglutarate (a-KG) to produce
homocitrate (Figure 5—figure supplement 1). Together, these observations support the idea of
decreased Lys levels in long-lived strains. It is also of interest that while they did not reach significance,
all genes (with the exception of AROS8) involved in Lys biosynthesis showed a trend for decreased
expression in long-lived strains (Supplementary file 2). Interestingly, previous studies have shown
the connection between Trp and Lys metabolism both at genetic and metabolic levels. For example,
it has been shown that 3-hydroxyanthranilic acid, an intermediate from Trp degradation, can be used
as a substrate to synthesize a-ketoadipate (Hallen et al., 2013; Tobes and Mason, 1975), which is
then converted by ARO8 to Lys (Figure 6—figure supplements 1 and 2). In this regard, glutamate
(Glu)-dependent AROS8 activity is involved in both Trp and Lys catabolic pathways. In addition, at the
genetic level, while individual KO lines of BNA2, LYS20, or LYS21 are not lethal, it was found that the
combined deletion of BNA2 and LYS20 or BNA2 with LYS21 causes synthetic lethality (Deutscher
et al., 2006), possibly by causing Lys auxotrophy. In the light of these observations, our data suggest
that the observed occurred differences in Trp and Lys metabolism are not random. Decreased Trp
catabolism in long-lived strains might limit a-ketoadipate production, which in turn could affect Lys
biosynthesis.

Our analyses also revealed negative correlations between RLS and transcript abundance for
all genes (negative correlation) involved in BCAA biosynthesis from pyruvate in long-lived strains
(Figure 6—figure supplement 3, Supplementary file 2). On the other hand, we did not observe
any changes in Val, Leu, and lle abundance. This observation raises a possibility that intracellular
homeostasis of these BCAAs might be regulated through other resources (e.g., extracellular import)
(Hammer and Avalos, 2017). The other metabolites that showed a significant correlation to RLS
were lactic acid (LA), PLA, tyrosine (Tyr), and aspartic acid (Asp) (Figure 6—figure supplement 1,
Supplementary file 2). Although the synthesis of LA from pyruvate is well studied, the metabolic
regulation and function of PLA, a product of the shikimate pathway, are less clear. Previously, it was
found that yeast produces PLA through a nonspecific activity of lactate dehydrogenase from phen-
ylpyruvate, a metabolite derived from chorismate in the shikimate pathway (Srinivasan and Smolke,
2020). Interestingly, Tyr is also synthesized via the shikimate pathway (Figure 6—figure supplement
1) and its abundance negatively correlates with RLS. The decreased ARO2 (synthesizes chorismate
from shikimate) expression might explain the decreased abundance of Tyr in long-lived strains. Simi-
larly, one can expect a decreased Trp abundance, which is also synthesized through the shikimate
pathway. However, our data revealed an increased level of Trp in long-lived strains. Therefore, we
relate this observation to the decreased BNA2 expression (see above).

Finally, since amino acid metabolism is directly related to glycolytic and/or TCA cycle intermediates
(Figure 6—figure supplements 1-3, Supplementary file 2), we analyzed differences in metabo-
lites and genes involved in these central metabolic processes between short- and long-lived strains.
Analysis of the data based on metabolomics and transcriptomics approaches suggested a decreased
glycolytic rate and increased TCA cycle activity in long-lived strains (Figures 4C and 6A). For example,
we found that glycolytic genes such as FBA1, TDH2, PGK1, ENO2, and CDC19 were negatively
correlated with RLS, while TCA cycle genes such as CIT1, IDP1, and KGD1 were positively correlated
with RLS (Supplementary file 2). These observations are consistent with the pathway enrichment
analysis revealing increased TCA cycle and oxidative phosphorylation in long-lived strains. To further
examine this, we measured basal oxygen consumption rate (OCR) of wild yeast isolates and verified
the increased respiration rate in long-lived strains. To determine if the observed pattern of median
RLS variation can be partly explained by this increased mitochondrial function, we tested a potential
relationship between OCR and median RLS. Our analysis revealed a significant positive correlation (R
= 0.28, p,q = 0.016) between OCR and median RLS (Figure 6—figure supplement 4A, Supplemen-
tary file 5). Furthermore, we tested whether the increased OCR can be simply explained by total
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Figure 6. Summary of metabolic changes associated with replicative lifespan (RLS). (A) Summary depiction of genes and metabolites from the
interconnected glycolytic pathway, TCA cycle and amino acid metabolism that are found to be associated with RLS. Associated genes are colored in red
(negatively associated with RLS) or green (positively associated with RLS). Depiction of (B) shikimate pathway and (C) lactate and ethanol biosynthetic
pathways are shown with the same color code representation. Glutamate is highlighted in yellow.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Figure supplement 1. Genes and metabolites from shikimate, kynurenine, and salvage pathways associated with replicative lifespan (RLS).

Figure supplement 2. Lysine biosynthesis and replicative lifespan (RLS).

Figure supplement 3. Genes from the branched chain amino acid (BCAA) metabolic pathway are negatively associated with replicative lifespan (RLS).
Figure supplement 4. Association of mitochondrial respiration with median replicative lifespan (RLS).

Figure supplement 4—source data 1. Raw western Blot images are provided as source data.

mitochondrial copy number by analyzing protein abundance of mitochondrial marker protein Por1 by
western blots. We observed a similar abundance of Por1 across the strains, arguing against alteration
in mitochondrial copy number in long-lived strains (Figure 6—figure supplement 4—source data 1).
Overall, these data suggest a possible role of mitochondrial function in lifespan variation across wild
yeast isolates.
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Figure 7. Replicative lifespan (RLS) effect of GLNT and BNAZ2 overexpression in selected long- and short-lived strains. Lifespan curves for control (gray),
BNA2 (black), and GLNT (red) overexpression in (A) long- and (B) short-lived strains. Lifespan data and significance of lifespan changes can be found in
Supplementary file 1.

In summary, our joint omics analyses revealed consistent changes associated with increased lifespan
at both metabolome and transcriptome levels, pointing to decreased glycolytic activity and amino
biosynthesis and increased mitochondrial activity (TCA cycle and mitochondrial respiration) even
under conditions of excess fermentative carbon source (glucose). These findings suggest common
changes responsible for modulating lifespan across a broad diversity of wild yeast isolates.

Experimental testing of Glu and Trp metabolism in regulation of
longevity

To further understand the molecular mechanisms that support the long life of yeast wild cells, we paid
particular attention to the association between decreased Trp degradation (KYN pathway) and RLS.
Our data highlight the importance of Trp metabolism in lifespan regulation in long-lived strains. We
found that even though the Trp biosynthesis pathway (shikimate pathway) is suppressed, Trp levels
were increased, possibly due to decreased transcript abundance of BNA2, which controls the first rate-
limiting step in Trp degradation. These data suggest that Trp abundance itself might be important for
longevity and that long-lived strains might compensate for decreased Trp biosynthesis by inhibiting
Trp degradation. To test this idea, we examined the lifespan effect of increased BNA2 dosage in three
long- and short-lived strains. Consistent with the findings from transcriptomic data, the increased
expression of BNAZ2 caused a significant decrease in median RLS in two out of three long-lived strains
tested and significantly decreased maximum RLS in all long-lived strains tested (Figure 7A, Supple-
mentary file 1). The increased expression of BNAZ2 in short-lived strains did not result in a consistent
RLS pattern. Among the three short-lived strains tested, two decreased median and maximum RLS
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significantly, and caused a significant increase in median RLS in one strain (Figure 7B, Supplementary
file 1). Additional data are needed to fully clarify whether changes in Trp levels or some intermediate
metabolites from KYN pathway such as QA are critical for the observed lifespan variation; however,
our data support a role for Trp homeostasis in longevity.

The observation of decreased glycolysis, increased SCFAs abundance, and increased LA synthesis
from pyruvate in long-lived strains seems to disagree with the findings from transcriptome and the
experimental work that suggest increased TCA cycle activity and respiration. While our findings
from both metabolomics and transcriptomics data suggest a decreased substrate availability for
the TCA cycle, increased TCA cycle activity may be fueled by alternative substrates. We hypothe-
size that compartment-specific glutamate (Glu) to a-KG flux, a reaction mainly controlled by NAD"-
dependent mitochondrial Glu dehydrogenase, GDHZ2 in mitochondria (Han et al., 2019; Sickmann
et al., 2003; Mara et al., 2018), might support increased TCA activity. In this case, spared Glu
(due to decreased Glu-dependent amino acid biosynthesis) can support citrate synthesis to fuel
TCA cycle via a-KG conversion. Along with decreased glycolysis and a decrease in Glu-dependent
amino acid biosynthesis, compartment-specific Glu to a-KG flux might be important for extended
longevity in long-lived strains. In fact, our findings suggest that Glu utilization is limited in long-
lived strains; however, the observation of no significant alteration in Glu abundance is consistent
with the idea that long-lived strains may utilize Glu in some other pathway. In support of this
model, we found that transcript abundance of GLN1, an enzyme responsible for synthesis of gluta-
mine (GlIn) from Glu (Figure 6) in mitochondria, negatively correlates with lifespan (Supplementary
file 2). To test the possibility that GDH-mediated Glu to a-KG flux is important for supporting the
lifespan of long-lived strains, we overexpressed GLN1 in three long- and three short-lived strains.
Overexpression of GLN1 is expected to decrease the Glu pool, and thus perhaps a-KG synthesis.
We found that GLN1 overexpression significantly decreased both median and maximum RLS of
long-lived strains tested (Wilcoxon rank sum tests, p < 0.05) (Figure 7A, Supplementary file 1).
Among the three short-lived strains tested, two significantly increased median and maximum RLS,
while the remaining strain showed no significant lifespan changes (Figure 7B, Supplementary file
1). Thus, the data support the idea that the mitochondrial Glu pool may have a role in longevity
across wild isolates. Although it needs additional experimental evidence, we think that increased
nicotinamide adenine dinucleotide (NAD) + hydrogen (H) (NADH) levels in long-lived strains might
be due to increased NAD*-dependent GDH2 activity, which catalyzes the conversion of Glu to
a-KG in mitochondria.

Although initially yeast was considered as Krebs negative (i.e., cannot utilize TCA cycle interme-
diates as carbon sources for growth) (Casal et al., 2008), later on a-KG was shown to be catabo-
lized, under the condition of co-consumption with low glucose (Zhang et al., 2020). To investigate
whether wild isolates can utilize a-KG as an alternative carbon source, we cultured them in the
medium containing low glucose and a-KG, a-KG only, and YP (yeast extract peptone without glucose)
medium (Figure 8—figure supplement 1). To our surprise, we found that many of these wild isolates
showed weak growth even on the YP medium, which was not supplemented with any carbon source
(Figure 8—figure supplement 1). It is possible that some compounds in yeast extract may promote
weak growth of these isolates, and we think that it might be a-KG. To prove this, we supplemented YP
and YPD medium with a-KG (10 g/l) and observed that many of the strains showed improved growth,
further supporting utilization of a-KG for growth on the medium lacking glucose (Figure 8—figure
supplement 1).

Finally, to connect increased respiration, a-KG utilization and extended lifespan, we eliminated
mitochondrial DNA (mtDNA, rho®) in three long-lived strains. We assayed their growth in medium
supplanted with a-KG. We found that elimination of mtDNA in long-lived strains abolished their
growth ability in the medium supplemented with a-KG as a sole carbon source (Figure 8A). We
further measured RLS of these rho® isolates under 2 % glucose conditions to understand whether
blocking respiration would affect their lifespan. Our analysis revealed that the loss of mtDNA caused
a significant reduction in RLS in all three strains tested (Wilcoxon rank sum tests, p < 0.05) (Figure 8B,
Supplementary file 1). Overall, these data further support the idea that a-KG utilization and increased
mitochondrial respiration are connected to each other and utilization of a-KG requires active mito-
chondria. Perhaps, under the conditions of decreased amino acid synthesis a-KG utilization could
increase respiration, which in turn may increase lifespan.
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Figure 8. Growth properties of long-lived trains in medium supplemented with alpha-ketoglutarate (0-KG) and effect of mitochondrial DNA (mtDNA)
elimination on o-KG utilization and replicative lifespan (RLS). (A) The growth of three long-lived strain was further supported with a-KG supplementation
(10 g/l). However, strains lost the ability of 0-KG utilization upon mtDNA elimination (red). Growth data of OD,,, measurement can be found in
Supplementary file 1. (B) Elimination of mtDNA significant reduced RLS in all three long-lived strains. Lifespan data and significance of lifespan
changes can be found in Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Effect of alpha-ketoglutarate (a-KG) on growth.

Discussion

The budding yeast has contributed significantly to our understanding of genetics and cell biology
and has become an important model of aging, ever since Mortimer discovered the yeast RLS pheno-
type (Mortimer and Johnston, 1959). With the power of genetics and experimental tools, yeast
has provided various clues for understanding the aging process in eukaryotes and yielded hypoth-
eses that have been further tested in other organisms, including mammals (Kennedy, 2008; Fontana
et al., 2010). From this perspective, the natural isolates we analyze in the current study offer an
excellent new model for yeast aging studies (Kaya et al., 2015; Stumpferl et al., 2012; Kwan et al.,
2013; Janssens and Veenhoff, 2016; Jung et al., 2018; Barré et al., 2020), allowing us to leverage
the enormous genetic variation found among natural isolates to study cellular processes that affect
lifespan variation in nature, in a way not possible with the standard approach of deletion mutants in
lab strain. In fact, these studies revealed several previously known, as well as novel, cellular processes
and genetic factors that together determine RLS of yeast. For example, quantitative trait locus (QTL)
analysis revealed a possible role of rDNA origin activation, nutrition sensing pathways, and serine
biosynthesis in modulation of replicative and CLS in wild yeast isolates. In addition, both initial and
age-associated increase in cell size found to be negatively correlated with RLS. In general, these
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studies pointed out diet-dependent metabolic regulations in lifespan regulation (Kaya et al., 2015;
Stumpferl et al., 2012; Kwan et al., 2013; Janssens and Veenhoff, 2016; Jung et al., 2018; Barré
et al., 2020).

In this study, we further advanced these findings by utilizing -omics approaches across highly diverse
aging phenotypes. Our comparison of gene expression changes and longevity signatures across
laboratory-adapted long-lived mutants and long-lived natural isolates identified many genes and
pathways associated with longevity. However, further studies are needed to determine their individual
and collective roles in lifespan variation. At the pathway level, the transcriptomic and the metabolomic
data suggest that respiratory metabolism is important for longevity, as long-lived strains are charac-
terized with increased TCA cycle and oxidative phosphorylation activities. This is also consistent with
prior data that genetic induction of respiration in the PSY316 laboratory-adapted strain is sufficient to
increase RLS (Lin et al., 2002). In addition, we found that short-lived strains when grown with glucose
as the primary carbon source (YPD) tend to achieve the largest lifespan gains when grown on glyc-
erol (YPG) that induces a metabolic shift away from fermentation and toward respiration. In contrast,
strains that are long lived on YPD generally did not show a further RLS increase. Taken together, these
findings suggest possible adaptive mechanisms under glucose conditions that suggest a metabolic
shift from fermentation to respiration to increase mitochondrial metabolism in long-lived isolates.
Accordingly, further increase in respiration by shifting the carbon source from glucose to glycerol was
not beneficial in those long-lived strains.

In addition, our combined analyses of transcriptome and metabolome data pinpointed a regulation
of interconnected amino acid biosynthetic pathways, which are downregulated in long-lived strains.
Amino acids are the building blocks of proteins, and it is known that individual supplementation
or restriction of several different amino acids can exert both pro- and antilongevity effects mainly
through a well-studied target of rapamycin (TOR) pathway (Canfield, 2019; Mirzaei et al., 2014). For
example, restriction of BCAAs was shown to increase both healthspan and longevity in mice (Wolfson
et al., 2016; Richardson et al., 2021). Jiang et al. first reported that reducing the amino acid content
of the media can increase RLS in a short-lived laboratory yeast strain (Jiang et al., 2000). Similarly,
Asp restriction (Powers et al., 2006) or treatment with the glutamine synthetase inhibitor methionine
sulfoximine (Kaeberlein et al., 2005b) can extend RLS by inhibiting TOR. Our data are consistent with
the idea that decreased amino acid biosynthesis plays a role in a longer lifespan of wild isolates and
that this is associated with decreased glycolytic activity and increased mitochondrial function.

Among the amino acids that are found to be associated with lifespan, Trp appears to be particularly
relevant for lifespan regulation. Recently, a decrease in KYN metabolic pathway activity through RNAi
knockdown of TDO-2 (BNA2 ortholog) expression (knockdown) was found to robustly extend lifespan
(van der Goot et al., 2012), while complete KO of TDO-2 expression diminished the positive lifespan
effect in C. elegans (Michels et al., 2016). Increased KYN pathway activity and alteration in KYN
pathway metabolites with age have also been observed in humans, suggesting a possible conserved
role for this pathway in lifespan regulation (de Bie et al., 2016; Chatterjee et al., 2018). In addition,
a study across 26 mammalian species found that species characterized by increased KYN pathway
activity were shorter lived (Powers et al., 2006). In yeast, it was shown that deletion of BNA2, which
encodes the protein that controls the first rate-limiting step in Trp catabolism, decreased RLS, while
increased BNA2 dosage (overexpression) increased RLS in diploid laboratory WT cells (Beas et al.,
2020). We observed that transcript abundance of BNA2 negatively correlated with lifespan across wild
isolates. Consistent with this observation, we found that increased BNA2 dosage caused a significant
lifespan reduction in long-lived strains as well as short-lived strains. These data support the model
that decreased KYN pathway activity is associated with increased lifespan across wild isolates. Due to
decreased shikimate pathway activity, increased BNAZ2 dosage possibly caused increased activation
of the KYN pathway by increasing Trp degradation, which in turn resulted in decreased intracellular
Trp pool for protein translation in long-lived strains. On the other hand, short-lived strains are already
characterized with increased BNA2 abundance and further increase in BNA2 dosage might increase
KYN pathway metabolic intermediates (e.g., kynurenine, QA) and result in further lifespan reduction.
Perhaps, the direct way to test the role of Trp in lifespan regulation should be to analyze the effect of
decreased expression of BNAZ in short-lived strains, which will directly increase the abundance of Trp,
in a similar fashion to that in long-lived strains. Although our data differ from the recently published
report in which BNA2 overexpression increased lifespan (Beas et al., 2020), it is possible that Trp
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metabolic regulation and KYN pathway activity might follow different metabolic and genetic trajecto-
ries across wild isolates in comparison to the laboratory-adapted strain used in that study, which had
been cultured on a medium with high glucose and abundant Trp over many generations.

The KYN pathway activity could also be related to NAD* homeostasis since Trp degradation is
the major route for NAD* synthesis (Choudhary et al., 2014). Accordingly, we hypothesized that the
observed unchanged NAD* abundance across yeast isolates might be explained by the increased
activity of the downstream NAD" salvage pathway. In fact, we found that the expression of the nico-
tinamidase gene, PNCT, in the salvage pathway positively correlates with lifespan (Figure 3). Nico-
tinamide (NAM) is a by-product generated during Sir2p-mediated deacetylation and can be taken up
from the medium. The stress-induced nicotinamidase Pnc1p in yeast is responsible for the clearance
of NAM by converting it to nicotinic acid, which is a precursor for NAD* biosynthesis via the salvage
pathway (Anderson et al., 2003; Imai and Guarente, 2016). Increased expression of PNC1 alone
has been shown to modulate intracellular NAD* homeostasis and to increase RLS (Beas et al., 2020;
Choudhary et al., 2014). In addition to the hypothesis that the increased salvage pathway activity
might compensate for NAD* biosynthesis in long-lived strains with decreased KYN activity, our finding
of increased lactate abundance in these strains could be interpreted as an alternative route for NAD*
regeneration. During LA fermentation, two molecules of pyruvate are converted to two molecules of
LA. This reaction also supports oxidation of NADH to NAD". Previously, it has been shown in both
yeast and mammalian cells that when NAD* demand is higher relative to ATP turnover, cells engage
in anaerobic glycolysis, despite available oxygen (Luengo et al., 2021). Our data also suggest that
a similar mechanism might have evolved to regulate NAD* homeostasis in cells with decreased KYN
pathway activity. Overexpression of BNA2 might also interfere with these adaptive changes in long-
lived strains, which in turn decreases lifespan. Our molecular identification of adaptive metabolic
changes may prove useful in uncovering additional mechanisms regulating cellular NAD* metabolism
and their association with the aging process in future studies.

A potential connection between altered amino acid biosynthesis and the TCA cycle that may be
particularly relevant for lifespan determination is Glu metabolism. Other than being a precursor in
many amino acid biosynthetic pathways, Glu is an important carbon and nitrogen carrier, and can be
catabolized to a-KG, an intermediate of the TCA cycle through a deamination reaction catalyzed by
GDH2 as well as by other transaminases such as BAT1, BAT2, and ARO8 during amino acid biosyn-
thesis. The movement of a-KG through the TCA cycle represent the major catabolic step for the
production of nucleotides, lipids, and amino acids (Csibi et al., 2013). Here, we also showed that
wild yeast isolates can use a-KG as an alternative carbon source for growth. We hypothesize that
mitochondria-specific Glu to a-KG conversion by GDH2 might be an important determinant of lifespan
regulation. In fact, increasing utilization of the Glu pool toward Gln resulted in a significant decrease
in lifespan in long-lived strains. Based on these data, both compartment-specific Glu to a-KG conver-
sion by GDH activity and utilization of a-KG for energetic and/or anabolic purposes might result in
longer lifespan across wild isolates. Hence, our data suggest a possible mechanism that niche-specific
nutrient depletion promotes halting the biosynthetic machinery (e.g., amino acid biosynthesis and
glycolysis) and alleviates catabolic processes of alternative carbon sources to provide energy main-
tenance in long-lived strains by increasing respiration. Recently, a-KG emerged as a master regulator
metabolite (Huergo and Dixon, 2015). There have been many enzymes found to be regulated by
o-KG, characterized as an epigenetic regulator, and identified as a regulator of lifespan in C. elegans
(Chin et al., 2014) and mouse (Asadi Shahmirzadi et al., 2020). In C. elegans, a-KG was found to
decrease ATP levels by blocking mitochondrial complex V activity, thereby reducing oxygen consump-
tion. This effect was found to be mTOR dependent (Chin et al., 2014). Similarly, a-KG was found to
extend lifespan in fruit fly by inhibiting mTOR and activating AMPK signaling (Su et al., 2019). In
mid-aged mice, a-KG supplementation decreased systemic inflammatory cytokines leading to health
and lifespan benefits (Asadi Shahmirzadi et al., 2020). More recently, an analysis of 178 genetically
characterized inbred fly strains revealed a-KG-dependent lifespan regulation under dietary restricted
conditions (Jin et al., 2020). However, in yeast, the effect of a-KG supplementation on lifespan regu-
lation has never been tested. It was shown that yeast can actively transport o-KG from medium to
cytosol and into mitochondria (Casal et al., 2008; Zhang et al., 2020). In addition, in contrast with
the findings in C. elegans, a-KG supplementation was found to increase oxygen consumption in yeast
(Casal et al., 2008). Also, a-KG supplementation was shown to increase oxidative stress resistance in
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yeast (Bayliak et al., 2018). Similarly, a dietary role of Glu in aging has been tested in different model
organisms, including yeast. Initially, Glu restriction was found to increase yeast chronological lifespan
(CLS; Wu et al., 2013); however, later on, it was shown that Glu supplementation also has a positive
effect on CLS (Powers et al., 2006). Similarly, in C. elegans, medium supplemented with a lower dose
(1-5 mM) of Glu was found to extend lifespan (Canfield, 2019). However, the role and mechanisms
of Glu metabolism in lifespan regulation are not well understood. Both a-KG and Glu are involved in
epigenetic and redox regulations that all have been implicated in lifespan regulation (Asadi Shahmir-
zadi et al., 2020; Gregory et al., 2019) and might also provide a mechanism for lifespan extension
in long-lived strains. Furthermore, catalysis of Glu to a-KG also yields NH4, which has been shown to
be involved in regulation of mMTOR1 and mTOR2 signaling (Tate and Cooper, 2003; Stracka et al.,
2014) and lifespan. All these findings from different organisms suggest complicated mechanisms of
beneficial effects of a-KG, which needs further investigation.

Overall, our research takes advantage of natural variation in yeast lifespan that has arisen in response
to mutation, selection, and genetic drift, and uses this variation to identify the potential causal roles
that gene expression and metabolism play in shaping lifespan within the same species. Our data
revealed a novel mechanism wherein different life-history trajectories contribute to mitochondrial
metabolism. Hence, the tricarboxylic acid cycle (TCA) cycle represents a central metabolic hub to
provide metabolites to meet the demands of proliferation and other cellular processes. With respect
to this, modification of TCA metabolic fluxes and metabolite levels in response to environmental pres-
sures might therefore account for cellular adaptation and plasticity in the changing environment which
might also affect lifespan of these wild isolates. We further provide molecular insights into the unique
metabolic adaptation involving linked pathways, involving in Glu and a-KG metabolisms in regulation
of mitochondrial function and their possible association with lifespan variation. Further understanding
of how gene—environment interactions modulates genes and pathways associated with longevity may
open new therapeutic applications to slow aging and delay the onset of age-related diseases through
diet, lifestyle, or pharmacological interventions. In future studies, it might yield important information
to investigate the role of a-KG metabolism in amino acid and caloric restricted lifespan regulation.

Materials and methods

Yeast strains and growth conditions

Many of the diploid wild isolates of S. cerevisiae and S. paradoxus (68 isolates) were obtained from the
Sanger Institute (Liti et al., 2009) and the remaining 8 isolates of S. cerevisiae were gifted by Justin
Fay from Washington University (Hyma and Fay, 2013). Detailed information about strains used in this
study is in Supplementary file 1. The diploid laboratory WT strain BY4743 was purchased from the
American Type Culture Collection. For testing the growth effect, strains were cultured overnight in a
96-well plate incubator at 30 °C in YPD medium. Next day, 1 pl from overnight culture was transferred
to the YP, YP + a-KG (10 g/I), or YPD (0.02 % glucose) + a-KG and growth was monitored in 96-well
plate using Epoch2 (BioTek, Winooski, VT, USA) kinetic growth analyzer by analyzing optical density of
ODqqo- For expression of genes of interest, we used modified p426GPD high copy plasmid by inserting
a hygromycin (HYG) cassette along with its promoter and terminator at the Xbal restriction site. HYG
cassette was amplified from pGAD32 plasmid with PCR. Using modified p426GPD, we inserted GLN1
and BNA2 gene cassettes individually at the BamHI/Xhol restriction sites for overexpression. Yeast
transformation was performed using standard lithium acetate method. Growth rates were determined
using a BioScreen-C instrument (Bioscreen C MBR, Piscataway, NJ, USA) by the analysis of optical
density in the OD,y range, and doubling times were calculated with an R script by analyzing fitting
spline function from growth curve slopes (Kahm et al., 2010). The maximum slope of the spline fit
was used as an estimate for the growth rate and doubling time for each evolved line, in combination
with the YODA software package (Olsen et al., 2010). Finally, mtDNA was eliminated by culturing
cells in YPD medium, supplemented with 10 ug/ml and ethidium bromide (EtBr). Briefly, logarithmi-
cally growing cells (ODgy = 0.5) were incubated at room temperature with agitation for approximately
24 hr. Following a second and third treatment with the same concentration of EtBr for 24 hr, the
cells were diluted (1:100) in water and plated on YPD to obtain single colonies. After then, several
individual colonies were selected for testing their growth ability on YPG plates. Colonies, which were
unable to grow on YPG were selected as rho®.
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RLS assay

RLS was determined using a modification of our previously published protocol (Steffen et al., 2009).
Yeast cell cultures for each strain were freshly started from frozen stocks on YPD plates and grown for
2 days at 30 °C prior to dissections. Several colonies were streaked onto new YPD with 2 % glucose,
YPD with 0.05 % glucose, or YPG plates with 3 % glycerol using pipette tips. After overnight growth,
~100 dividing cells were lined up. After the first division, newborn daughter cells were chosen for
RLS assays using a dissection microscope. For each natural isolate, at least two independent assays
were performed using at least sets of 20 cells for each assay. Each assay included 20-80 mother cells
of BY4743 strain as well, which was used in every experiment as a technical control. For RLS analysis
of wild isolates harboring expression plasmids, individual colonies were picked up from selection
medium (HYG) and YPD medium supplemented with 200 pg/ml HYG were used for RLS determina-
tion of these cells. Survival analysis and Gompertz modeling were performed using the survival and
flexsurv packages in R, respectively.

Measurement of basal OCR and western blot analysis

To investigate metabolic respiration differences across wild isolates OCR (pmol/min) was measured
using a Seahorse XFe96 analyzer (Agilent, Santa Clara, CA, USA). Cells grown overnight in YPD were
diluted to OD600 = 0.01 in the morning, and cells were grown to reach the OD600 = 0.25-0.5. Then,
cell culture was diluted to OD600 = 0.02 in YPD and placed in a XFe%6 cell culture plate coated with
15 pl 0.01 % poly-L-lysine and attached to the plate according to the previously published protocol
(Lev et al., 2020). Basal OCR was measured for five cycles at 30 °C. To examine the expression of
mitochondrial proteins, western blotting was carried out with antibodies against mitochondrial outer
membrane protein Por1 (Abcam, Cambridge, MA, USA, cat:ab110326). For each strain, 10 ml loga-
rithmically growing cells were collected and proteins were isolated according to previously published
protocol (Kaya et al., 2015). The membranes were stripped and developed with antibodies against
phosphoglycerate kinase (Pgk1; Life Technologies, Grand Island, NY, USA, cat: 459250) as an internal
loading control.

RNA-sequencing and data analysis

Three independent cultures for each strain were collected at the ODy, = 0.4 on YPD medium to
isolate RNA from each culture using Quick-RNA 96 Kit from Zymo Research (Cat. number: R1053). To
prepare RNA-seq libraries, lllumina TruSeq RNA library preparation kits were used according to the
user manual, and RNA-seq libraries were loaded on Illumina HiSeq 4000 platform to produce 150 bp
paired-end sequences. After quality control and adapter removal, the STAR software package (Dobin
and Gingeras, 2015) was used to map the reads against a pseudo reference genome of each strain,
in which we replaced identified nucleotide changes in the S288c reference genome. Read alignment
rate for transcriptome data against pseudo genome varied between 92% and 97% across S. cerevisiae
strains and 93% and 99% across S. paradoxus strains (Figure 2—figure supplement 1). Read counts
per gene were calculated using featureCounts (Liao et al., 2014). To filter out genes with low numbers
of reads, we used filterByExpr function from the edgeR package and resulted in an expression set of
5376 genes across replicates of wild isolates.

Metabolite profiling and data analysis

A portion of the cell pellet collected for RNA-seq analyses was also used for targeted metabolite
profiling using LC-MS. 1 ml of MeOH:H,O mixture (8:2, vol/vol) was added to the samples, swirled
at 550 rpm on a mixer for 5 min and then transferred to an Eppendorf tube, they were sonicated in
an ice bath for 10 min, centrifuged at 4 °C at 14,000 rpm for 15 min, and 600 pl of supernatant was
collected into a new tube and dried in a vacuum centrifuge at 30 °C for 2.5 hr. Samples were recon-
stituted in 1 ml and injected into a chromatography system consisting of a dual injection valve setup
allowing injections onto two different LC columns with each column dedicated to an ESI polarity. 5 pl
were injected on the positive mode column and 10 pl on the negative side column. The columns were
a matched pair from the same production lot number and were both a Waters BEH amide column
(2.1 x 150 mm). Auto sampler was maintained at 4 °C and column oven was set to 40 °C. Solvent
A 95 % H,0, 3 % acetonitrile, 2 % methanol, 0.2 % acetic acid with 10 mM ammonium acetate and
5 pM medronic acid, and Solvent B (5 % H20, 93 % acetonitrile, 2 % methanol, 0.2 % acetic acid with
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10 mM ammonium acetate 5 yM medronic acid) were used for sample loading. After completion
of the 18 min gradient, injection on the opposite column was initiated and the inactive column was
allowed to equilibrate at starting gradient conditions. A set of QC injections for both instrument and
sample QC were run at the beginning and end of the sample run. Data were integrated by Multi-
quant 3.0.2 software. Peaks were selected based on peak shape, a signal-to-noise of 10 or better and
retention times consistent with previously run standards and sample sets. Analysis of the dataset was
performed using R (version 3.6.0). All the metabolites with >40 % missingness were excluded, and
a total of 166 metabolites were included in the imputation step. We imputed the remaining missing
values using the K-nearest neighbors imputation method implemented in the R impute package. The
log2-transformed abundance was Cyclic LOESS normalized prior to imputation.

Principal component analysis

PCA was performed on preprocessed data (e.g., normalized and imputed log2 abundance of the
metabolomic data, and the log2-counts per million [CPM] values of the filtered and TMM normal-
ized RNA-seq data) using the R prcomp function. To identify the underlying pathways, the factors in
each of the first three PCs were ranked by their contributions, and pathway enrichment analysis was
performed on the top 500 transcripts using Network Analyst (Zhou et al., 2019) and on the top 40
metabolites using MetaboAnalyst (Pang et al., 2021) platforms.

Phylogenetic regression by generalized least squares

R packages ‘'nmle’ and ‘phylolm’ were used to perform phylogenetic regression by generalized least
squares method to identify RLS association of transcripts and metabolites (Kaya et al., 2015). We
tested four models of trait evolution: (1) complete absence of phylogenetic relationship (‘Null’); (2)
Brownian Motion model (‘BM’); (3) BM transformed by Pagel’s lambda ('Lambda’); and (4) Ornstein—
Uhlenbeck model ('"OU’). The parameters for Lambda and OU models were estimated simultaneously
with the coefficients using maximum likelihood. The best-fit model was selected based on maximum
likelihood. Strength of correlation was based on the p value of regression slope. To confirm robustness
of results, regression was performed by leaving out each strain, one at a time, and computing p values
using the remaining strains.

Gene expression signature associated with RLS across deletion strains
Gene expression data on deletion mutants was obtained from GSE45115, GSE42527, and GSE42526
(Kemmeren et al., 2014). The corresponding RLS lifespan data for mutant strains were from McCor-
mick et al., 2015. Based on the raw data from the number of replicates, we calculated median, mean,
and maximum RLS, together with corresponding standard errors for each deletion strain. In total, this
resulted in 1376 deletion strains, for which both RLS and gene expression data were available. logFC
of individual genes corresponding to each mutant strain compared to control samples were used for
subsequent analysis.

To identify genes associated with RLS across KO strains linear models in limma were used (Ritchie
et al., 2015). We found genes associated with median, mean, and maximum RLS both in linear and
logarithmic scale, and BH adjustment was performed to account for multiple hypotheses (Benjamini and
Hochberg, 1995). Genes with adjusted p value <0.05 were considered significant. To determine statis-
tical significance of the overlap between genes associated with different metrics of RLS, we performed
Fisher's exact test separately for up- and downregulated genes, considering 6170 genes as background.

Comparison between signatures of RLS across deletion and natural
strains

To compare gene expression signatures associated with different metrics of RLS across deletion
and natural Saccharomyces strains, we calculated Spearman correlation coefficients between corre-
sponding gene expression slope coefficients in a pairwise manner. Clustering of the Spearman correla-
tion matrix was performed with the complete hierarchical approach.

To increase the signal within the correlation matrix, the union of top 1000 statistically significant
genes from each of the 2 signatures in a pair was used to calculate Spearman correlation coeffi-
cient. To get an optimal gene number for removal of noise, we looked at how the total number of
significantly correlated pairs of signatures depended on the number of genes used to calculate the
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correlation coefficient. As a threshold for significance, we considered BH adjusted p value <0.05 and
Spearman correlation coefficient >0.1.

To determine statistical significance of the overlap between transcripts associated with different
metrics of RLS across deletion and natural strains, we performed Fisher’s exact test, considering 4712
genes as background. To identify genes whose deletions are associated with longer or shorter lifespan
in S. cerevisiae strains, we compared the distribution of RLS across samples corresponding to certain
deletion strains with the distribution of median RLS across all measured deletion strains. For that we
used Mann-Whitney test. Genes with BH adjusted p value <0.05 were considered significant. Overlap
of these genes with lifespan-associated genes across natural strains was assessed with the Fisher's
exact test with BH adjusted p value threshold of <0.05.

Functional enrichment analysis

For the identification of functions enriched by genes associated with RLS across deletion and natural
strains, we performed GSEA (Subramanian et al., 2005) on a ranked list of genes based on log;o(p
value) corrected by the sign of regulation, calculated as:

- (pv) X sgn (b)

where pv and b are p value and slope of expression of a certain gene, respectively, and sgn is signum
function (is equal to 1, —1, and 0 if value is positive, negative, and equal to 0, respectively). REACTOME,
KEGG, and gene ontology (GO) biological process from Molecular Signature Database (MSigDB) were
used as gene sets for GSEA (Liberzon et al., 2011). We utilized the fgsea package in R for GSEA anal-
ysis. Adjusted p value cutoff of 0.1 was used to select statistically significant functions. We visualized
several manually chosen statistically significant functions with a heatmap colored based on normalized
enrichment score. Clustering of functions has been performed with hierarchical complete approach and
Euclidean distance. Combined integrative analysis of transcriptomics and metabolomics data for pathway
analysis was performed by using joint-pathway analysis option in MetabolAnalyst 5.0 (Pang et al., 2021).
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The following previously published datasets were used:
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Kemmeren P, Sameith 2014
K, van de Pasch L,
Holstege F

Expression profiling of 376  https://www.ncbi.

wildtypes to assess day-to- nlm.nih.gov/geo/

day variance query/acc.cgi?acc=
GSE45115

NCBI Gene Expression
Omnibus, GSE45115

Kemmeren P, Sameith 2014
K, van de Pasch L,
Holstege F

NCBI Gene Expression
Omnibus, GSE42527

Compendium of deletion  https://www.ncbi.
mutant gene expression nlm.nih.gov/geo/
profiles, 700 responsive query/acc.cgi?acc=
mutants [hs1991] GSE42527

Kemmeren P, Sameith 2014
K, van de Pasch L,
Holstege F

Compendium of deletion  https://www.ncbi.
mutant gene expression nlm.nih.gov/geo/
profiles, 784 non-responsive query/acc.cgi?acc=
mutants [hs1990] GSE42526

NCBI Gene Expression
Omnibus, GSE42526
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