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Apart from their activity in combating infections, neutrophils play an important role in

regulating the tumor microenvironment. Neutrophils can directly kill (antibody-coated)

cancer cells, and support other immune anti-tumoral strategies. On the other hand,

neutrophils can also exert pro-tumorigenic activities via the production of factors which

promote cancer growth, angiogenesis andmetastasis formation. The balance of anti- and

pro-cancer activity is influenced by the particularly delicate interplay that exists between

neutrophils and T lymphocytes. In murine models, it has been reported that γδ T cells are

a major source of IL-17 that drives the recruitment and pro-tumorigenic differentiation

of neutrophils. This, however, contrasts with the well-studied anti-tumor activity of γδ

T cells in experimental models and the anti-tumor activity of human γδ T cells. In this

article, we first review the reciprocal interactions between neutrophils, tumor cells and

T lymphocytes with a special focus on their interplay with γδ T cells, followed by the

presentation of our own recent results. We have previously shown that zoledronic acid

(ZOL)-activated neutrophils inhibit γδ T-cell proliferation due to the production of reactive

oxygen species, arginase-1 and serine proteases. We now demonstrate that killing of

ductal pancreatic adenocarcinoma (PDAC) cells by freshly isolated resting human γδ

T cells was reduced in the presence of neutrophils and even more pronounced so

after activation of neutrophils with ZOL. In contrast, direct T-cell receptor-dependent

activation by γδ T cell-specific pyrophosphate antigens or by bispecific antibodies

enhanced the cytotoxic activity and cytokine/granzyme B production of resting human

γδ T cells, thereby overriding the suppression by ZOL-activated neutrophils. Additionally,

the coculture of purified neutrophils with autologous short-term expanded γδ T cells

enhanced rather than inhibited γδ T-cell cytotoxicity against PDAC cells. Purified

neutrophils alone also exerted a small but reproducible lysis of PDAC cells which was

further enhanced in the presence of γδ T cells. The latter set-up was associated with

improved granzyme B and IFN-γ release which was further increased in the presence of

ZOL. Our present results demonstrate that the presence of neutrophils can enhance the

killing capacity of activated γδ T cells. We discuss these results in the broader context of

regulatory interactions between neutrophils and T lymphocytes.
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INTRODUCTION

Polymorphonuclear neutrophils are bone marrow-derived white
blood cells which account for 50 to 70% of leukocytes circulating
in the peripheral blood. They are highly mobile and are
generally considered to be short-lived but can increase their
longevity upon activation during infection (1). Despite their
characteristic morphology, neutrophils display an enormous
functional plasticity which correlates to some extent with
the expression of cell surface markers and the production
of cytokines, chemokines, antimicrobial peptides (AMP) and
bioactive molecules like serine proteases, arginase-1 and reactive
oxygen species (ROS) (2). Neutrophils constitute perhaps the
most important cellular component of innate immunity, playing
an indispensable role in the immune defense against microbes
like bacteria and fungi (3). They attack microbes through
phagocytosis followed by degranulation or through the release
of noxious substances, including granule-derived compounds
like antimicrobial peptides, reactive oxygen species (ROS), and
nitric oxide species (NOS), in addition to the extrusion of
extracellular fibrillary networks termed neutrophil extracellular
traps (NETs) (4). NETs are composed of nuclear material like
DNA and histones and are decorated by proteins from neutrophil
granula. Trapping of microorganisms and subsequent exposure
to granule-derived proteins leads to their disposal, a process
termed NETosis (4). Beyond their immediate role in innate
immunity, it has become increasingly clear that neutrophils can
also directly interact with other cells of the innate (e.g., Natural
Killer [NK] cells and dendritic cells [DCs]) and adaptive (B
cells, T cells) arms of the immune system. As such, neutrophils
have been shown to produce, in a context dependent manner,
a plethora of cytokines and chemokines (2, 5). Similar to
other immune cells, the local micromilieu shapes the functional
differentiation pathways of neutrophils. Thus, they can acquire
a pro-inflammatory (type 1) phenotype associated with the
production of cytokines such as IL-1, IL-6, TNF-α, or IL-17,
or an anti-inflammatory (type 2) phenotype associated with
production of cytokines like IL-1Rα (receptor agonist) and TGF-
β (2, 4). It should be emphasized, however, that there is some
controversy with respect to the reported expression/production
of some factors (like IL-17) by human neutrophils. Important
technical issues have to be taken into account (2, 6).

Neutrophil Interactions With Tumor Cells
Neutrophils play important roles in cancer biology which may
include both pro-tumorigenic and anti-tumorigenic activities,
depending on the tumor type, the cellular microenvironment,
and the constellation of immune modulating factors present.
These multifaceted aspects have been summarized in several
excellent recent review articles (7–10). Interestingly, increased
numbers of neutrophils are frequently present in the peripheral
blood of patients with various cancer types, correlating with
less favorable prognosis (11). The phenotypic diversity and
plasticity of circulating neutrophil subpopulations in cancer
patients is reflected by physical properties such as density.
Sagiv and coworkers identified three populations of neutrophils
in the blood of cancer patients, consisting of low density

large immature granulocyte-like myeloid-derived suppressor
cells (G-MDSC) and mature neutrophils which exert pro-
tumorigenic activity, and high density small mature neutrophils
with anti-tumor activity (12). Conventional Ficoll-Hypaque
density gradient centrifugation separates these neutrophil subsets
as low density pro-tumorigenic neutrophils remain on top of
the gradient together with monocytes and lymphocytes (i.e.,
the mononuclear fraction) while high density neutrophils with
anti-tumor properties sediment to the bottom together with
red blood cells (13). How can neutrophils mediate anti-tumor
activity? It was noted already in the early 1980’s that neutrophils
can kill various tumor cell lines upon extended in vitro co-
culture with tumor cells (14). More recently, it was observed
that neutrophils from certain healthy donors were capable of
killing several established human tumor cell lines but not primary
epithelial cells; whereas neutrophils from lung cancer patients
were much less active (15). Further analysis revealed that the
activation of signaling pathways including PI3 kinase and p38
kinase increased the sensitivity of the selected tumor cells to
neutrophil killing. In this study, cytotoxicity was determined by
the Real-Time Cell Analyzer (RTCA) system which measures
the decrease of impedance over time when adherent target
cells detach from the bottom of culture wells as a consequence
of lysis. Attempts to identify the mechanism of neutrophil
killing of tumor cells in these studies pointed to a role of
hydrogen peroxide (H2O2) since catalase significantly reduced
the extent of tumor cell lysis (15). Recently, it was discovered
that H2O2 secreted by neutrophils induces a lethal influx
of Ca2+ in tumor cells which is mediated by the transient
receptor potential cation channel, subfamily M, member 2
(TRPM2), a ubiquitously expressed H2O2-dependent Ca2+-
permeable channel that is frequently upregulated in cancer (16).
Interestingly, the expression of TRPM2 (and thus the sensitivity
to neutrophil killing) is up-regulated during the epithelial-to-
mesenchymal transition (EMT), rendering mesenchymal cells
more susceptible to neutrophil cytotoxicity, while cells expressing
lower levels of TRPM2, as observed during mesenchymal-
to-epithelial transition (MET), are protected from neutrophil
killing (17). In addition to the H2O2-dependent “spontaneous”
cytotoxicity, neutrophils are potent mediators of Fc receptor-
dependent antibody-dependent cellular cytotoxicity (ADCC)
against antibody-opsonized tumor cells [discussed in (7)]. The
antibody isotype plays an important role in triggering efficient
ADCC. It appears that IgA antibodies targeting the FcαRI (CD89)
expressed on neutrophils are most effective in this respect (9, 18).
The mechanism of how neutrophils actually execute ADCC
has been recently identified as trogoptosis; a process which
involves intimate CD11b/CD18-dependent conjugate formation
facilitating neutrophil antibody-opsonization leading to necrotic
tumor cell death (19).

As briefly discussed, subsets of neutrophils can exert anti-
tumor activity. However, a large body of evidence indicates
that neutrophils actually promote tumorigenesis and metastasis
formation through a plethora of mechanisms (6). This is
supported by studies showing that the presence of tumor-
associated neutrophils (TANs) correlates with a poor prognosis
in different cancers (9, 10, 20–22), although this is not a generally
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valid observation (7, 23). An important aspect to consider when
dissecting pro- vs. anti-tumorigenic neutrophilic functions is that
results obtained from well-defined murine model systems may
not always reflect the same role of neutrophils in corresponding
human cancer diseases (24). Like macrophages, neutrophils
can be categorized into type 1 and type 2 subsets. Type 1
neutrophils (N1) are pro-inflammatory and produce, amongst
other factors, IL-12 and CCL3; whereas, N2 neutrophils are
immunosuppressive and produce IL-10, CCL2 and high amounts
of arginase (2). In the context of the tumor microenvironment,
neutrophils are recruited and polarized into tumor-promoting
N2 cells by tumor-derived factors, of which TGF-β has a
major role (25). N2-polarized TANs possess a broad arsenal of
effector mechanisms to support cancer growth, tumor metastasis
and angiogenesis. These include (but are not limited to):
the production of elastase, arginase-1, prostaglandin E2; the
formation of NETs; and the secretion of pro-angiogenetic factors,
like matrix metalloprotease 9 (MMP9) and VEGF (6, 9). There
is also a role of neutrophils in promoting metastasis formation
and tumor progression outside the primary tumor. A recent
study reported that ovarian tumor-derived factors stimulated the
neutrophil influx into the omentum and the local protrusion
of NETs which were found to bind to ovarian cancer cells
and thereby to promote metastasis to the omentum. NET
formation is known to depend on peptidyl arginine deiminase
4 (PAD4) (26, 27). In their experimental model, Lee et al
found that reduced NET formation, as observed in PAD4-
deficient mice or following pharmacological inhibition of PAD4,
was associated with reduced omental metastasis (28). Szczerba
and coworkers recently described another pathway in which
circulating neutrophils might contribute to metastasis formation
(29). It was found that neutrophils in the peripheral blood
can associate with rare circulating tumor cells. In comparison
to the transcriptome of unassociated tumor cells, the tumor
cells associated with neutrophils had up-regulated the expression
of genes involved in cell cycle progression which lead to
more efficient metastasis formation (29). Together, these new
data broaden our understanding on the role of neutrophils in
tumor metastasis formation and may develop new avenues for
therapeutic intervention.

Neutrophil Interactions With T Cells
T cells require two signals for activation, i.e., antigen recognition
via the T-cell receptor (TCR) and a co-stimulatory signal
typically provided by interaction between CD28 on T cells
with corresponding B7 family members (CD80, CD86) on
antigen-presenting cells (APC) (30). However, there are
other co-stimulatory pathways such as ICOS/ICOS-ligand or
CD40/CD40-ligand (CD154) which similarly play important
co-stimulatory roles. The most potent APC are dendritic cells
(DCs) which express high levels of MHC class II molecules (in
addition to MHC class I), CD80 and CD86, and offer ample
contact areas to T cells through their conspicuous dendrites.
DCs process and present endogenous (e.g., viral) antigens
to CD8T cells via the MHC class I presentation pathway,
but they also take up exogenous (e.g., bacterial) antigens and
present those to CD4T cells via the MHC class II presenting

machinery. Notably, DCs can also “cross-present” exogenous
antigens and bring them into the MHC class I pathway for
presentation to CD8T cells (31). While activated human T
cells upregulate MHC class II molecules, and thereby can bind
peptides and bacterial superantigens for presentation to other
T cells, antigen processing and specifically cross-presentation
is the domain of professional APCs, particularly DCs. T cell
activation needs to be tightly controlled. To this end, T cells
upregulate inhibitory receptors like CTLA-4 and PD-1, which
upon interaction with their ligands CD80/86 and PD-1 ligand
(PD-L1), respectively, deliver negative signals resulting in T
cell growth arrest and exhaustion (32). Given that tumors as
well as immunosuppressive cells in their microenvironment,
like MDSC, frequently upregulate PD-L1 as a strategy to
dampen efficient T-cell responses, the introduction of antibodies
interfering with such pathways (“checkpoint inhibitors”)
has been a major breakthrough in the treatment of certain
cancers (33, 34). The use of checkpoint inhibitors may also
interfere with the cancer-associated fibroblast (CAF)-induced
PDL-1 expression on neutrophils, which functions to impair
T cell-responses against hepatocellular carcinomas (35). In
addition to the negative impact of PD-1 and CTLA-4 signaling,
T cell activation is controlled by regulatory circuits involving
FoxP3-positive regulatory T cells (Treg) and anti-inflammatory
M2 macrophages, which are recruited by pro-tumorgenic
neutrophils, and contribute to further suppressing cytotoxic T
cell function (10). Multiple molecules have been implicated in
Treg-mediated suppression, including CTLA-4, LAG3, TIGIT,
IL-10, and ectoenzymes CD39 and CD73 expressed on Treg (36).
Cells of the monocyte-macrophage lineage on the other hand
are characterized by enormous plasticity. Pro-inflammatory M1
macrophages are induced under conditions of IFN-γ and TLR
signaling, whereas IL-4 and IL-13 signaling skews polarization
via STAT6 toward M2 macrophages (37). MDSC are yet another
differentiation status of regulatory/suppressive myeloid cells.
They comprise a heterogeneous group of cells where at least
two groups (monocytic MDSC, granulocytic MDSC) can be
differentiated on the basis of morphology and functional
properties (38, 39). Overall, MDSC present in the tumor
micromilieu contribute significantly to the immune escape in
certain types of cancer by preventing efficient activation of
tumor-infiltrating T cells. MDSC can inhibit IFN-γ production
by T cells and degranulation of phosphoantigen-activated Vδ2 T
cells (40, 41). Treatment of pancreatic ductal adenocarcinoma
cells (PDAC)-patients with gemcitabine, the standard therapy for
PDAC, can inhibit MDSC, while enhancing cross-presentation
of tumor-associated antigens by DC (42). There is still a need
to more fully characterize the influence of gemcitabine on the
interaction of MDSC and γδ T cells. Treatment with other
chemotherapeutic agents in combination with n-BP has shown
to increase γδ T-cell cytotoxicity against tumor cells (43, 44).

In addition to MDSC, mesenchymal stromal cells (MSC)
can enhance MDSC-mediated immunosuppression by inhibiting
T-cell proliferation and IFN-γ production (45). MSCs have a
broad functional repertoire and are crucial for tissue regeneration
and homeostasis. As such, these stem cells are considered to
hold significant therapeutic potential to reverse tissue damage in
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conditions with unrestrained neutrophil activation (46). Given
their anti-inflammatory properties, MSCs are being investigated
as a means to treat autoimmune diseases, graft vs. host disease
(GvHD) and allograft rejection following transplantation (47).
The property of MSCs to inhibit T cell proliferation is thought
to act as a double-edged sword in the context of malignancy.
One of the mechanisms driving this inhibition is the cytoplasmic
tryptophan-catabolizing enzyme, indoleamine 2,3-dioxygenase
(IDO), that is produced by human MSCs in response to
inflammation and acts to deplete the essential amino acid
tryptophan in the local environment, which results in the
inhibition of the growth and survival of T cells (48–50). IDO
is also produced by MDSCs and is considered as an important
checkpoint molecule as it functions to enable cancer cells to
subvert immune targeting (50, 51). Other immune suppressive
mechanisms ofMSCs involve their ability to program neutrophils
into an immunosuppressive and tumor-promoting phenotype.
CD11b+ Ly6G+ neutrophils isolated from bone marrow of
normal mice or spleen of tumor-bearing mice inhibited T cell
proliferation in vitro after coculture with TNF-α-primed MSC
with and enhanced 4T1 tumor progression in vivo. These TNF-α-
primed MSC conditioned neutrophils had upregulated arginase
activity and the expression of iNOS, saa3, some cytokines and
chemokines and their receptors. iNOS inhibition attenuated
some of the suppressive effect of TNF-α-primed MSC pre-
cocultured neutrophils on T cell proliferation (52).

How do neutrophils modulate T cell activation? Although
classically considered as effector cells of innate immunity, it is
obvious that neutrophils can exert both positive and negative
effects on T cell activation. Under inflammatory conditions
(e.g., in vitro culture with GM-CSF, IFN-γ, TNF-α, or ex
vivo in patients with inflammatory diseases), neutrophils can
acquire DC-like properties with upregulation of MHC class
II and costimulatory molecules such as CD86 and CD83,
thus being able to present antigen to T lymphocytes (53, 54).
Moreover, neutrophils can support T-cell responses by secreting
chemokines that are important for the recruitment of DCs
or T cells, for example in the context of infection or contact
hypersensitivity (55, 56). Depending on the specific cellular
environment, neutrophils can thus positively modulate adaptive
T-cell responses. It is clear, however, that neutrophils are armed
with various strategies to effectively inhibit T-cell activation as
well (9). Through production of ROS, suppressive granulocytic
MDSC inhibit T-cell activation at the level of reduction of
TCRζ expression, inhibition of NF-κB activation, as well as
induction of apoptosis. The degranulation of serine proteases,
such as elastase, proteinase-3, cathepsin-G, by primary granules
inhibits T-cell activation by the inactivation of cytokines and their
receptors. In addition, ariginase-1 released by tertiary granules
cleaves the amino acid arginine, which is essential for T-cell
activation. Furthermore, granulocytic MDSC also deplete the
cellular environment of cystine through the X−

C transporter. In
consequence, APC cannot reduce cystine into cysteine which
is required for T-cell activation. Last but not least, neutrophils
can upregulate PD-L1 and thereby deliver a negative signal
to T cells via the PD-1 receptor (9, 35, 57). Approaches to
investigate the modulation of T-cell activation in vitro using

freshly isolated neutrophils showed that activated neutrophils can
inhibit the polyclonal T-cell activation by CD3/CD28 antibodies,
which was partially reversed by the ROS inhibitor catalase but
not by NOS or myeloperoxidase (MPO) inhibitors. Suppression
of T-cell activation by activated neutrophils was accompanied
by significant, ROS-induced cell death (58). Other strategies
which neutrophils use to inhibit T-cell activation include the
production of suppressive cytokines, such as IL-10 and the
upregulation of PD-L1. In a murine model of infection using
Mycobacterium bovis, Doz et al. observed that neutrophils
recruited by infected DCs produced a large amount of IL-10. It
was further demonstrated in an OVA TCR transgenic model that
IL-10 producing neutrophils specifically suppressed IL-17 but not
IFN-γ production in OVA-specific T cells (59). In a different
system, it was found that LPS-stimulated Treg induced IL-10
production in neutrophils in a cell contact-dependent manner.
It was shown that LPS-activated Treg (but also exogenous
IL-10) promoted specific histone modifications that activated
the IL-10 genomic locus in neutrophils (60). Upregulation of
PD-L1 on neutrophils as a means of T-cell suppression has
been identified in various systems (9, 35). As an example,
increased expression of PD-L1 was observed on neutrophils
in the peripheral blood of patients infected with Burkholderia
pseudomallei, and it was found that such neutrophils inhibited
polyclonal T-cell activation in a PD-1/PD-L1 dependent manner
(61). Furthermore, increased neutrophil expression of PD-L1 is
also found in HIV-1 infected patients, again correlating with
a PD-1/PD-L1 dependent inhibition of T-cell activation. In
this study, IFN-α, the TLR7/8 agonist Resiquimod, and HIV-1
virions were identified as potent inducers of PD-L1 expression on
neutrophils (62). Indeed, immune activation using TLR ligands
or microbial products may be an effective therapeutic strategy
to overcome cancer-associated immune suppression and increase
the efficacy of anti-cancer cytotoxic T cell activity (63, 64).

Neutrophil Interactions With γδ T Cells
γδ T cells comprise a small subset of CD3-positive T cells in
the peripheral blood but account for a major population of
intraepithelial lymphocytes in mucosal tissue such as the small
intestine. The dominant population of γδ T cells in human
peripheral blood expresses a TCR composed of the Vγ9 chain
paired with Vδ2.With substantial interindividual variability, such
Vγ9Vδ2 T cells (termed Vδ2 in the following sections) make up
anywhere between 50 and 95% of peripheral blood γδ T cells
in adult healthy donors (65). The TCR repertoire of intestinal
γδ T cells is different; non-Vδ2 (i.e., Vδ1 or Vδ3) T cells co-
expressing any of the available Vγ elements are predominant
(66). γδ T cells play a major role in (local) immune surveillance
as they sense stressed and transformed cells by their TCR and
additional activating receptors like NKG2D (66, 67). In line with
this, γδ T cells are potent cytotoxic cells and are known to
kill a broad range of tumor cells in a MHC non-restricted but
TCR and/or NKG2D-dependent manner (68, 69). The NKG2D
receptor present on virtually all human γδ T cells (in addition to
NK cells, CD8T cells and a small subset of CD4T cells) binds to
corresponding ligands, such as MHC class I chain-related gene A
or B (MICA/B) and members of the ULBP family expressed on
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tumor cells, thereby triggering PI3-kinase dependent signaling
pathways leading to cytokine production and cytotoxic effector
activity (70). The TCR of Vδ2 T cells recognizes pyrophosphate
molecules which are intermediates of both the non-mevalonate
and the dysregulated mevalonate pathways of isoprenoid
synthesis in prokaryotic and eukaryotic cells, respectively.
The prototypic microbial “phosphoantigen” (E)-4-Hydroxy-3-
methyl-but-2-enyl pyrophosphate (HMBPP) exclusively activates
human Vδ2 T cells at pico- to nanomolar concentrations (71,
72). The transient increase of γδ T cells in the peripheral
blood during the acute phase of many bacterial and parasitic
infections is due to the release of microbial phosphoantigens
(73, 74). The intermediate isopentenyl pyrophosphate (IPP)
of the eukaryotic mevalonate pathway of cholesterol synthesis
is similarly recognized by Vδ2 T cells but requires much
higher concentrations (in the micromolar range). While normal
resting cells, including neutrophils (72), do not generate
enough IPP to activate γδ T cells, many tumor cells have a
dysregulated mevalonate pathway with increased IPP production
and concomitant sensitivity to γδ T cell recognition and killing
(75). The selective activation of human Vδ2 T cells by microbial
or eukaryotic phosphoantigens requires the presence of the
butyrophilin molecule 3A (BTN3A/CD277); in the absence
of CD277, Vδ2 T cells are not activated by pyrophosphate
molecules (76, 77). It appears that pyrophosphates bind to the
intracellular B30.2 signaling domain of BTN3A1 resulting in
a conformational change of the extracellular part of CD277,
which is then recognized by the Vγ9Vδ2 TCR (78). Importantly,
the intracellular production of IPP can be pharmacologically
manipulated. Nitrogen-containing bisphosphonates such as
zoledronic acid (ZOL) (which are in clinical use for the
treatment of bone diseases) block an enzyme downstream of
IPP synthesis in the cholesterol synthesis pathway, leading to
the upstream accumulation of the γδ T cell-stimulating IPP
(75). As a consequence, the uptake of nitrogen-bisphosphonates
by monocytes but not by neutrophils within peripheral blood
mononuclear cells (PBMC) induces a strong, selective expansion
of Vδ2 T cells in the presence of recombinant IL-2 (rIL-2)
(72, 79). Exposure of tumor cells to nitrogen-bisphosphonates
drastically increases their sensitivity to γδ T cell-mediated killing
(80). Transient activation and expansion of Vδ2 T cells is also
observed in vivo upon application of ZOL and low-dose rIL-
2 (81). Given that the abundance of γδ T cells among tumor-
associated immune cells is a favorable prognostic marker (82)
and in view of the developing strategies to apply γδ T cells for
immunotherapy (83), it is important to consider the possible
reciprocal interactions between γδ T cells and neutrophils (84).
In mice, γδ T cells are an early source of IL-17 required for
neutrophil migration in bacterial and fungal infections (85, 86).
However, the same activity of murine γδ T cells might be
detrimental in cancer as IL-17 producing γδT cells were shown to
promote metastasis formation in murine models of breast cancer,
due to the mobilization of neutrophils which suppressed efficient
CD8 T-cell responses (87). IL-17 producing γδ T cells can also
recruit MDSC of monocytic and granulocytic origin, thereby
again promoting tumor progression (88, 89). Overall, these
results have raised the notion that γδ T cells play an ambiguous

role in tumor immunity. While their potent cytotoxic activity
against many cancers offers the promise for immunotherapy,
the potential pro-tumorigenic activities of γδ T cells need to be
targeted as well (90). In this context, it is of interest that tumor-
associated neutrophils were recently shown to suppress IL-17
producing γδ T cells in the tumor microenvironment through
the induction of oxidative stress (91). This finding corroborates
previous data indicating that neutrophils can inhibit the in
vitro activation of human γδ T cells (92). Here, the suppressive
mechanism at play was deduced to be ROS production as it
was abrogated in the presence of catalase (91). Using ZOL to
activate and expand human Vδ2 T cells in vitro in the presence
of exogenous rIL-2, we found that neutrophils inhibit γδ T-
cell activation and proliferation. In addition to ROS, our results
also pointed to a role of serine proteases and arginase-I in
the γδ T-cell inhibition, based on the partial reversion by
corresponding individual inhibitors and the complete reversion
by the combination of inhibitors for ROS, serine proteases
and arginase-1 (93). Even though neutrophils express CD277
and take up ZOL efficiently, they do not support Vδ2 T-cell
activation, likely due to their strongly impaired production of
IPP (72). Instead, they appear to suppress the activation of
resting γδ T cells through the release of inhibitory molecules.
Our observation that neutrophil serine proteases inhibit γδ T-cell
activation (94) extends to their role in inhibiting conventional
αβ T cells by membrane-associated proteinase 3 expressed by
granulocytes (95).

In view of (i) the potent anti-tumor activity of γδ T cells, (ii)
the complex interplay between neutrophils and tumor cells, and
(iii) the reported reciprocal interactions between neutrophils and
γδ T cells, we studied the modulation of anti-tumor cytotoxicity
of short-term expanded human γδ T-cell lines by freshly isolated
neutrophils and the effects of ZOL treatment.

RESULTS AND DISCUSSION

Zoledronic Acid-Stimulated Neutrophils
Diminish γδ T-Cell Cytotoxicity Against
Pancreatic Ductal Adenocarcinoma Cells
Zoledronic acid (ZOL) is an approved drug in clinical use for
bone fragility disorders and cancer-associated bone disease. In
addition to its role as an anti-resorptive agent, ZOL selectively
activates human Vγ9Vδ2 T cells and induces their expansion
when used in combination with rIL-2. A partial success of
tumor reduction after application of ZOL together with rIL-2
was observed in several pilot studies, and this benefit can be
further improved by combining adoptive transfer of activated
γδ T cells together with ZOL and rIL-2 administration (68,
81, 96–101). ZOL is taken up via endocytosis by monocytes
or tumor cells, a process which results in a strong selective
expansion of γδ T cells and potentiation of their cytotoxic
activity (75, 79, 80). Our previous reports demonstrated that
neutrophils can also take up ZOL. This uptake, however, resulted
in the release of neutrophil-derived hydrogen peroxide, serine
proteases and arginase, which collectively inhibited proliferation
and cytokine production of resting γδ T cells within purified
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FIGURE 1 | Zoledronic acid-stimulated leukocytes diminish γδ T cell-cytotoxicity against PDAC cells. (A–C) Cytotoxicity of 250 × 103 PBMC (blue line) or 500 × 103

leukocytes (red line), which each comprised ∼7,500 γδ T cells or (D) 125,000 negatively isolated, resting γδ T cells (neg. isol. γδ T cells) in co-cultures with

(Continued)
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FIGURE 1 | Panc89- (left panel) or PancTuI cells (right panel). Co-cultures were set up in rIL-2 medium only (A), or were additionally stimulated with (B) zoledronic

acid (ZOL, 2.5µM) or (C) with bispecific Ab (bsAb) ([(HER2)2×Vγ9], 1µg/mL). Cytotoxictiy was analyzed by RTCA. 5 × 103 PDAC cells were seeded 24 h before

addition of effector cells. Percentage of lysis (“% lysis”) was analyzed from RTCA data by calculating the normalized impedance of spontaneous lysis (cell growth of

tumor cells in medium alone) in relation to the maximal lysis induced by 1% Triton-X-100 (black line) at indicated time points. Shown is one representative experiment

with the same donor out of three independent experiments with different donors.

leukocytes (93, 94). Here, we have performed additional studies
to dissect the interaction between neutrophils and resting γδ

T cells regarding their cytotoxicity against cancer cells. Using
PDAC as target cells, we initially compared two experimental
conditions: (i) Ficoll-Hypaque gradient separated peripheral
blood mononuclear cells (PBMC) which contain resting γδ T
cells and monocytes, but no neutrophils; (ii) red blood cell-
lysed leukocytes, which contain all cells present in PBMC plus
neutrophils. All co-cultures contained medium supplemented
with rIL-2, and were additionally stimulated or not (Figure 1A)
with ZOL (Figure 1B) or the bispecific antibody [(HER2)2xVγ9]
(Figure 1C), both of which induce selective Vγ9Vδ2 γδ T-cell
activation and cytotoxic effector functions. While γδ T cells
within PBMC were able to exert their full cytotoxic activity
against PDAC target cells with both ZOL or bispecific antibody
treatments, γδ T cells within leukocytes showed an impaired
cytotoxicity after activation with ZOL (Figure 1B) compared to
the bispecific antibody (Figure 1C). These results suggest that
the uptake of ZOL by neutrophils can inhibit cytotoxic γδ T-cell
function, as previously shown for proliferative activation of γδ

T cells (93). Whereas, the bispecific antibody, which specifically
targets human epidermal growth receptor 2 (HER2)-expressing
tumor cells and Vγ9-bearing γδ T cells, does not induce the same
inhibitory activity of neutrophils (102–104). Since PBMC and
leukocytes contain Natural Killer (NK) cells which could respond
to rIL-2 alone (Figure 1A, medium control), we additionally
applied negatively isolated resting γδ T cells in our studies. As
shown in Figure 1D, negatively isolated, resting γδ T cells did
not exert cytotoxic activity cultured in medium containing rIL-
2. In contrast, the stimulation of the γδ T cells with ZOL or
bispecific antibody drastically enhanced γδ T-cell cytotoxicity
against PDAC cells in the absence of NK cells and other accessory
cells (Figure 1D). Similar to the treatment with bispecific
antibodies, stimulation with phosphoantigens that specifically
activate γδT cells, such as bromohydrin pyrophosphate (BrHPP),
resulted in fully cytotoxic effector functions of γδ T cells in the
presence of neutrophils (data not shown). In contrast to ZOL,
phosphoantigens like BrHPP or HMBPP directly activate γδ T
cells and do not appear to induce neutrophil burst or release
of ROS and proteases that would inhibit γδ T cell-functions
(105, 106). Recently, we reported that serine proteases released
by neutrophils, such as proteinase 3, elastase and cathepsin G,
decreased the cytotoxicity of freshly isolated, resting γδ T cells
after their activation with BrHPP (94). The inhibition of IFN-γ
and TNF-α production by resting γδ T cells in the presence of
neutrophil-derived serine proteases (94) may play a key role in
the reduced γδ T-cell cytotoxicity in the presence of neutrophils.
ZOL, but not BrHPP, can trigger the release of ROS and serine
proteases in neutrophils, which likely accounts for the observed
differences in resting γδ T-cell activation within leukocytes in the

presence of ZOL- vs. bispecific antibody- or BrHPP-stimulation
(Figures 1B,C). To overcome ZOL-induced neutrophil-mediated
suppression on the release of IFN-γ and TFN-α from resting γδ

T cells, we cultured neutrophils with short-term activated γδ T
cells, which are already continuously producing TNF-α and IFN-
γ, and measured their cytotoxicity against PDAC cells with and
without ZOL treatment.

Interestingly, clinical trials have shown that repetitive in vivo
stimulation of γδ T cells with ZOL and rIL-2 can result in
partially reduced tumor growth for a number of different types
of cancers, including prostate cancer, advanced breast cancer and
multiple myeloma. However, this repeated activation protocol
was associated with exhaustion, anergy, and depletion of γδ T
cells (81, 107, 108). This may be due to the simultaneous ZOL-
induced release of serine proteases and ROS by neutrophils.
In contrast, clinical trials using the adoptive transfer of γδ T
cells that were short-term expanded with ZOL and rIL-2 more
consistently reduced tumor growth in the context of advanced
renal carcinoma, non-small-cell lung cancer, and other solid
tumors (97, 100, 101), which suggests that pre-activation of γδ T
cells can be helpful. Interestingly, the adoptive transfer of short-
term expanded γδ T cells together with bispecific antibodies
and rIL-2 reduced the growth of pancreatic tumors grafted into
immunocompromised mice more significantly in comparison to
adoptively transferred γδ T cells in conjunction with ZOL and
rIL-2 (102).

Sun and colleagues demonstrated that IFN-γ and TNF-α,
which are abundantly produced by NK cells, can convert tumor-
promoting neutrophils into tumor-suppressing ones (109). The
observation that an enhanced number of neutrophils in relation
to lymphocytes has been associated with poor clinical outcome
and reduced overall survival of cancer patients (110, 111)
encouraged Sun and coworkers to target neutrophil effector
functions as means of improving patient outcomes (109). Having
shown that the presence of neutrophils apparently inhibits the
γδ T-cell cytotoxicity stimulated by ZOL of resting γδ T cells
(i.e., contained within leukocytes vs. PBMC), we therefore asked
how neutrophils would impact on cytotoxic effector function
of short-term expanded γδ T cells, which also produce high
amounts of IFN-γ and TNF-α. To this end we analyzed whether
the suppressive effect of neutrophils on γδ T cell-cytotoxicity
could be overcome, similar to what has been observed with NK
cells (109).

Enhanced Anti-tumorigenic Effect of γδ

T Cells Co-cultured With Autologous
Neutrophils Against PDAC Cells
Neutrophils can act as a double-edged sword in cancer
progression due to their remarkable heterogeneity and plasticity
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(9, 112). For instance, neutrophils can be polarized toward
distinct phenotypes, not only by NK cells, but also by
tumor derived signals (113). For example, Panc89 cells can
produce high levels of IL-6 (unpublished observation), which
is reported to induce N2 polarization of neutrophils (6, 114).

FIGURE 2 | Co-culture of γδ T cells with autologous neutrophils in the

presence of PDAC enhances cytotoxicity. (A) Cytotoxicity induced by

short-term activated γδ T cells (γδ) at the indicated Effector/Target ratio (E/T).

The mean of three individual samples for the indicated time points are shown.

(B) Cytotoxicity induced by neutrophils (N) at the indicated Effector/Target ratio

(E/T). E/T ratio was 12.5:1 (dashed line with x, 62.500 effector cells), 25:1

(dashed line with triangle, 125,000 effector cells) and 50:1 (solid line with

square, 250,000 effector cells). The mean of eight individual samples for the

indicated time points are presented. (C) Cytotoxicity of 250 x 103 neutrophils

(N, green line) or 125 × 103 γδ T cells (γδ, blue line, E/T 25:1) alone or in

combination (γδ + N, red line) against Panc89 cells was measured by RTCA.

The mean of 15 individual samples for the indicated time points are shown.

Percentage of lysis was analyzed from RTCA data by calculating the

normalized impedance of spontaneous lysis (cell growth of tumor cells in

medium alone) in relation to the maximal lysis induced by 1% Triton-X-100

(T-X-100, black line) at indicated time points. (A–C) Statistical analysis was

performed by t-test. Significances are presented as P-Value; **P < 0.01 and

*P < 0.05.

FIGURE 3 | Inhibitors of NETosis and NO production slightly enhance γδ T-cell

mediated cytotoxicity in the presence of autologous neutrophils and granzyme

B and IFN-γ release. (A) Cytotoxicity of 250 × 103 neutrophils alone or (B) in

combination with 125 × 103 γδ T cells (γδ + N, E/T 25:1) against Panc89 cells

was determined by RTCA. Three hours before the addition of (A) medium or

(B) γδ T cells, tumor cells and neutrophils were pre-incubated with inhibitors

against radical oxide synthase (ROS, brown line; catalase, 4,500 U/mL), nitric

oxid synthase (NOS, green line; NG,-NG-dimethyl-L-Arginine, 100 nM),

NETosis (NET, blue line; GSK484, 10µM) or no inhibitor (med, red line). The

mean of four individual samples for the indicated time points are shown.

Percentage lysis was analyzed from RTCA data by calculating the normalized

impedance of spontaneous lysis (cell growth of tumor cells in medium alone) in

relation to the maximal lysis induced by 1% Triton-X-100 (T-X-100, black line)

at indicated time points. (C) In parallel, granzyme B and IFN-γ release was

determined by ELISA from supernatants generated under the same conditions

as the RTCA data and collected after 24 h. (A–C) Statistical analysis was

performed by t-test. Significances are presented as P-Value; *P < 0.05 or

indicated significances.
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IL-6, however, does not influence γδ T-cell cytotoxicity against
tumor cells (115). In general, tumor-suppressing (N1 polarized
neutrophils) are short-lived cells with mature phenotype and
high cytotoxicity; whereas, tumor-promoting (N2 polarized
neutrophils) are long-lived cells with immature phenotype and
low cytotoxicity (6, 113).

To investigate the impact of purified neutrophils on the
cytotoxic activity of short-term expanded γδ T cells against
PDAC cells, we co-cultured target cells with γδ T-cells or
neutrophils as effector cells with varying effector/target (E/T)
ratios and analyzed cytotoxicity. We observed an E/T ratio-
dependent lysis of PDAC cell line Panc89 by γδ T cells or
neutrophils (Figures 2A,B). The highest E/T ratio showed very
moderate lysis of Panc89 cells by neutrophils compared to that
of γδ T cells with the same E/T ratio. More interestingly, when
Panc89 cells were co-cultured with γδ T cells and neutrophils,
lysis of tumor cells was significantly increased; up to 60 %
in comparison to γδ T-cell effector cells alone with the 15
different blood donors tested (Figure 2C, red line). For the
graphical presentation, we selected an E/T ratio at which both
effector cells alone (γδ T cells: 25:1; neutrophils: 50:1) lysed
the tumor cells to a similar extent. Although Panc89 cells were
not completely lysed by either γδ T cells or neutrophils alone,
a striking synergistic effect against Panc89 cells was observed.
Lysis of Panc89 cells by γδ T cell occurs primarily through
the release of granzymes and perforin (102, 116); whereas,
neutrophils did not release granzymes, even after treatment
with ZOL (unpublished observation). The inhibitory effects
of neutrophils on tumor growth and tumor progression are
mediated by different mechanisms (9, 117). After interaction
with tumor cells, neutrophils can release ROS or NOS to
trigger oxidative damage followed by cell death (15, 118), induce
NETosis (117), or antibody-mediated trogocytosis (19). None
of the direct cytotoxic mechanisms appear to play a major
role for the observations made in our study since none of the
applied inhibitors, which are described under section Synergism
of neutrophils and γδ T cells toward PDAC cell lysis in more
detail, inhibited the neutrophil-mediated cytotoxicity against
PDAC cells (Figure 3A). Alternatively, activated neutrophils can
release a wide array of cytokines, chemokines and proteases that
influence the effector functions of other immune cells including
T cells and NK cells (6, 23, 119, 120).

Synergism of Neutrophils and γδ T Cells
Toward PDAC Cell Lysis
To probe the potential indirect mechanism(s) by which
neutrophils influence γδ T-cell cytotoxicity against tumor cells,
we treated neutrophils co-cultured with Panc89 cells with
different inhibitors of antimicrobial mediators that are known
to be released by neutrophils for 3 h prior to the addition of
γδ T cells. While catalase, an enzyme that degrades hydrogen
peroxide, did not influence γδ T cell-mediated lysis of PDAC
cells co-cultured with neutrophils, the NOS inhibitor, NG, NG

dimethyl L-arginine, and the PDA4 inhibitor, GSK484, which
attenuates NETosis, both modestly enhanced lysis of Panc89
target cells (Figure 3B). Similar effects were seen with these
inhibitors when neutrophils were cultured alone with Panc89
cells (Figure 3A). The observation that catalase did not influence

PDAC lysis in these experiments suggests that neutrophil-derived
superoxide anion (O2−) or hydrogen peroxide (H2O2) are not
major contributors in this setting. O2− can, however, also
react with nitric oxide (NO) to form reactive nitrogen species
(RNS), such as peroxynitrite (19). NO can be formed from
arginine by the enzyme inducible nitric oxide synthase (iNOS)
expressed by activated macrophages, which were not present in
our cultures. The NOS inhibitor, NG, NG dimethyl L-arginine, is
an endogenous iNOS inhibitor, and it competes with endogenous
L-arginine as a substrate for iNOS. L-arginine is an essential
amino acid for T cells (19), and the addition of NG, NG dimethyl
L-arginine in our experiments showed some benefit to PDAC
lysis. This suggests that L-arginine may be limiting for γδ T cells
in our experimental set-up, and its addition could help support
their anti-cancer effector functions. In addition, treatment with
the NETosis inhibitor moderately enhanced γδ T cell-mediated
lysis of PDAC cells, but did not reduce cytotoxicity of neutrophils
(Figures 3A,B). This observation suggests that neutrophils may
be producing some additional factor(s) (potentially cytokines
or AMP) that indirectly influence granzyme B release from γδ

T cells. In this context, it is of considerable interest that the
release of granzyme B and IFN-γ by γδ T cells co-cultured with
Panc89 cells was clearly enhanced in the presence of neutrophils
compared to the cultures without neutrophils (Figure 3C). The
increased release of cytotoxic mediators by γδ T cells can explain
the enhanced cytotoxic activity against Panc89 cells (Figures 2C,
3C). Taken together, the results argue for a synergistic rather than
an additive effect of γδ T cells and neutrophils in killing Panc89
cells. Riise and colleagues recently reported that the activation
of neutrophils induced an increase in IFN-γ production in T
cells (119). In line with these results, we observed that the
presence of neutrophils served to potentiate γδ T-cell mediated
tumor cytotoxicity, at least partly via enhanced degranulation
and augmented Th1 cytokine release (Figures 2C, 3C). While IL-
17 producing γδ T cells reportedly contribute to the expansion of
granulocytic MDSC (89, 121), our study indicates that Th1-type
γδ T cells do not induce immunosuppressive neutrophils.

Zoledronic Acid Enhanced Cytotoxicity of
Activated γδ T Cells Against PDAC Cells in
the Presence of Neutrophils
We previously reported that the PDAC cell line Pan89 cannot
be completely lysed by γδ T cells unless they were additionally
stimulated with selective γδ T cell agonists, such as ZOL or
bispecific antibodies (69, 102). ZOL is taken up by several tumor
cells as well as by neutrophils; however, unlike the case with
neutrophils, tumor uptake of ZOL results in the stimulation of
γδ T cells and an unleashing of their cytotoxic effector functions
(69, 122). As shown in Figure 4A, treatment with ZOL in the
presence of short-term expanded γδ T cells induced complete
lysis of Panc89 cells by activated γδ T cells, which could not
be further potentiated by the addition of neutrophils. ZOL
further increased the release of granzyme B and IFN-γ by γδ T
cells compared to the cultures without ZOL (Figures 4B, 3C).
Notably, the presence of ZOL-activated neutrophils additionally
enhanced the release of the mediators secreted by γδ T cells
in these co-cultures. These results further underline synergistic
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FIGURE 4 | Zoledronic acid pre-treated autologous neutrophils do not influence γδ T-cell mediated cytotoxicity but further enhance granzyme B and IFN-γ release.

(A) Cytotoxicity of 125 × 103 γδ T cells alone or 250 × 103 neutrophils in combination with 125 × 103 γδ T cells (γδ + N, E/T 25:1, blue line) toward Panc89 cells was

measured by RTCA. Tumor cells and neutrophils were pretreated with ZOL (2.5µM) 3 h before addition of γδ T cells. Percentage lysis was analyzed from RTCA data

by calculating the normalized impedance of spontaneous lysis (cell growth of tumor cells in medium alone) in relation to the maximal lysis induced by 1% Triton-X-100

(T-X-100, black line) at indicated time points. The mean of 15 individual samples for the indicated time points are shown. (B) Granzyme B and IFN-γ release was

measured after 24 h by ELISA from supernatants generated under the same conditions as the RTCA experiments. The mean of four to six individual samples for the

indicated time points are shown. Statistical analysis was performed by t-test. Significances are presented as P-Value; *P < 0.05.

effects of neutrophils and short-term-activated γδ T cells in
the lysis of PDAC cells, and suggest that cytotoxicity of short-
term expanded γδ T cells is less susceptible to inhibition by
ZOL-activated neutrophils.

CONCLUDING REMARKS

Taken together, this study adds to our understanding of how
neutrophils can influence γδ T cell-cytotoxicity depending on
the situational factors present, such as the activation status
of the cells, the cytokine (and chemokine) milieu and the
contribution of cytotoxic mediators by other immune cells
(e.g., macrophages). Certainly, other important factors that
modulate the interaction between neutrophils and γδ T cells
in the context of malignancy are also at play—and these
include the type or entity of the tumor as well as tumor-
derived-signals (e.g., cytokines or damage-associated molecular
patterns). The multi-faceted interactions between tumor cells,
neutrophils and γδ T cells are graphically summarized in
Figure 5. As human γδ T cells infiltrate in many tumors and
have attracted much attention for their potential application
for cancer immunotherapy (82, 104), partly due to their
HLA-independent recognition of antigens, understanding the
relationship between neutrophils and γδ T cells is very
important. Our study demonstrated that neutrophils can under
certain circumstances enhance the killing capacity of short-
term expanded γδ T-cell lines by increasing their release of
cytotoxic mediators. In on-going studies, we aim to explore
whether expansion of γδ T cells by their selective γδ T-
cell agonists and enhancing their cytotoxicity by bispecific
antibodies can really overcome an immunosuppressive tumor

microenvironment, as we have postulated (102, 116). Neutrophils
or neutrophil-like cells can infiltrate in tumors, and—given their
high heterogeneity and plasticity—are subject to polarization
to distinct phenotypes, either promoting tumor development/
progression or killing tumor cells (6, 19, 112). The conditions
for neutrophils may be different in the tumor microenvironment
compared to peripheral blood. It appears that neutrophils
can bind to tumor cells in the bloodstream and transport
them to potentially new metastatic sites and conditioning
them to support pro-tumorigenic functions (123, 124). In
line, an increased number of neutrophils in the blood of
cancer patients has been associated with poor clinical outcome
(110, 111). Pro-tumorigenic tumor-associated neutrophils (TAN)
are described to enhance tumor cell growth and metastasis,
support tumor angiogenesis and mediate immunosuppression
(19, 112). In contrast, anti-tumorigenic TANs can lyse tumor
cells by the release of noxious substances or exert antibody-
dependent cellular cytotoxicity (ADCC) by their expression of
Fc receptors (19). Neutrophil-mediated ADCC is described by
Matlung and colleagues to occur through trogocytosis-related
necrosis of tumor cells opsonized by therapeutic monoclonal
antibodies like trastuzumab. These observations support the
concept that neutrophils can be therapeutically targeted to
enhance their cytotoxic activity (19). We recently reported that
the bispecific antibody, [(HER2)2xCD16], has the potential to
enhance cytotoxicity of CD16 (FcRγIII)-expressing γδ T cells as
well as NK cells to target HER2-expressing solid tumors (116).
The fact that CD16 is also expressed on neutrophils suggests that
neutrophils may also be a good target for [(HER2)2xCD16] to
modulate their anti- tumorigenic properties or to overcome their
pro- tumorigenic function.
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FIGURE 5 | The interaction between neutrophils and γδ T cells can be both pro- and anti-tumorigenic, depending on the tumor microenvironment. Neutrophils can

function as myelosuppressive cells and release factors, such as arginase and IL-10 that work to suppress anti-tumor immune effector functions. Alternatively,

neutrophils can directly take on anti-tumor effector functions by releasing noxious substances that kill cancer cells. Both tumor-derived factors and accessory immune

cells play a role in modulating neutrophil function in the context of malignancy. γδ T cells that secrete IL-17 promote myelosuppressive cells; whereas, γδ T cells that

secrete IFN-γ augment anti-tumor effector functions and display potent cytotoxicity, which is important for tumor cell eradication. Understanding this interplay will help

develop strategic therapeutic agents that shape the immune environment to elicit strong anti-cancer effector functions from both neutrophils and γδ T cells—with the

goal of improving immunotherapy outcomes for patients with cancer. ADCC, antibody-dependent cellular cytotoxicity; ROS, reactive oxygen species; NOS, nitric

oxide species; NETosis, the process of cell death induced by the release of chromatin and granular contents into the extracellular space.

In conclusion, neutrophil- and neutrophil-like cell subsets
play an important role in cancer, and the nature of the function
of these cells can influence patient outcomes. Our increasing
knowledge of how the behavior of these different neutrophil
subsets can be modulated opens the door to exploring new
promising strategies that aim to optimize the interaction between
neutrophils and γδ T cells to overcome malignancy.

MATERIALS AND METHODS

Tumor Cell Lines
Pancreatic ductal adenocarcinoma cell lines (PDAC) Panc89
and PancTuI were kindly provided by Dr. Christian Röder,
Institute for Experimental Cancer Research UKSH/CAU, Kiel.
Panc89 cells as well as PancTuI cells were cultured in RPMI
1640 supplemented with 2mM L-glutamine, 25mM Hepes, 100
U/mL penicillin, 100µg/mL streptomycin, 10% FCS (complete
medium). For removing adherent tumor cells from flasks, cells
were treated with 0.05% trypsin/0.02% EDTA. Mycoplasma
negativity was routinely analyzed once per month by RT-PCR

and the genotype of PDAC cells was recently confirmed by short
tandem repeats analysis.

Isolation of PBMC, Leukocytes,
Neutrophils and Establishment of γδ T-Cell
Lines
PMBC as well as leukocytes were isolated from heparinized- or
EDTA blood from adult healthy blood donors of the Institute
of Immunology. In accordance with the Declaration of Helsinki,
all blood donors provided written informed consent, and the
study was approved by the relevant institutional review board
of Kiel University Medical Faculty (D406/14, D445/18). PBMC
were isolated from heparinized blood by Ficoll-Hypaque density
gradient centrifugation and leukocytes from EDTA blood of
the same donors by lysis of red blood cells using RBC lysing
solution (BioLegend; Koblenz, Germany). To separate freshly
isolated γδ T cells out of PBMC, a negative selection kit [T
cell receptor (TCR) γδ+ T Cell Isolation Kit, Miltenyi Biotec,
Bergisch Gladbach] was used, according to the manufacturer’s
instructions. PBMC, leukocytes or negatively isolated γδ T cells
were co-cultured with PDAC cells (24 h after their adherence) in
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medium with 50 U/mL rIL-2 (Novartis, Basel, Switzerland) or
stimulated with 2.5µM zoledronic acid (ZOL, Novartis, Basel,
Switzerland) or 1µg/mL [(HER2)2xVγ9] bispecific antibody
and rIL-2. Generation and binding capacity of the bsAb
[(HER2)2xVγ9] is described elsewhere (102). To establish short-
term γδ T-cell lines, PBMC were cultured in complete medium,
and stimulated with 2.5µM of ZOL with 50 U/mL rIL-2. 50
U/mL rIL-2 was added every 2 days over a culture period
of 14 days. The majority of the γδ T-cell lines had a purity
of >97% Vγ9Vδ2 γδ T cells determined by staining the cells
with anti-CD3 (clone SK7, BD Biosciences), anti-TCR γδ (clone
11F2, BD Biosciences), anti-Vδ2 (clone Immu389, Beckman
Coulter) and anti-Vγ9 [clone 7A5; (125)] mAbs followed by
flow cytometry analysis. After two weeks, neutrophils were
isolated from EDTA blood samples of the same donors. EDTA
blood samples of these donors were treated with RBC lysing
solution to eliminate red blood cells. Thereafter, neutrophils
were isolated by a negative separation using the EasySep Human
Neutrophil Enrichment Kit (#19257; Stem Cell Technologies,
Grenoble, France). Isolated cells were routinely stained with anti-
CD66b mAb (G0F5, BioLegend, San Diego, CA) and analyzed
by flow cytometry. All stained samples were measured on a
LRS Fortessa flow cytometer (BD Biosciences) using DIVA
8.0 software.

Real-Time Cell Analyzer
Cytotoxicity of PBMC, leukocytes, γδ T cells, neutrophils or the
combination of the latter two against adherent PDAC cells was
measured by a Real Time Cell Analyzer (RTCA, X-Celligence,
ACEA, San Diego, CA, USA) in triplicates as described elsewhere
(102–104, 116). By using RTCA, the impedance of the cells
is monitored via electronic sensors located on the bottom of
96-well micro-E-plate every 5min for up to 24 hrs. To this
end, 50 µL medium followed by 50 µL of 5 × 103 adherent
PDAC cells/well in complete medium were added to the plates.
Impedance of the cells reflects changes in cellular parameters
such as cell proliferation, morphological changes (e.g., spreading,
adherence) and cell death, and is expressed as an arbitrary unit
called cell index (CI). Since the initial adherence in different wells
can differ slightly, the CI was normalized to one after having
reached the linear growth phase. After 24 h, medium, 2.5µM
ZOL or 1µg/mL bsAb [(HER2)2xVγ9] as indicated were added
together with PBMC or leukocytes. Alternatively, previously
titrated optimal concentrations of inhibitors were added together
with neutrophils and medium or ZOL as indicated in the
appropriate figures, 3 h before addition of autologous γδ T-cell
lines at the indicated effector/target (E/T) ratio together with
12.5 U/mL rIL-2. A final concentration of 4500 U/mL ROS
inhibitor Catalase (Sigma-Aldrich, C3556), 10 nMNOS inhibitor
NG, NG dimethyl L-arginine (Santa Cruz Biotechnology, Santa
Cruz, CA) or 10µM Peptidyl arginine deiminase (PAD) 4
inhibitor GSK484, which prevents NETosis (Cayman Chemical,
Ann Arbor, MI) were added in several experiments. When γδ T-
cell lines, neutrophils or both together induced lysis of the PDAC
cells, the loss of impedance of PDAC cells is shown as decrease
of the normalized CI. PDAC cells were treated with 1 % Triton
X-100 (final concentration) as a positive control for killing.
All cells were monitored every minute for the indicated time

points for analysis of cytotoxicity. The experiments were repeated
several times as indicated in the Figure Legends under equal
conditions using different donors in independent experiments.
By using the RTCA software (version 2.0.0.1301, Copyright ©
2004−2012, ACEA) the raw data files were exported toMicrosoft
Excel [version 14.0.7128.5000, (32-bit)] for further calculation
and described as follows. The mean of Triton-X-100 samples was
calculated and defined as 100 % lysis after addition of effector
cells. The percentage of lysis of each sample was calculated
compared to control sample without effector cells or maximal
lysis with Triton-X-100.

Enzyme-Linked Immunosorbent Assay
Five thousand Panc89 cells were seeded in 96-well flat bottom
microtiter plates (Nunc, Wiesbaden, Germany) overnight. After
24 h, medium or a final concentration of 2.5µM ZOL were
added together or not with 250,000 neutrophils/well in complete
medium 3 hrs before addition of 125,000 γδ T-cell lines (E/T
ratio: 25:1) supplemented with 12.5 U/mL rIL-2 for further 24
hrs. To quantify IFN-γ as well as granzyme B released by γδ T-
cell lines co-cultured with PDAC cells in the absence or presence
of neutrophils, supernatants were collected after incubation time
and stored at −20◦C until use. IFN-γ was measured by human
IFN-γ DuoSet R© ELISA and granzyme B by a human granzyme B
sensitive sandwich ELISA (both from R&D System) in duplicates
following the procedures outlined by the manufacturer.

Statistics
Data from at least fifteen donors in independent experiments
with three biological replicates were used to test for normal
distribution with the Shapiro-Wilk test (Graph pad Prism)
followed by a parametrical t-test using Microsoft Excel. All
statistical tests were two-sided and the level of significance was
set at 5%.
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