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Abstract

Isotonic regression is a useful tool to investigate the relationship between a

quantitative covariate and a time-to-event outcome. The resulting non-parametric

model is a monotonic step function of a covariate X and the steps can be viewed as

change points in the underlying hazard function. However, when there are too many

steps, over-fitting can occur and further reduction is desirable. We propose a

reduced isotonic regression approach to allow combination of small neighboring

steps that are not statistically significantly different. In this approach, a second

stage, the reduction stage, is integrated into the usual monotonic step building

algorithm by comparing the adjacent steps using appropriate statistical testing. This

is achieved through a modified dynamic programming algorithm. We implemented

the approach with the simple exponential distribution and then its extension, the

Weibull distribution. Simulation studies are used to investigate the properties of the

resulting isotonic functions. We apply this methodology to the Diabetes Control and

Complication Trial (DCCT) data set to identify potential change points in the

association between HbA1c and the risk of severe hypoglycemia.

Introduction

In clinical practice, disease diagnosis and subsequent treatment are often guided

by a strict threshold (i.e. change point) of a biomarker. For example, fasting

plasma glucose (FPG) at 126 mg/dl is the cutoff to diagnose type II diabetes, and

more intensive treatment is used when FPG reaches 140 mg/dl. Such change

points are often identified through a large scale health study where disease risk
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increases substantially when a biomarker level exceeds a change point. Because

identifying change points is data driven, more recent research data would

mandate the update of the change points. In the case of diabetes diagnosis, the

diagnostic threshold was at FPG >140 mg/dl before 1997. However, in 1997,

increased cardiovascular and micro-vascular disease risk at lower values prompted

the American Diabetes Association to recommend lowering the diagnostic

threshold to 126 mg/dl. Changes like this have huge effects on medical practice,

especially the initiation of a treatment, hence a systematic approach to identify

change points in a covariate is well worth the effort.

Ancukiewicz et al. [1] have established an isotonic regression method to model

the relationship between a quantitative covariate and clinical events. The covariate

is assumed to be discrete with multiple levels so that the model provides an

estimate of the outcome at every discrete value of the covariate. The resulting

model is a step function where each new step can be viewed as a change point.

They used their method to identify a change point in the association of CD4 count

with HIV risk and the method worked well. However, in situations where the data

is dense, that is, there is a large number of subjects with the outcome event and

support over many discrete levels of the covariate, the model can also include

many mini-steps and further combination of some mini-steps is desirable. Schell

and Singh (1997) [2] proposed the idea of ‘reduced isotonic regression’ in which a

backward elimination procedure is used after the usual isotonic regression model

is built. Salanti and Ulm (2005) [3] also proposed a two-step procedure to

estimate threshold limit values with binary outcomes. In their approach, the

second stage in the algorithm is a sequence of Fisher tests for the adjacent 262

tables to accomplish a reduced model. Very recently, Han et al. (2013) [4]

proposed to use a reduced piecewise exponential approach to improve the

modeling of survival time. They also used a two step procedure in which all

insignificant change-points are eliminated after first implementing an order

restriction on the failure rate. A flaw in the two stage approach is that the resulting

model may not give the global maximum likelihood. Thus, we propose to employ

a global optimization approach, examining all potential combinations of isotonic

models with the constraint that the adjacent steps are significantly different and

then identify the one with the maximum likelihood. We implemented this

approach with a modified dynamic programming algorithm proposed by Lai [5].

This approach was chosen over the popular pool adjacent violators algorithm

(PAVA) because the later cannot guarantee a global optimization solution when

the extra testing is required. Lai and Albert [6] described using the approach in a

linear mixed effects model, here we apply the approach in a parametric time-to-

event data analysis.

In a nutshell, the algorithm examines all observed covariate (X) values, from the

smallest (x1) to the largest (xn), one at a time. At each X value, the algorithm will

partition the values smaller or equal to X and identify an optimal step function

satisfying the following three criteria: the function is isotonic, the distributions

between two adjacent steps are significantly different, and the optimal step

function has the maximum likelihood among all possible step functions that meet
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the first two criteria. In the process of finding the optimal partition, all the other

partitions that satisfy the first two conditions are recorded and saved for future

use. This unique feature reduces the computing time from the O(2n{1) in a naive

try to O(n3), assuming that there are n possible X values. The detailed description

and related mathematical proofs about the modified dynamic programming

algorithm was published elsewhere [5].

Large scale clinical trials like the Diabetes Control and Complication Trial

(DCCT) [7] and the UK Prospective Diabetes Study (UKPDS) [8] demonstrated

that improved glycemic control, represented by HbA1c (approximately a function

of the 12 week average of glucose), reduces microvascular complications.

However, they also showed that a lower glucose level is associated with elevated

risk of severe hypoglycemia. It is therefore critical to identify the change points in

the association between HbA1c and hypoglycemia to help establish a glycemic

target which is low enough to minimize microvascular risk and yet not so low as

to increase the risk of severe hypoglycemia. We apply this methodology to the

DCCT data set to identify such change points.

Methods

As in a parametric regression approach for time-to-event data, the null hypothesis

here is that the covariate of interest X is not associated with survival time. The

alternative hypothesis is that there exists at least one X value where the survival

function changes significantly after reaching this value. If there are more than one

change point, the change in survival function is monotonic. Without loss of

generality, we only present the monotonically increasing scenario. Assuming that

g(X) is a parameter in the survival time distribution, the hypothesis testing can be

described as the following

H0 : g(Xi)~l is a constant

H1 : g(Xi)~li,l1ƒl2ƒ:::ƒ:::ƒlm,lk=lkz1 for some k in f1,2, . . . ,m{1g
ð1Þ

To establish a reduced isotonic regression as proposed, we need to specify the

underlining survival function first. We start with the simple exponential

distribution with a constant hazard in terms of time and then extend the results to

the more robust Weibull distribution.

Survival Time with an Exponential Distribution

When the event times follow an exponential distribution with constant hazard

rate l, the survival function can be expressed as

S(t)~e{lt ð2Þ

where l can be expressed as an isotonic step function of the covariate X. The goal
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of the algorithm is to determine whether each X value can be combined with its

neighbors so that the final step function meets the three criteria described

previously: l being monotonically increasing, adjacent steps being statistically

significantly different and having the overall maximum likelihood. The algorithm

starts at the smallest covariate value (x1) and moves on until the final optimization

is achieved.

Assume that li is the hazard associated with the ith level of X (xi) where there

are mi observations. The time-to-event data for the jth participant in this group is

represented as (dij,tij), where dij is the censoring indicator (dij~1 indicating an

event or dij~0 indicating right-censoring) and tij is the survival time.

The log likelihood for all mi observations can be expressed as

l(li)~
Xmi

j~1

dijlog(li){
Xmi

j~1

litij ð3Þ

and li can be estimated as

l̂i~

Pmi
j~1 dijPmi
j~1 tij

ð4Þ

Now that the li is estimated, we want to compare this l̂i with the next one l̂iz1

so that the estimates are monotonically increasing and significantly different. We

use Cox’s F-test for the statistical testing since it is the most powerful test for

comparing two exponential distributions [9] [10]. Assuming

�ti~

Pmi
j~1 tijPmi
j~1 dij

ð5Þ

The ratio of the two F~�ti=�tiz1 follows a F-distribution with u~2
Pmi

j~1 dij and

u~2
Pmiz1

j~1 d(iz1)j degrees of freedom. The test reject H0 if �ti=�tiz1wFu,u,a where

the nominal a is pre-specified. When either l̂i§l̂iz1 or the F test is not significant

at a, the two X steps are combined and treated as a single step and the procedure

continues. There are usually multiple partitions that will satisfy both the isotonic

and significance criteria, among them, the one with the largest likelihood function

is chosen as the optimization. The detailed algorithm used in the optimization is

presented in the Supporting Information section.

Survival Time with a Weibull Distribution

The Weibull distribution is an extension of the exponential distribution and its

shape parameter, c, determines the shape of the distribution of survival times. The

Weibull survival function can be expressed as
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S(t)~e{(lt)c ð6Þ

It is well known that, if a random variable T follows a Weibull distribution with

parameters (c,l), then Tc will follow an exponential distribution with parameter

lc. Therefore, for a given c, a simple power transformation of the survival times

yields an exponential distribution. With this feature we can obtain estimates

under a Weibull assumption by employing the algorithm already developed for

the exponential distribution with power-transformed data. We assume that l is a

step function of X, and c is a constant which will be estimated together with l.

The log likelihood function for the observations with covariate value xi under

the Weibull assumption is

l(li,c)~
Xmi

j~1

½dij(c log(li)zlog(c)z(c{1)logtij){(litij)
c� ð7Þ

and the likelihood for all data is

l(l,c)~
Xn

i~1

l(li,c)~
Xn

i~1

Xmi

j~1

½dij(c log(li)zlog(c)z(c{1)logtij){(litij)
c� ð8Þ

We use the following iterative steps to estimate l and c.

Step 1: Estimate c by assuming that all observations are independently

identically distributed (i.i.d.) from the same Weibull distribution with parameters

(l,c), i.e., l is the same for all xi.

Step 2: With c estimated, we transform the survival time tij to tc
ij and use the

algorithm developed in the exponential case to estimate li

l̂i
c
~

Pmi
j~1 dijPmi
j~1 tc

ij

ð9Þ

Step 3: We update c with a MLE estimator by solving the following equation

derived from (8)

Ll
Lc

~
Xn

i~1

Xmi

j~1

½dij(log(litij)z
1
c

){(litij)
clog(litij)�~0 ð10Þ

Step 4: Repeat steps 2 and 3 until the c estimate converges, which is defined as

change in c is less than 0.1%.

Both the exponential and the Weibull algorithms have been implemented in the

R statistical system and the codes can be found in the supplemental material.
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Results

An Example

We illustrate the algorithm using the following hypothetical example depicted in

Figure 1. We simulated time-to-event data that follows a Weibull distribution. X
was the covariate of interest and had 7 distinct values xi[ {0, 1/3, 2/3, 1, 4/3, 5/3,

2}, evenly spaced. A data set of 1000 observations was then generated by sampling

a value of X from the set where the extremes each had probability 1/12th and the

other 5 values had probability 1/6th. The corresponding hazard rates l(xi) were

determined by the step function shown in Figure 1 (A) and the shape parameter c

was set at 2.

To generate the event time T, we used the known fact that if T followed a

Weibull distribution with parameters c,l(xi)½ � then Tc would follow an

exponential distribution with patameter l(xi)
c. We randomly generated an event

time T0 from the exponential distribution with rate l(xi)
c. Thus, a back

transformation of T~T
1
c

0 would create a random variable T following a Weibull

distribution c,l(xi)½ �. For censoring, we used independently generated random

numbers following uniform distributions in the interval between the minimum

and the maximum of the event times as the censoring time C. The minimal of the

event time and the censoring time min(T,C) was used as the final survival time.

The event indicator d was coded as dij~1 when TƒC or 0 otherwise. Figure 1 (B)

Figure 1. Underlying true model and time-to-event data. (A) Weibull scale parameter l is an isotonic function of X. (B) Event or censored time follows the
Weibull distribution with a fixed shape parameter (c~2) and scale parameter l shown in (A). The green open circles represent event times and the blue open
diamonds represent censored times.

doi:10.1371/journal.pone.0113948.g001
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displays survival times with open circles representing event times (dij~1) and

open diamonds representing censored times (dij~0).

Table 1 shows the distinct values of X, number of subjects with each value of X,

true hazard rates l and the initial individually estimated hazard rates and their

standard errors (with c estimated at 2.02 in the final iteration of the algorithm).

Before the constraint of monotonicity, the seven distinct estimates (l̂is) were close

to the true values (lis), however, no change point(s) could be determined because

each l is a distinct value.

We applied the algorithm to the data set to obtain a reduced isotonic regression

model. The same example was repeated 1000 times, each time with a slightly

different random data set and the results are shown in Figure 2. Panels (A)

corresponds to models from the regular isotonic regression and panel (B) from

the reduced isotonic regression with pre-specified testing significance at 0.0001. In

panel (B), the bands of the estimates around the true l values at 1 and 2 are much

tighter, indicating improved model fit from incorporating the significance testing.

The very small nominal a was chosen for this example to demonstrate the effect of

statistical testing. Such a stringent significance level could be too strict for real

world data and shouldn’t always be used.

Small Sample Performance

A good modeling strategy is a strategy that still works when sample size is small. In

the case of time-to-event data, due to censoring, the statistical information

depends on the number of subjects experiencing the event, which is smaller than

the number of participants in the study. Here we evaluate the performance of the

reduced isotonic regression employing combinations of sample size and percent of

censoring that yields 500, 200, 100 and 50 events.

We used the previously described example again. Adjacent steps were tested at

nominal a~0:05 and each scenario was repeated 1000 times. The results are

shown in Table 2 and Table 3. Table 2 describes the frequency of various steps we

Table 1. Sample data following Weibull distributions with c~2:0 and l as a step function of X.

True Parameters

Steps 1 2 3 4

Xi 0 1/3 2/3 1 4/3 5/3 2

ni 94 159 166 170 160 184 67

li 1 1 1 2 2 4 5

Initial Estimates

l̂i 1.09 1.04 0.95 2.02 1.91 3.87 5.31

se(l̂i) 0.07 0.05 0.05 0.09 0.08 0.15 0.33

xi: covariate with 7 distinct values; ni: number of observations at each X value; li: step function of X with 4 distinct values; l̂i: l estimated at each X value

before the implementation of the reduced isotonic regression algorithm; se(l̂i): standard error of the l̂i.

doi:10.1371/journal.pone.0113948.t001
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identify in the 1000 repetitions. Table 3 summarizes the means and mean squared

errors of the estimates of ĉ and l̂1, . . . ,l̂7. As the number of events decreases, the

number of correctly identified steps (4) decreases and the model estimates are

more likely to be biased with bigger variances. However even when the number of

events is as small as 50, the models are able to capture the pattern of the

underlining true model at about 25% of the times and only miss 1 step at 70% of

the times. The parameter estimates are reasonably close to the true parameters.

Model Diagnostics and Other Features

Cox-Snell [11] residuals can be applied to assess whether the model assumptions

are accurate. If the model fits the data, and we plot Cox-Snell residual ri against

the negative log of the survival function of the residual { log Ŝ(ri), it should be a

straight line with unit slope and zero intercept.

Although the nominal significance between the steps of the final model is pre-

specified (herein at level a), such testing between any two steps does not provide

an overall test of the significance of the covariate effect in the reduced isotonic

regression model. Under certain conditions the likelihood ratio test of the

covariate significance may follow a chi-square distribution. However, the degrees

of freedom is unknown. We propose to use a permutational approach to obtain

Figure 2. Simulation results from 1000 repetitions. (A) Regular isotonic regression without testing between
steps. (B) Reduced isotonic regression with nominal a~0:0001: The dark green lines represent the underlying
true model.

doi:10.1371/journal.pone.0113948.g002
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the distribution of the likelihood ratio test under the null. This distribution will

allow us to calculate the p-value of the covariate of interest.

It is still difficult to understand the theoretical properties of the parameters

estimated from the reduced isotonic regression algorithm. To circumvent the

problem, we use the distribution free bootstrap approach [12] to calculate the

confidence intervals of the parameter estimates. A bootstrap sample with

replacement is created from the original data set and model parameters are

generated. This is repeated multiple times and a distribution of the parameter

estimates is created. The 95% confidence intervals for the parameter estimates is

therefore constructed.

Application

The Diabetes Control and Complication Trial (DCCT) was a clinical trial aimed at

comparing intensive treatment, i.e., at least 3 insulin injections a day, to the

traditional treatment, once or twice a day for Type 1 diabetes mellitus (T1DM)

patients. Although the intensive treatment significantly delayed the onset and

slowed the progression of retinopathy, neuropathy and nephropathy, there is a

two-to-three fold increase in episodes of severe hypoglycemia (low blood sugar)

that could lead to coma (unconsciousness) and/or siezures [7]. Here we use the

methods developed in the previous sections to explore the relationship between

HbA1c and severe hypoglycemia for the 711 participants in the intensive

treatment group. The DCCT hypoglycemia data is described by Lachin [13] and

can be obtained from the following web site: http://www2.bsc.gwu.edu/bsc/

webpage.php?no518.

Table 2. Number of steps identified with various event numbers and percent censored.

Event N Sample N % Censored mean(range) Number of Steps

2 3 4 5 6

,500 1000 50.5(37.4–60.1) 0 86 785 126 3

800 37.9(26.4–47.4) 0 126 745 122 7

500 0 0 223 680 96 1

,200 400 50.7(34.3–62.5) 0 376 527 95 2

320 37.5(24.1–49.1) 0 440 485 72 3

200 0 0 509 429 59 3

,100 200 50.8(30.5–65.5) 0 550 384 62 4

160 37.4(23.1–53.1) 0 577 372 49 2

100 0 0 621 326 51 2

,50 100 50.5(31.0–70.0) 20 694 266 20 0

80 37.4(20.0–60.0) 8 699 268 25 0

50 0 19 737 229 18 0

The combination of ‘‘Sample N’’ and ‘‘%censore’’ is used to yield the targeted number of events in the ‘‘Event N’’ column, repeated 1000 times.

doi:10.1371/journal.pone.0113948.t002
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The event is the first occurrence of severe hypoglycemia and the covariate of

interest is the participant’s HbA1c at study entry. We applied the reduced isotonic

regression with Weibull assumption and a nominal a~0:05 to the data and

present the results in Figure 3. Panel (A) is the regular isotonic regression without

testing between steps and the resulting model has many small steps. When the

testing between steps is added, a parsimonious model with only 3 change points

(6.2, 7.3 and 9.6) is obtained. Model in panel (B) suggests that even though it is

ideal to lower patients’ HbA1C level to as close to normal (5.6 or lower) as

possible, we need to monitor the level closely when it crosses 9.6, 7.3, and 6.2 to

avoid the occurrence of severe hypoglycemia. Overall significance of HbA1C is

p~0:026, estimated from the permutation approach. The model estimate for the

shape parameter is ĉ~0:76 (p~0:001), suggesting that the hypoglycemic events

Table 3. Precision of parameter estimates with various event numbers and percent censored.

Event N Sample N c~2 x5 0 1/3 2/3 1 4/3 5/3 2

l5 1 1 1 2 2 4 5

mean and mean squared error for the estimates of l

,500 1000 2.01 0.99 1.00 1.01 1.99 2.01 4.02 5.00

0.0051 0.0043 0.0027 0.0030 0.0061 0.0065 0.040 0.13

800 2.01 0.99 1.00 1.01 1.99 2.01 4.02 4.99

0.0052 0.0037 0.0022 0.0025 0.0072 0.0073 0.044 0.16

500 2.01 0.99 1.00 1.01 1.99 2.01 4.06 4.95

0.0050 0.0021 0.0014 0.0017 0.0079 0.0085 0.072 0.22

,200 400 2.01 0.97 1.00 1.01 2.00 2.01 4.10 4.90

0.014 0.013 0.0081 0.0093 0.015 0.016 0.11 0.39

320 2.02 0.99 1.00 1.01 1.99 2.02 4.10 4.85

0.013 0.0078 0.0053 0.0062 0.016 0.018 0.12 0.47

200 2.03 0.99 1.00 1.01 2.00 2.02 4.14 4.86

0.015 0.0047 0.0035 0.0055 0.018 0.022 0.18 0.59

,100 200 2.04 0.97 1.01 1.03 1.99 2.04 4.16 4.83

0.030 0.023 0.016 0.022 0.039 0.043 0.22 0.66

160 2.05 0.98 1.01 1.03 1.99 2.04 4.20 4.82

0.030 0.019 0.012 0.016 0.034 0.042 0.27 0.65

100 2.06 0.98 1.00 1.03 2.01 2.05 4.18 4.89

0.032 0.0088 0.0070 0.014 0.041 0.055 0.32 1.28

,50 100 2.07 0.97 1.00 1.08 1.96 2.07 4.17 4.82

0.069 0.043 0.044 0.085 0.11 0.13 0.35 1.36

80 2.08 0.97 1.02 1.07 1.98 2.10 4.23 4.90

0.072 0.032 0.027 0.057 0.11 0.14 0.53 1.65

50 2.14 0.99 1.02 1.07 1.98 2.13 4.24 4.99

0.091 0.021 0.020 0.050 0.11 0.24 0.79 2.60

For the mean and mean squared error columns, the first row is the mean and the second row is the mean squared error. Percent and range of censoring is
the same as shown in Table 2.

doi:10.1371/journal.pone.0113948.t003
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Figure 3. Modeling HbA1c and risk of severe hypoglycemia. (A) Regular isotonic regression without
testing between steps. (B) Reduced isotonic regression with nominal a~0:05 (C) Cox-Snell residual plot of
Model B. Dotted lines in (A) and (B) represent 95% Confidence Intervals of l.

doi:10.1371/journal.pone.0113948.g003
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tend to occur early in the implementation of the intensive therapy. The Cox-Snell

residual plot (panel (C)) indicates that the Weibull assumption is valid.

Discussion

Herein we demonstrated how reduced isotonic regression can be implemented in

parametric time-to-event data analysis with survival time following an

exponential or Weibull distribution.

As shown in the simulation studies, adding statistical testing between steps can

reduce number of steps falsely introduced by noise. Although in the simulation

example we chose c~2 for clarity of presentation, we have examined the scenario

when c~0:5 and obtained similar results [14]. A cv1 might be more

representative of medical data of chronic diseases and the fact that our approach

worked well with the DCCT data (c~0:76) is reassuring. In the DCCT example,

the regular isotonic regression model produced too many change points and were

not directly useful for the clinical practice. Although we could identify a couple

change points from the regular model by eyeballing the figure, it is not systematic

and very subjective. By using the statistical testing we were able to build a

parsimonious model with only a few change points. Obviously, the nominal

isotonic testing level a will influence the number of change points. As the nominal

a becomes smaller the number of change points decreases. As the methodology

allows for user’s choices of the nominal a, in real world data analysis, we

recommend to start with a big a at 1.0, i.e., no testing done between steps, to

obtain an exploratory check of the association between the covariate and the

outcome. After that, a smaller nominal a can be applied to obtain a more

parsimonious model with fewer change points for practical use. A methodological

approach such as those used in choosing the smoothing parameter value in non-

parametric data analysis can be developed to choose a single best nominal a,

however, it is beyond the scope of this paper with both a caveat and possible

extension of the method given.

In health research or epidemiological studies, we often want to evaluate whether

a covariate of interest is associated with the outcome independently of the effects

of other covariates. This is usually achieved by adding (or adjusting for) other

covariates known to be associated with the outcome in the model. In this case, we

can add the known covariates to the algorithm and solve for them simultaneously

with the covariate of interest. Estimates of these covariates can be solved in the

same way as the shape parameter c in the Weibull case, i.e., held as constants while

solving for the parameters related to X.

Supporting Information

Appendix S1. The modified dynamic programming algorithm.

doi:10.1371/journal.pone.0113948.S001 (PDF)
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Appendix S2. R programs developed for the reduced isotonic regression in

survival analysis.

doi:10.1371/journal.pone.0113948.S00 (TXT)
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