
EBioMedicine 54 (2020) 102742

Contents lists available at ScienceDirect

EBioMedicine

journal homepage: www.elsevier.com/locate/ebiom
Large-scale network dysfunction in the acute state compared to the
remitted state of bipolar disorder: A meta-analysis of resting-state

functional connectivity

Yanlin Wanga,1, Yingxue Gaoa,1, Shi Tanga,1, Lu Lua, Lianqing Zhanga, Xuan Bua, Hailong Lia,
Xiaoxiao Hua, Xinyu Hua, Ping Jianga, Zhiyun Jiaa, Qiyong Gonga, John A. Sweeneya,b,
Xiaoqi Huanga,*
aHuaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
b Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
A R T I C L E I N F O

Article History:
Received 9 January 2020
Revised 28 February 2020
Accepted 16 March 2020
Available online xxx
* Corresponding author.
E-mail address: julianahuang@163.com (X. Huang).

1 These authors contributed equally to this study.

https://doi.org/10.1016/j.ebiom.2020.102742
2352-3964/© 2020 The Authors. Published by Elsevier B.
A B S T R A C T

Background: Bipolar disorder (BD) is a mental disorder characterized by mood fluctuations between an acute
episodic state of either mania or depression and a clinically remitted state. Dysfunction of large-scale intrin-
sic brain networks has been demonstrated in this disorder, but it remains unknown whether those network
alterations are related to different states.
Methods: In the present study, we performed a meta-analysis of whole-brain seed-based resting-state func-
tional connectivity (rsFC) studies in BD patients to compare the intrinsic function of brain networks between
episodic and remitted states. Thirty-nine seed-based voxel-wise rsFC datasets from thirty publications (1047
BD patients vs 1081 controls) were included in the meta-analysis. Seeds were categorized into networks by
their locations within a priori functional networks. Seed-based d mapping analysis of between-state effects
identified brain systems in which different states were associated with increased connectivity or decreased
connectivity within and between each seed network.
Findings: We found that BD patients presented decreased connectivity within the affective network (AN) in
acute episodes but not in the remitted state of the illness. Similar decreased connectivity within the default-
mode network (DMN) was also found in the acute state, but it was replaced by increased connectivity in the
remitted state. In addition, different patterns of between-network dysconnectivity were observed between
the acute and remitted states.
Interpretation: This study is the first to identify different patterns of intrinsic function in large-scale brain net-
works between the acute and remitted states of BD through meta-analysis. The findings suggest that a shift in
network function between the acute and remitted states may be related to distinct emotional and cognitive
dysfunctions in BD, which may have important implications for identifying clinically relevant biomarkers to
guide alternative treatment strategies for BD patients during active episodes or remission.
Funding: This study was supported by grants from the National Natural Science Foundation of China
(81171488, 81671669 and 81820108018) and by a Sichuan Provincial Youth Grant (2017JQ0001).
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
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1. Introduction

Bipolar disorder (BD), a debilitating psychiatric disorder whose
lifetime prevalence varies from 0.6 to 5% in different countries [1,2],
is characterized by mood fluctuations between an acute episodic
state of either mania or depression and a remitted or euthymic state.
The treatment for BD is to stabilize the acute mood episode, with the
aim of bringing the patient from mania or depression to a symptom-
atic recovery with normalized (stable) mood [3]. Even with ongoing
psychiatric care, approximately 73% of BD patients receiving pharma-
cotherapy experience another acute episode of affective illness
within 5 years [4]. Therefore, clarifying the distinct neural mecha-
nisms of the acute and remitted states is particularly important in
preventing recurrent episodes and keeping patients’ symptom free,
as well as selecting treatments for individual patients [5,6].

Previous studies have proposed that abnormal communications in
large-scale functional networks may underlie the pathophysiology of
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Research in context

Background of previous research

Bipolar disorder (BD) is characterized by acute episodes of
mania and depression separated by phases of relative remis-
sion. Dysfunctions in large-scale functional networks have been
implicated in both emotional and cognitive dysregulation,
which may contribute to the clinical symptoms of BD.

Clarifying the neural mechanisms that underlie the similari-
ties and differences between acute episodes and remission
would advance the neurobiological understanding of BD and
potentially provide objective markers for treatment planning.
Thus, the databases PubMed, Web of Science and Embase were
searched for articles published before Jan 1st, 2020, for a com-
prehensive and systematic meta-analysis to address this issue.

Added value of this study

The current study demonstrated that BD patients had an acute-
state-related functional shift toward hypoconnectivity within
the affective network (AN) and trait-related abnormalities
within the default-mode network (DMN), which might provide
clinically useful information for targeted therapeutic interven-
tions in BD.

Implications of the available evidence

Hypoconnectivity within the AN may be characteristic of acute
episodes, reflecting deficits in mood regulation, while altered
connectivity within the DMN across mood states implies trait-
related cognitive impairments. Dysfunctions in large-scale
functional networks in the acute state compared to the remit-
ted state might reflect core emotional and cognitive dysfunc-
tions in BD patients.
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BD [7,8]. Among these studies, functional magnetic resonance imaging
(fMRI) studies have revealed aberrant resting-state functional connec-
tivity (rsFC) in the default-mode network (DMN), the frontoparietal
network (FPN), the salience network (SN) and the affective network
(AN) or limbic network in patients with BD compared to healthy con-
trols (HCs) [7, 8], but these abnormalities varied depending on whether
mood was controlled or not [9,10]. For instance, abnormal functional
connectivity in the DMN has often been reported in BD patients during
acute episodic states [11] but not during remission. This difference may
reflect a normalization of DMN functional connectivity in the remitted
state [12]. In addition, hypoconnectivity between the AN and the ante-
rior DMN was found in BD patients during acute episodes [13], but
hyperconnectivity between the AN and the anterior DMN [14,15] was
found in clinically remitted BD patients compared to HCs. Moreover,
one study directly compared FC patterns of the ANs, which consists of
emotion-processing areas such as the amygdala, subgenual anterior
cingulate cortex (sgACC) and ventrolateral prefrontal cortex (VLPFC),
between patients in acute mood states and in the remitted state, and
they found that the connectivity between the sgACC and the amygdala
is critically affected during acute mood episodes, while sgACC�VLPFC
coupling plays a key role in mood normalization [16]. A recent system-
atic review of all rsFC studies in individuals with remitted BD suggested
that stability of the DMN, FPN and SN might reflect a state of remission
[12], but the authors admitted that the study was limited by the hetero-
geneity of the analytical methods.

Taken together, these results suggest that clinically remitted BD
patients do not have entirely normalized intrinsic cerebral function but
may have some characteristic changes related to the next mood relapse.
Network differences between different mood states may have important
implications for personalized treatment and preventive strategies in BD
management [17]. However, the exact neural mechanism underlying dif-
ferent mood states in BD patients remains unclear, and few studies have
directly compared the patterns of network functions related to these dif-
ferent states [18]. Thus, synthesizing results from published studies will
be an important way to help clarify whether those network alterations
are static traits of BD or represent different states of mood control.

In the present study, we aimed to perform a meta-analysis of
whole-brain seed-based resting-state functional connectivity (rsFC)
studies in BD patients to synthesize the findings of each large-scale
brain network and compare the intrinsic function of brain networks
between active and remitted states. We applied the strategy pro-
posed by Kaiser and his colleagues, which categorized seeds and
corresponding effect regions into a priori functional network parcella-
tions based on their coordinate locations [19]. A meta-analysis was then
performed for each seed network to identify consistent patterns of func-
tional connectivity alterations across studies. This approach has been
applied to study many psychiatric disorders, including major depressive
disorder [19], schizophrenia [20], obsessive�compulsive disorder [21]
and early psychosis [22], but it has not yet been applied in BD. We
hypothesized that BD patients in acute episodes and those in remission
would display distinct patterns of abnormal functional connectivity in
their large-scale brain networks.

2. Materials and methods

2.1. Search strategy

Following the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines, an online search was con-
ducted in the databased PubMed, Web of Science and Embase for lit-
erature published before Jan 1st, 2020. The keywords used in the
search were (“bipolar disorder” OR “bipolar affective disorder”) AND
(“functional magnetic resonance imaging” OR “fMRI” OR “resting
state” OR “functional connectivity”). We then manually searched the
references of the included studies and pertinent review articles.

2.2. Study selection criteria

The inclusion criteria were as follows:

The study was an original work of peer-viewed fMRI research;
The patients included in the study were diagnosed with BD according

to the Diagnostic and Statistical Manual of Mental Disorders
(DSM) or International Classification of Diseases (ICD) criteria;

The study directly compared BD patients in different mood states
with HCs;

Whole-brain seed-based rsFC analysis was performed;
The peak coordinates were reported in standard stereotaxic spaces

(e.g., Montreal Neurological Institute (MNI) or Talairach).

Studies were excluded if 1) they did not differentiate patients
according to whether they were in an acute mood state or a remission
state; 2) they did not compare seed-based rsFC between BD and HCs at
the whole-brain level; or 3) the coordinates of between-group effects
could not be retrieved even by contacting the author. If two studies
had overlapping samples and selected the same seed, the one with the
larger sample was included in the analysis. Importantly, studies on the
same samples using different seeds were considered separate datasets.
Meanwhile, studies in which distinct BD groups were compared with
a single HC group were coded as distinct datasets.

2.3. Data extraction

First, we classified the mood states of BD patients in each study.
Patients in periods of clinical remission (euthymia) were considered
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the remitted group (BD in remission, BDR). Conversely, patients hav-
ing acute mood episodes (mania, depression, or mixed) were coded
as the acute group (BD in acute state, BDA).

Second, location information (e.g., the coordinates, a prior template,
or a standard atlas) of each seed and peak coordinates of each significant
between-group effect for each seed were extracted. We categorized
each seed into one of seven seed networks according to its location
within the a priori network parcellation [23�25], which included the
DMN, AN, FPN, dorsal attention network (DAN), ventral attention net-
work (VAN), somatomotor network (SMN) and visual network (VIS).

Third, the effects of rsFC were also categorized into two groups
according to the direction of the effect: hyperconnectivity (BD
patients > HC) and hypoconnectivity (BD patients < HC). Studies
with null findings (i.e. those that reported no between-group differ-
ences in rsFC or whose effects did not survive statistical correction)
were also included. Two investigators independently conducted the
data extraction and double-checked the information, and disagree-
ments were resolved by discussion.

2.4. Meta-analysis

The meta-analysis was performed using the anisotropic effect size
version of seed-based d mapping (AES-SDM) software package
v5.141 (http://www.sdmproject.com/software), which is a statistical
technique for meta-analysis of neuroimaging studies based on peak
coordinates of identified effects [26]. It first recreated the effect-size
maps of differences between groups for each study based on the peak
coordinates of the effects and statistics (T-value, Z-value or p-value)
by assigning an effect size to each voxel relying on its distance to
close peak coordinates [27]. Both positive and negative coordinates
were reconstructed in the same map, which is important for prevent-
ing a particular voxel from erroneously appearing to have effects in
opposite directions at the same time [28]. Then, individual maps
from each study were combined using meta-analytic calculations,
and meta-analytic maps were constructed for each seed network of
the BDR and BDA groups separately. Subsequently, quantitative com-
parisons between the BDR and BDA groups were performed for each
seed network to directly calculate the rsFC differences between the
two groups.

Statistical significance was determined using standard permuta-
tion tests with an uncorrected p = 0.005 as the main threshold. This
value has been suggested to ensure an optimal balance between sen-
sitivity and specificity and to be an approximate equivalent to a cor-
rected p value of 0.05 in AES-SDM based on empirical validation [29].
To further reduce the false positive errors, we used an additional Z-
based threshold of jZj >1 and an extent threshold of 100 voxels [30].

2.5. Sensitivity analysis and meta-regression analysis

A jackknife sensitivity analysis was conducted to evaluate the
robustness and reliability of the results. This analysis repeats the
main statistical analysis multiple times, excluding a different study
each time. If a previous significant finding remains significant in all
combinations of studies, or in at least 80% of the studies, it can be
regarded as replicable.

To investigate the potential effects of relevant demographic and
clinical variables, we performed meta-regression analyses with sex
ratio, mean age and percentage of medicated patients as the regres-
sors. The results were thresholded at a lower uncorrected value of p
< 0.0005 as well as an extent threshold of 100 voxels to minimize
the detection of false correlations [28].

2.6. Heterogeneity analysis and publication bias

Interstudy heterogeneity was assessed by converting the QH statis-
tics (a specific Q statistic in SDM to assess inter-study heterogeneity) to
Z scores. Clusters that showed significant heterogeneity and overlapped
with themain results were considered heterogeneous between studies.

Funnel plots and Egger’s test in AES-SDMwere used to test the pos-
sibility of any publication bias [31]. Funnel plots are generated to visu-
alize any possible publication bias, while Egger’s test is a quantitative
method of assessing asymmetry in the funnel plots and can therefore
be used as an indicator of publication bias. Results showing p < 0.05
on Egger’s test were considered to have significant publication bias.

3. Results

3.1. Included studies and sample characteristics

The search yielded 39 datasets from 30 publications with a total of
1047 BD patients, which included 554 patients in the acute mood
state (405 depression, 142 mania, 7 mixed), 493 patients in the clini-
cal remission state, and 1081 HCs. Detailed sample characteristics are
shown in Table 1 in the supplement. After the seeds from each study
were categorized into a priori functional networks, 22 datasets with
32 DMN seeds, 19 datasets with 25 AN seeds, 9 datasets with 9 FPN
seeds, 10 datasets with 8 VAN seeds, 4 datasets with 4 SMN seeds
and 3 datasets using the thalamus (a region that does not belong to
any of the 7 networks) as the seed were included (see Table S1 in the
online Supplement). Ultimately, studies with DMN and AN seeds
were included in the quantitative meta-analysis, while studies with
seeds in other networks were not subjected to meta-analysis because
the datasets were insufficient to provide acceptable statistical power
[32]. To make up for this shortcoming, we added the detailed findings
of each study to specify the FC alterations in each state (see Table S2
in the online Supplement). A flowchart of the search strategy and
study selection is shown in Fig. 1.

3.2. Abnormal connectivity within the AN

Hypoconnectivity was found between the AN seeds and the right
inferior temporal gyrus (ITG) and the left subgenual anterior cingu-
late cortex (sgACC) in BDA patients relative to HCs (see Table 2 and
Fig. 2). However, there was no altered within-AN connectivity in BDR
patients compared with HCs. Meanwhile, direct comparison between
the active and remitted groups revealed hypoconnectivity within the
AN (located in the right ITG and the left sgACC) in the BDA patients.

3.3. Abnormal connectivity between the AN and regions of the DMN,
FPN, SMN

Hyperconnectivity was found between the AN seeds and regions of
the ventromedial prefrontal cortex (VMPFC) and the dorsal medial
prefrontal cortex (DMPFC) in the DMN in BDA and BDR patients rela-
tive to HCs (see Table 2 and Fig. 2). Both hyperconnectivity and hypo-
connectivity were found between the AN seeds and the left and right
regions of the cerebellum, spreading across the DMN and the FPN,
respectively, in the BDA patients. In addition, hypoconnectivity was
found between the AN seeds and areas of the supplementary motor
area (SMA) in the SMN in the BDR group; however, in a direct compar-
ison between the acute and remitted groups, hyperconnectivity was
found between the AN seeds and regions of the SMA in the BDA group.

3.4. Abnormal connectivity within the DMN

BD patients in acute mood episodes showed hypoconnectivity
between the DMN seeds and regions of the posterior cingulate cortex
(PCC) and medial prefrontal cortex (MPFC) compared with HCs (see
Table 3 and Fig. 3). In contrast, compared with HCs, BD patients in
clinical remission showed hyperconnectivity between the DMN seeds
and regions of the PCC relative to HCs. When comparing acute and
remitted groups directly, we found that BDA patients exhibited

http://www.sdmproject.com/software


Table 1
Summary of the demographic characteristics of studies included in the meta-analysis.

Study BD
(female)

State HCs
(female)

Mean age § SD Subtype Illness duration Medicated (%)

BD HCs

Dickstein et al. 2010 [80] 15(5) BDR 15 (8) 13.7 § 3.3 14.0 § 3.1 BD-I � 100%
Chai et al. 2011 [101] 14 (5) BDA-mania 15 (6) 32.7 § 3.0 37.3 § 2.4 BD-I � 100%
Torrisi et al. 2013 [102] 20 (10) BDR 20 (10) 42.1 § 11.4 39.8 § 12.6 BD-I 22.7 § 11 Y 85%
Najt et al. 2013 [103] 13 (7) BDR 15 (6) 43.08 § 11.37 36.13 § 12.13 BD-I � 100%
Reinke et al. 2013 [104] 21 (9) BDR 20 (8) 35.67 § 10.68 36.9 § 11.06 NA � 100%
Favre et al. 2014 [105] 20 (10) BDR 20 (10) 42.0 § 10.7 43.7 § 11.1 BD-I = 13, BD-II=5,

NOS=2
15.6 § 9.3 Y 100%

Knochel et al. 2014 [106] 21 (9) BDR 21 (9) 35.67 § 10.68 36.95 § 11.10 BD-I 7.62 § 5.82 Y 100%
Anticevic et al. 2014
[107]

40 (32) BDR 56 (32) 30.2 § 11.5 31.25 § 10.3 NA 11.48 § 9.1 Y 82%

Stoddard et al. 2015
[108]

14 (3) BDR 20 (11) 14.6 § 2.5 14.3 § 2.3 BD-I = 11, BD-II=3 � 71%

Li ML et al. 2015a [82] 10 (3) BDA-depression 28 (12) 30.90 § 8.94 31.05 § 7.53 BD-I = 7, BD-II=3 79.80 § 78.59 M 100%
Li ML et al. 2015b [82] 18 (8) BDA-mania 28 (12) 31.67 § 6.98 BD-I = 16, BD-II=2 62.89 § 74.24 M 100%
Magioncalda et al. 2015
[46]

40 (27) BDA-depression=11,
BDA-mania=11,
BDA-mixed=7,
BDR=11

40 (26) 44.6 § 11.8 43.9 § 12.8 BD-I 20 § 11.4 M 97.5%

Oertel-Kn€ochel et al.
2015 [109]

21 (9) BDR 20 (8) 35.67 § 10.68 36.90 § 11.06 BD-I = 21 7.62 § 5.82 Y 100%

Singh et al. 2015 [61] 20 (11) BDA-mania 23 (14) 17.21 § 1.89 16.86 § 1.43 BD-I = 20 � 100%
Lui et al. 2015 [110] 57 (39) BDR 59 (33) 34 § 13 38 § 17 NA 16.89 § 12.71 Y 100%
Li ct et al. 2015 [79] 20 (6) BDR 20 (7) 41.6 § 11.3 41.8 § 10.6 BD-I = 20 16.1 § 10.3 Y 100%
Martino et al. 2016a [81] 21 (18) BDA-mania 42 (27) 45.6 § 11.8 44.3 § 12.7 BD-I 20.9 § 14.6 Y 99%
Martino et al. 2016b [81] 20 (13) BDA-depression 42 (27) 44.9 § 10.9 44.3 § 12.7 BD-I 19.5 § 10.8 Y 100%
Martino et al. 2016c [81] 20 (12) BDR 42 (27) 43.1 § 11 44.3 § 12.7 BD-I 18.2 § 9 Y 99%
Lv et al. 2016a [111] 23 (13) BDA-depression 28 (15) 26.17 § 4.42 24.82 § 6.62 NA 53.81 § 45.37 M 86.95%
Lv et al. 2016b [111] 19 (9) BDR 28 (15) 27.79 § 6.71 24.82 § 6.62 NA 65.33 § 55.59 M 100%
Altinay et al. 2016a [83] 30 (17) BDA-depression 30 (18) 34 § 11 31 § 10 BD-I = 12, BD-II=18 35 § 30W 0%
Altinay et al. 2016b [83] 30 (19) BDA-mania 30 (18) 33 § 11 31 § 10 BD-I = 16, BD-II=14 25 § 32W 0%
Brady et al. 2016a [13] 28 (8) BDA-mania 23 (7) 27.5 § 10.7 29.7 § 10.9 BD-I � 89%
Brady et al. 2016b [13] 24 (8) BDR 23 (7) 30.9 § 11.9 29.7 § 10.9 BD-I � 95.8%
Ambrosi et al. 2017 [14] 36 (20) BDA-depression 40 (16) 31.0 § 11.3 35.5 § 14.4 BD-1, BD-II � 100%
Li J et al. 2017 [112] 46 (18) BDR 66 (30) 31.5 § 9.7 31.6 § 9.4 NA 55.58 § 60.5 M 78.26%
Minuzzi et al. 2017 [76] 32 (32) BDR 36 (36) 29.0 § 8.07 32.8 § 8.32 BD-I = 18, BD-II=14 18.63 § 6.8 Y 100%
Chen LX et al. 2018 [15] 43 (26) BDA-depression 47 (25) 27.9 § 9.1 29.7 BD-II=43 34.2 § 54.8 M 0%
Gong et al. 2018 [47] 96 (44) BDA-depression 100 (55) 27.33 § 9.2 29.32 § 9.01 BD-II=96 47.84 § 61.05 M 44.79%
Whittaker et al. 2018
[113]

35 (22) BDR 23 (14) 44.71 § 5.51 44.00 § 4.48 BD-I = 16, BD-II=19 � 88.6%

Li GZ et al. 2018 [114] 19 (9) BDR 25 (10) 38.79 § 12.03 33.40 § 8.21 BD-I = 6, BD-II=13 3.95 § 3.30 Y 100%
Wang et al. 2018 [115] 25 (16) BDR 25 (17) 28.55 § 9.76 28.65 § 9.66 BD-II=25 40.20 § 44.86 M 100%
Yin et al. 2018 [77] 21 (11) BDA-depression 70 (39) 29.29 § 8.35 29.36 § 8.082 NA NA 42.86%
Chen GM et al. 2019 [85] 90 (42) BDA-depression 100 (55) 26.74 § 8.73 28.32 § 0.01 BD-II=90 48 § 61.54 M 0%
He et al. 2019 [84] 25 (12) BDA-depression 34 (18) 34.28 § 8.65 33.53 § 11.08 BD-1 = 14, BD-II=11 � 84%
Total 1047 1081

Abbreviations: bipolar disorder (BD), healthy controls (HCs), standard deviation (SD), not available (NA), BD in remission (BDR), BD in acute state (BDA), not otherwise specified
(NOS).
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within-DMN hypoconnectivity relative to BDR patients, also peaking
in the PCC.

3.5. Abnormal connectivity between the DMN and regions of the DAN
and FPN

BD patients in acute episodes showed hyperconnectivity between
the DMN seeds and regions of the right dorsal-anterior precuneus in
the DAN as well as regions of the left dorsolateral prefrontal cortex
(DLPFC) in the FPN (see Table 3 and Fig. 3). However, no altered
between-network connectivity was observed in the BDR patients rel-
ative to HCs. When the acute and remitted groups were compared
directly, hyperconnectivity was found between the DMN seeds and
the dorsal-anterior precuneus in acute BD patients relative to remit-
ted patients.

3.6. Sensitivity analysis and meta-regression analysis

The jackknife sensitivity analysis revealed that the result in the
right SMA remained in all combinations of datasets. All the other
results remained in all but one or two combinations of datasets.
Details on the results of the sensitivity analysis are listed in Tables
S4�7 (online Supplement).

Linear regression analyses showed that the mean age, the per-
centage of female patients and the percentage of medicated patients
were not associated with BD-related rsFC changes in either the remit-
ted group or the acute group.

3.7. Heterogeneity analysis and publication bias

There was no significant between-group heterogeneity observed
in the results for AN and DMN data.

None of the clusters reported above showed significant publica-
tion bias based on Egger’s test (p > 0.05) except the right DMPFC/SFG
(Egger’s test p = 0.042). Funnel plots are presented in Fig. S1-12.

4. Discussion

This study provided the first meta-analytic evidence of abnormal
rsFC within and between several functional brain networks in BD



Fig. 1. Flowchart of the research strategy and literature selection. Abbreviations: bipolar disorder (BD); healthy controls (HC); affective network (AN); default mode network
(DMN); regional homogeneity (ReHo); amplitude of low-frequency fluctuation (ALFF); fractional ALFF (fALFF); independent component analysis (ICA).
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patients in the acute episodic state of illness and during clinical
remission. We found that hypoconnectivity within the AN existed in
the acute episodic state but not in the remitted state. Similar hypo-
connectivity within the DMN was observed in acute episodes, but it
was replaced by hyperconnectivity in the remitted state. Addition-
ally, we observed different between-network dysconnectivity pat-
terns between these two groups; the patterns are summarized in
Fig. 4. These observations indicate a functional shift of the AN and
DMN between the acute and remitted states; this shift appears to be
Table 2
Results of meta-analysis of altered AN resting-state functional connectivity in BD patients

Seed network Seed region Effect network Effect re

AN amygdala, sgACC, OFC, ventral striatum
BDA vs. HC (datasets=10)
BDA > HC DMN Left dAC

FPN Left cer
DMN and FPN Right ce
AN Right IT
AN Left NA

BDR vs. HC (datasets=9)
BDR > HC DMN Left rAC
BDR < HC SMN Right SM
BDA vs. BDR
BDA > BDR SMN Right SM
BDA < BDR AN Left NA

AN Right IT

Abbreviations: bipolar disorder (BD), BD in remission (BDR), BD in acute state (BDA), healt
tal network (FPN), somatomotor network (SMN), dorsal attention network (DAN), super
dorsolateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC), rostral ant
prefrontal cortex (VLPFC), anterior cingulate cortex (ACC), subgenual anterior cingulate co
pus (HIPP), parahippocampus (Para-HIPP), superior temporal gyrus (STG), middle tempora
involved in dysfunctions of emotion processing and cognitive regula-
tion and may provide clinically useful information for targeted thera-
peutic interventions in BD.

4.1. Abnormalities within the AN

Reduced rsFC was observed in the AN, encompassing seed
regions such as the amygdala, sgACC and striatum and effect regions
including the right ITG, the left nucleus accumbens (NAcc), the
compared with HCs.

gion MNI coordinates SDM-Z P value Voxels

C extending to DMPFC �4, 40, 18 1.574 <0.0001 1508
ebellum �44, �52, �38 1.072 0.0016 439
rebellum 42, �66, �34 �1.239 0.0010 1883
G 44, 6, �44 �2.082 <0.0001 517
cc extending to OFC, sgACC �12, 14, �4 �1.512 0.0005 443

C extending to VMPFC �2, 36, �8 1.149 0.0005 899
A 12, �36, 72 �2.474 <0.0001 1067

A 12, �36, 72 1.895 <0.0001 887
cc extending to OFC, sgACC �12, 16, �6 �1.250 0.0002 506
G 44, 6, �44 �1.454 <0.0001 364

hy controls (HC), default-mode network (DMN), affective network (AN), frontoparie-
ior frontal gyrus (SFG), orbitofrontal cortex (OFC), medial prefrontal cortex (MPFC),
erior cingulate cortex (rACC), ventromedial prefrontal cortex (VMPFC), ventrolateral
rtex (sgACC), posterior cingulate cortex (PCC), nucleus accumbens (NAcc), hippocam-
l gyrus (MTG), supplementary motor area (SMA).



Fig. 2. Results of meta-analysis of altered resting-state functional connectivity for the affective network (AN) in patients with bipolar disorder (BD) compared with the healthy con-
trol (HC) group. The top line shows seeds (indicated by white dots) located in the a priori AN mask (yellow). The second-to-last line separately illustrates patients with BD in the
acute state (BDA) relative to the HC group, patients with BD in remission (BDR) relative to the HC group and a comparison between BDA (vs. HC) and BDR (vs. HC). Red refers to
hyperconnectivity (BD>HC), and blue refers to hypoconnectivity (BD<HC).
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sgACC and the orbitofrontal cortex (OFC), which are involved in
emotion processing. These limbic regions have strong anatomical
and functional connections and form circuits that regulate mood
and emotion as well as the response of the amygdala to environ-
mental stress [33]. This finding supports the theoretical model that
BD is closely related to emotional dysregulation. Interestingly, these
abnormalities were apparent only in the acutely ill state. Many stud-
ies have reported that amygdala responses to emotional stimuli are
increased in BD during the acute state [34,35]. However, these stud-
ies have not found such activity increases in individuals with BD
during remission. In addition, some studies have suggested that pre-
frontal cortex (PFC) activity during remission may compensate for
or reduce amygdala overactivation to maintain attentional and
Table 3
Results of meta-analysis of altered DMN resting-state functional connectivity in BD patient

Seed network Seed region Effect netwo

DMN ACC, PCC, MPFC, MTG, VLPFC, HIPP, VSS, caudate, cerebel-
lum, precuneus

BDA vs. HC (datasets=14)
BDA > HC FPN

DAN
BDA < HC DMN

DMN
BDR vs. HC (datasets=8)
BDR>HC DMN
BDA vs. BDR
BDA > BDR DAN
BDA < BDR DMN

Abbreviations: bipolar disorder (BD), BD in remission (BDR), BD in acute state (BDA), healt
tal network (FPN), somatomotor network (SMN), dorsal attention network (DAN), superior
solateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC), rostral ante
prefrontal cortex (VLPFC), anterior cingulate cortex (ACC), subgenual anterior cingulate co
pus (HIPP), parahippocampus (Para-HIPP), superior temporal gyrus (STG), middle tempora
memory performance [36,37]. Moreover, previous network-based
studies also revealed abnormal connectivity within the affective-
related network in acutely ill bipolar patients [38,39] but found no
differences in the rsFC of the AN between remitted BD patients and
controls [40,41]. Thus, our finding of hypoconnectivity within the
AN during acute illness compared to both BDR patients and HCs sup-
ports the hypothesis of disruption in the neural emotion regulatory
model in symptomatic episodes in BD [32,36,42,43]. Meanwhile,
normalized FC within the AN in BDR patients compared to HCs and
increased functional connection of AN modules in BDR patients
compared to acutely ill patients may contribute to the improved
function of the network and the improved emotion processing
observed during remission [44].
s compared with HCs.

rk Effect region MNI coordinate SDM-Z P value Voxels

Left DLPFC �34, 38, 12 1.659 0.0002 408
Right dorsal-anterior precuneus 8, �52, 72 2.001 <0.0001 435
Right PCC/precuneus 4, �54, 28 �1.705 0.0002 188
Right DMPFC/SFG 16, 62, 16 �2.259 0.0003 545

Left PCC/precuneus �10, �54, 38 2.585 0.0002 885

Right dorsal-anterior precuneus 8, �52, 72 1.042 <0.0001 385
Left PCC/precuneus �10, �54, 38 �2.473 <0.0001 1428

hy controls (HC), default-mode network (DMN), affective network (AN), frontoparie-
frontal gyrus (SFG), orbitofrontal cortex (OFC), medial prefrontal cortex (MPFC), dor-
rior cingulate cortex (rACC), ventromedial prefrontal cortex (VMPFC), ventrolateral
rtex (sgACC), posterior cingulate cortex (PCC), nucleus accumbens (NAcc), hippocam-
l gyrus (MTG), supplementary motor area (SMA).



Fig. 3. Results of meta-analysis of altered resting-state functional connectivity for the default mode network (DMN) in patients with bipolar disorder (BD) compared with the
healthy control (HC) group. The top line shows seeds (indicated by white dots) located within the a priori DMN mask (red). The second-to-last line separately illustrates patients
with BD in the acute state (BDA) relative to the HC group, patients with BD in remission (BDR) relative to the HC group and a comparison between BDA (vs. HC) and BDR (vs. HC).
Red refers to hyperconnectivity (BD>HC), and blue refers to hypoconnectivity (BD<HC).
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4.2. Abnormalities within the DMN

Connectivity between elements of the DMN is increased in BDR
patients (vs. HCs) and, in the case of midline cortical structures, is
decreased during acute episodes of BD (vs. both HCs and BDR
patients). Imbalanced connectivity in this circuitry might represent
a mood-state-dependent abnormality across acute/remitted states
[8,17,45]. Previous studies found that the hypoconnectivity between
the anterior and posterior DMN in manic BD patients versus HCs
might be related to an attention pattern that is excessively focused
on external stimuli at the expense of internal reflection [46]. In con-
trast, the hypoconnectivity within the posterior DMN in depressive
BD patients versus HCs might be related to rumination and working
memory impairment [47]. Hyperconnectivity between the anterior
DMN and posterior DMN in BDR compared to HCs might indicate
heightened planning in relation to the visual environment; it may
also predispose these patients to relapse or new episodes and may
help to explain why psychotherapies, such as mindfulness, are
effective in BDR patients [48]. However, previous studies using
independent component analysis found no differences in the rsFC of
the DMN between BD patients during clinical remission and HC [40,
49] or even hypoconnectivity in remitted BD patients [39,50]. This
inconsistency might arise from the heterogeneity of samples, such
as different BD types or histories of psychosis. Abnormalities within
the DMN were common but inverted between acute and remitted
states, which implies that impairment of the DMN is a trait in this
disorder and affects individuals with BD differentially during differ-
ent mood states.

4.3. Abnormalities between the AN and the DMN

The present meta-analysis also revealed hyperconnectivity in BD
patients between the AN and regions located in the MPFC and ACC.
Previous studies have indicated that emotional and cognitive proc-
essing are principally modulated by ventral and dorsal medial pre-
frontal regions [51], respectively, and the reciprocal interaction
between these regions may be modulated by the ACC [52�54]. Dur-
ing remission, the rostral ACC (rACC) may be overactivated [55],
whereas the dorsal ACC (dACC) is underactivated [56], indicating a
possible dissociation within the ACC related to the control of an affec-
tive and cognitive activity or persistent/residual illness. We observed
hyperconnectivity in the BDR between the rACC/VMPFC and the AN
as well as hyperconnectivity in acutely ill patients between the
dACC/DMPFC and the AN compared to HCs. The former hyperconnec-
tivity pattern might be associated with increased top-down processes
in emotion regulation at rest during remission [44, 45, 57, 58]. How-
ever, the latter hyperconnectivity pattern might relate to attention
toward self-referential or introspectively oriented mental activity
[51,59�63] or increased reward processing [58,61,64,65] during
acute states of BD.

4.4. Abnormalities between the AN and the cerebellum

Our study also provides evidence for imbalanced connectivity
between AN and regions in the cerebellum supporting cognitive con-
trol or emotion. Lobules VI, VII, VIII of the posterior lobe, as well as
the crus, have been linked to cognition; the posterior vermis has
been associated with emotion; and lobules I�V have been related to
sensorimotor function [66]. The cerebellum has anatomical connec-
tions to the limbic system, which may underlie its role in affective
processes [67�69]. The role of the cerebellum, particularly the ver-
mis, in emotional behaviors is increasingly recognized, and individu-
als with cerebellar lesions have been noted to have mood symptoms
[70]. Thus, altered input from the cerebellum to the AN in acute BD
(involving the DMN and FPN) may contribute to cognitive and affec-
tive dysregulation during acute episode BD.



Fig. 4. Dissociated abnormalities in large-scale brain networks between acute and remitted patients with bipolar disorder (BD). Acute-state-related hypoconnectivity within the AN
and DMN and AN�DMN hyperconnectivity might reflect dysregulated emotional processing and cognition in BD patients during the active phase. However, there is also remitted-
state-related hyperconnectivity within the DMN and between the AN and DMN, which may underlie abnormal cognitive regulation during remission. Both findings indicate that
abnormal emotional processing is a state-related impairment that is evident in acutely ill patients but normalized with remission. Cognitive dysregulation is a trait-related
impairment in BD patients that is common in both acute and remission states. BDA, BD in acute state; BDR, BD in remission; HC, healthy control.
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4.5. Abnormalities between the DMN and networks involved in
cognitive regulation

Although mixed, the present meta-analysis also demonstrated
hyperconnectivity between brain systems involved in self-referential
and frontal parietal systems involved cognition and execution, also
known as task-positive networks (TPNs). These regions, such as the
DLPFC, are preferentially active during tasks that demand external
attention [71]. TPN activity typically has an inverse relation to DMN
activity, reflecting the switching between directed activity/planning
and reflective activity at rest [72]. Previous studies have proposed
that the ventral precuneus is part of the DMN, while the dorsal-ante-
rior precuneus is part of the DAN [73�75]. Moreover, Zhang et al.
reported that the dorsal-anterior precuneus is relevant to the atten-
tional monitoring of spatial behavior [75]. Thus, hyperconnectivity
between the DMN and the left DLPFC in acute BD and hyperconnec-
tivity between the DMN and dorsal-anterior precuneus might be
related to compensatory cognitive activity aimed at restraining affect
and behavior, which may be impairments specific to acute illness.
4.6. Abnormalities in the FPN, VAN and SMN

Meta-analyses of the FPN, VAN, DAN, SMN and VIS were not per-
formed due to insufficient data in the original studies, so we narra-
tively reviewed the findings of these studies. No study chose seeds in
the DAN and VIS, suggesting a bias in seed selection across the exist-
ing rsFC studies. Hypoconnectivity between the VAN seeds (insula,
putamen) and regions of the SMN (somatosensory cortex, superior
temporal gyrus) was found both in the BDR and BDA groups [76,77].
Altered functional connectivity between FPN seeds (DLPFC, SFG) and
regions of the AN [78,79] and SMN [80] was observed in the BDR
patients, but whether these abnormalities existed in the BDA patients
needs to be further clarified.
4.7. Narrative review of abnormalities in manic and depressed states

In our included studies, four studies analyzed BD mania (BDM) or
BD depression (BDD) separately [46,81�83]. Altinay M et al. [83] found
that two caudate regions showed uniquely increased FC in BDM and
two putamen regions showed uniquely increased FC in BDD; these
changes are likely to be state-related changes. However, several com-
mon FC abnormalities, which might be trait-related, were detected in
both the BDM and BDD patients compared to the HCs. In one study,
Martino M and Magioncalda P [81] et al. found decreased FC between
the anterior and posterior parts of the cingulum in BDM patients com-
pared to both BDD patients and HCs. In another study [46], different FC
abnormalities were shown between BDM and BDD patients, and these
FC findings during mania and depression correlated with the severity
of the manic and depressive symptoms, respectively. In Li’s study [82],
both BDM and BDD patients showed similar amygdala FC reductions,
but subtle opposing FC abnormalities were found between BDM and
BDD patients. We visually inspected the findings from other studies
referring to BDM or BDD only, and similar [83,84] and different [83,85]
network dysfunctions were reported (with the exception of opposing
results) between the two states. There are also studies investigated
functional abnormalities in different phases of BDA using other meas-
ures such as global signal topography, which showed distinct and in
some cases opposing network abnormalities in BDM and BDD [86,87].
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However, there are also a number of studies uncovered many similar
findings between BDM and BDD [88�90]. Limited by insufficient data-
sets for BDM and BDD, we were not able to conduct separate analyses
for the two episodes in a meta-analytic way. Our findings regarding
BDA are the merged results of both mania and depression, so different
alterations betweenmania and depression may be obscured or missed.
Future studies specifically detecting FC abnormalities in both BDM and
BDD are needed to discover biomarkers of active episodes of illness.

4.8. Medication effects

A major consideration is that the majority of studies included in
the current meta-analysis (20 out of 23) recruited medicated individ-
uals with BD, such that subgroup analysis of medication-naïve
patients could not be conducted given the small number of studies in
this category (n = 3); therefore, interpretation specifically with
respect to bipolar pathophysiology is challenging. However, we con-
ducted a meta-regression analysis between the percentage of medi-
cated patients and rsFC changes in this study, and no correlation was
shown. Medication seemed to normalize abnormal fMRI changes
rather than cause spurious results in BD patients [91].

We found hypoconnectivity between the SMN and the AN in
remitted patients compared to both acutely ill patients and HCs,
which might be an effect of medication that causes a reduction in FC
between the amygdala and posterior and premotor areas [44]. In con-
trast to the amygdala, which is involved in motivation-related
aspects of emotion recognition [92�94], the right SMA has been
linked to emotion recognition processes that entail reliance on inter-
nal representation of body states [62,63,95,96]. Notably, Kanske et al.
[97] observed increased activity in the SMA during an emotion regu-
lation task that was negatively coupled with amygdala activity in
healthy adults. Aron et al. [98] proposed that the SMA, DLPFC, and
striatum comprise a network mediating motor and cognitive inhibi-
tion, which is an area of dysfunction in BD [99]. On the other hand,
atrophy of the postcentral gyrus [76] in BDR patients (versus HCs)
might also result in a reduced FC. Both factors lead to impairment of
motor and cognitive inhibition [99] and a disruption in internal
representation of body states in BDR patients [62,63,95,96]. Future
studies will be needed to confirm whether medication mediates
these rsFC abnormalities in BD patients.

4.9. Limitations and future directions

It is important to consider the limitations of this study when
interpreting the findings. First, an important question unanswered
by the current meta-analysis is how rsFC abnormalities differ
between during manic and depressive episodes. The insufficient pri-
mary data of the included studies limited our analysis of this issue. In
addition, DMN hyperconnectivity could be also related to residual
depressive symptoms (more so than to residual manic symptoms)
during euthymia [100]. Given this information, future longitudinal
studies are needed to understand the evolution of network function-
ing and symptomology across states of depression, mania, and euthy-
mia in BD. Moreover, the correlations between abnormalities and
depression/mania symptoms should be analyzed to understand
which abnormalities are mood-state non-specific and which are
emotional valance related. Second, the present meta-analysis focused
entirely on whole-brain seed-based rsFC studies, which do not cover
findings from alternative analytic methods, such as edge-based sta-
tistics and independent component analysis. Since relatively few
prior studies have implemented these methods with BD samples, it
was not possible to implement these alternative methods for meta-
analytic purposes. Third, the effects of head motion, physiological
influences, and arousal in the scanner may substantially affect the
results. Unfortunately, it was not possible to test the moderating
effects of such variables (Table S3 in the online Supplement), which
merit future investigation. Fourth, almost all the patients in our sam-
ple were undergoing pharmacotherapy. Thus, it is unclear to what
extent these rsFC abnormalities were related to acute or chronic
treatment effects. In addition, the numbers of studies for medicated
and unmediated patients and the subtypes of BD (BD-I and BD-II)
were not sufficient for separate analysis.

5. Conclusion

In summary, our findings highlight the different patterns of intrin-
sic function in large-scale brain networks between acute and remit-
ted patients with BD, which were associated with distinct emotional
and cognitive characteristics between the two states. The function of
the affective network is likely to depend on the patient’s emotional
state, while the DMN plays a regulatory role throughout the disease
course. Our findings provide clinically useful information for the
development of alternative treatment strategies for BD patients dur-
ing active episodes or remission.
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