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Abstract
Background: Synthetic lethality experiments identify pairs of genes with complementary function.
More direct functional associations (for example greater probability of membership in a single
protein complex) may be inferred between genes that share synthetic lethal interaction partners
than genes that are directly synthetic lethal. Probabilistic algorithms that identify gene modules
based on motif discovery are highly appropriate for the analysis of synthetic lethal genetic
interaction data and have great potential in integrative analysis of heterogeneous datasets.

Results: We have developed Genetic Interaction Motif Finding (GIMF), an algorithm for
unsupervised motif discovery from synthetic lethal interaction data. Interaction motifs are
characterized by position weight matrices and optimized through expectation maximization. Given
a seed gene, GIMF performs a nonlinear transform on the input genetic interaction data and
automatically assigns genes to the motif or non-motif category. We demonstrate the capacity to
extract known and novel pathways for Saccharomyces cerevisiae (budding yeast). Annotations
suggested for several uncharacterized genes are supported by recent experimental evidence. GIMF
is efficient in computation, requires no training and automatically down-weights promiscuous genes
with high degrees.

Conclusion: GIMF effectively identifies pathways from synthetic lethality data with several unique
features. It is mostly suitable for building gene modules around seed genes. Optimal choice of one
single model parameter allows construction of gene networks with different levels of confidence.
The impact of hub genes the generic probabilistic framework of GIMF may be used to group other
types of biological entities such as proteins based on stochastic motifs. Analysis of the strongest
motifs discovered by the algorithm indicates that synthetic lethal interactions are depleted between
genes within a motif, suggesting that synthetic lethality occurs between-pathway rather than within-
pathway.
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Background
Much recent research efforts have been devoted to study-
ing gene functions in the context of highly dynamic and
modular cellular networks [1-4]. Valuable information
about a gene's function can be obtained from its interac-
tion with other genes [5]. Apart from the traditional hier-
archical way of gene function annotation, functional
genomics takes a bottom-up approach to assemble gene
interaction networks based on all pair-wise gene interac-
tions detected. From such genetic interaction maps, Func-
tional modules representing various biological pathways
and processes can then be extracted by computational
approaches. Those modules naturally suggest novel gene
functions in the relevant biological processes [6]. The
interactions between genes are of course highly dynamic
spatially and temporally. However, one of the most intui-
tive yet fundamental questions about genetic interactions
is whether the normal functioning of two genes depends
on each other. Synthetic lethality identifies genes that
complement each other's function: two genes are syn-
thetic lethal if either single mutant is viable, but the dou-
ble mutant combination is lethal. High-throughput
experiments such as synthetic genetic array (SGA) [7] and
synthetic lethality analyzed by microarray (SLAM) [8,9]
have been done for genome-wide synthetic lethality anal-
ysis on Saccharomyces cerevisiae, where a single mutant
(query gene) is introduced into the complete pool of via-
ble yeast single-deletion (library gene) strains. Synthetic
lethality data obtained through SGA, SLAM or RNA inter-
ference has shed much new light on essential biological
pathways and the function assignment for many previ-
ously uncharacterized genes for the model organisms
yeast and C. elegans [10,11]. Hierarchical clustering of the
SGA dataset suggest that two synthetic lethal genes are
likely to (i) reside in two redundant parallel pathways or
(ii) complement each other's function in two branches of
one essential pathway [12]. Computational methods inte-
grating physical protein interactions and other genomic
features seem to suggest that significantly more synthetic
lethal interactions occur between parallel pathways
[13,14]. Given the incomplete and error-prone synthetic
lethal interaction map, it is highly desirable to investigate
methods that extract biologically relevant information
probabilistically, which accommodates network proper-
ties such as degree distribution and confidence of the
links. Along this line, we have developed in this study a
probabilistic model for characterizing synthetic lethal
interaction motifs and an algorithm that automatically
groups genes sharing similar motifs into pathways. When
applied to the SGA dataset, our method automatically
uncovers known and novel gene modules that correlate
favourably with Gene Ontology (GO) annotations.

Results
Data sources
Genetic interaction data is obtained from SGA analysis in
yeast [12]. The original query gene set includes 126 non-
essential genes and 6 essential genes, tested against a
library of all non-essential gene deletions. Interpretation
of synthetic lethality involving essential genes is problem-
atic since the intermediate (viable) phenotypes exhibited
by conditional alleles of essential genes may include loss
of function, unregulated function, and gain of function
aspects. Thus we focus on synthetic lethal interactions
between null alleles of non-essential genes, which by def-
inition result from solely loss of function mutations.
Ignoring library genes that have no interaction with any of
the 126 query genes, our dataset consists of 126 query
genes linked to 982 library genes by 4287 interactions.
Both the query and the library sets contain hubs with high
interaction counts (Supp. Figs. S3, S4, and S5).

Yeast protein complex data were obtained from two high-
throughput studies, TAP and HMS-PCI [15,16]. Protein
complexes that contained two or more non-essential pro-
teins were used (353 complexes from TAP and 427 com-
plexes from HMS-PCI).

Computational method
The Expectation maximization (EM) algorithm has been
widely used to detect motifs in biopolymer sequences,
where a position weight matrix representing a recurring
pattern (such as DNA binding sites or promoter regions)
in multiple unaligned sequences is built iteratively by
maximum likelihood scoring [17-20]. Such probabilistic
approach is most suitable for the detection of patterns
with a stochastic nature, which we have little prior knowl-
edge of. In this study, we have developed an algorithm for
finding genes in the same pathway, which we shall refer to
as Genetic Interaction Motif Finding by expectation max-
imization (GIMF). Note the difference between motif here
defined by genetic interaction pattern and the network
topological motifs [21]. The model is developed under
the hypothesis that genes within the same pathway
exhibit a similar pattern of synthetic lethal interactions
where a subset of common interaction partners are genes
in complementary pathways [12-14]. For example,
RVS161 and RVS167 are two queries that belong to the
RVS161 complex. Enhanced synthetic lethal interactions
with members of the RPD3 complex have been observed
(Fig. 1). The RVS161 complex proteins are AR adaptor
proteins involved in actin regulation, endocytosis and via-
bility following starvation or osmotic stress. The RPD3
histone deacetylase complex is involved in silencing at tel-
omeres. In particular, DEP1, a member of the RPD3 com-
plex is a transcriptional modulator of phospholipids
biosynthesis and also maintains mating efficiency and
sporulation. Thus it is reasonable to infer that these two
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protein complexes are functionally complementary dur-
ing endocytosis and mating or sporulation after starvation
when the biological processes of the two complexes are
tightly coupled.

In our analysis, we focus on finding motifs from the syn-
thetic lethal interaction patterns of query genes. Let Xi =
[Xi1 ... XiN] denote the interaction partner list for query
gene i, where Xij = 1 if i interacts with library gene j and Xij
= 0 otherwise. Thus the entire data set is Xi, i = 1,2,...,Q.
The total numbers of query is Q = 126 and the total
number of the library genes that interact with at least one
query gene is N = 982. We initiate a search with a query
gene s and aim to find all other genes in the same pathway
as the seed gene s. We do this by iteratively constructing a
motif for the group and hence identifying motif members.

Mathematically, we divide the query gene set into two
sets, a motif set A ={Ai}, i = 1,2,...aM, initialized to contain
just the seed gene, and a non-motif set B = {Bi}, i=aM+1,
aM+2, L, aM+bM, containing the remaining genes. The
number of query genes in the motif and non-motif sets are
aM and bM, respectively, with aM+bM=Q. We assume that
genes in the motif set and those in the non-motif set have
different probabilities of interacting with a library gene j,
which are denoted by paj and pbj, respectively. As will be
explained in DISCUSSION, this allows existence of hub
library genes explicitly. The probability that query i
belongs to the motif set is denoted by zi. The parameters
paj, pbj and zi, where j = 1,2...,N and j = 1,2...,Q, are esti-
mated iteratively.

The expectation maximization (EM) algorithm has been
used for maximum likelihood estimation with missing
information. In our scenario, given a seed gene, missing
information is represented by the correct partition of the

entire gene pool into a motif set A and a non-motif set B
starting from an initial motif estimate provided by the
seed. The likelihood function, i.e. the conditional proba-
bility of observing measured data given the partition, is

Thus the log likelihood function is

where  and

 are the observed frequencies of

the interaction between the library gene j and query genes
in motif set and non-motif set, respectively. Maximizing
the log likelihood function, we obtain the maximum like-
lihood estimates for paj and pbj, which are simply the sam-

ple frequencies, i.e.  and  (unless

otherwise stated, an overlying hat denotes the maximum
likelihood estimate of a parameter). These estimates can-
not be obtained when the partition information is miss-
ing. The EM algorithm starts with an initial guess of the
solution and iteratively updates the model parameters
with expected information obtained by maximum likeli-
hood estimation in each step. More specifically, each iter-
ation comprises two steps, an expectation (E) step and a
maximization (M) step.
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Synthetic lethal interactions between complementary path-waysFigure 1
Synthetic lethal interactions between complemen-
tary pathways. Proteins in the RVS161 complex (RVS161, 
RVS167) have enriched synthetic lethal interactions (orange 
lines) with proteins in the RPD3 complex. The RVS161 com-
plex and RPD3 complex are associated with endocytosis/via-
bility following starvation and telomere silencing, 
respectively.
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observing , given that gene i belongs to the motif set

and , is

Similarly the conditional probability of observing 

given that gene i belongs to the non-motif set and , is

By Bayes formula, the probability that a gene i belongs to
the motif set given observed data and current model esti-
mates is,

where  is the prior probability that

gene i belongs to the motif set.

The expected number of interactions with a library gene j
is the weighted sum of all the query genes' interactions

with gene j, where Xij is weighted by , i = 1, 2, L, N.

These expected numbers εaj and εbj for motif and non-

motif query genes for iteration q + 1 are

In the M step, model parameters are updated with
expected numbers,
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Representative genetic interaction patterns of the seed, the motif and motif membersFigure 2
Representative genetic interaction patterns of the seed, the motif and motif members. Seed genes for the motifs 
are (a) DYN1 (b) CTF8 (c) ARC40. The columns correspond to library genes (interaction partners of query genes). Library 
genes that have no interaction with the seed and the motif members are not shown. Synthetic lethal interactions are repre-
sented by red squares. The non-binary values of the motifs are shown by intermediate colors changing from black to red.

A. Dynein Dynactin Pathway

B. Sister Chromatid Cohesion

C. Actin Patch Assembly
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where .

Convergence of the algorithm is assessed by |t(q+1) - t(q)| <

10-4 for all of the model parameter estimates ,  and

.

Given a seed gene s, the model parameters are initialized
as follows:

While the sum over query genes to estimate the initial

background probability  should formally exclude the

seed gene, we include it to prevent initialization to zero
probability in the case that only the seed gene has an inter-
action with library gene j. The choice of 0 <p < 1 in Eq. (9)
depends on our confidence about the seed gene's interac-
tions. We have used p= 0.95 for the analysis that follows,
corresponding to a false positive rate of 5% in the SGA
experiment. The motifs extracted are not sensitive to the
choice of p in the vicinity of the experimental false posi-

tive rate (e.g. p ≥ 0.9). A more detailed discussion on
motifs' dependencies on p will be given in the DISCUS-
SION section and it will be made clear that by adjusting p,
it is possible to systematically retrieve motif members
based on the degree of similarity between their genetic
interaction patterns and that of the seed. The number of
motif members for any seed gene is most likely to be a
small portion of the size of the query gene set Q = 126.
Thus the number of genes in the motif set is initialized by

 � [5,15]. Our analysis shows that the algorithm is

not sensitive to the choice of  in this range.

Results on SGA dataset

Outputs of our model are ,  and . The motif and

background interaction probabilities  and  are two

position weight matrices with continuous elements in the
range of [0,1]. Unlike in the case of DNA binding site

detection, the converged probabilities  computed for

the SGA dataset are either very close to 0 or very close to
1; intermediate values have not been observed. Thus,
given a seed gene, the remaining genes are naturally cate-

gorized as motif genes (with zi ≈ 1) or non-motif genes

(with zi ≈ 0). We call motif genes motif members of the

seed. Three representative motifs are shown along with
the genetic interaction patterns of the seed genes DYN1,
CTF8 and ARC40 and their motif members (Fig. 2). Table
1 shows the groups of motif members obtained for seed
genes ARL1, SKT5, CTF8 and RIC1 when various values of
p are used. Motif members obtained with p = 0.95 for 13
seed genes are listed in Table 2. The full table is available
as supporting material (additional file gimf-motifs.txt).
The seven groups of genes thus identified agree with
groups observed with hierarchical clustering [12], which
supports GIMF's capacity in extracting biologically rele-
vant gene pathways.

One important property of GIMF is that it is non-commu-
tative: if gene A identifies gene B as a motif member, it is
not necessarily true that gene B identifies gene A as its
motif member. Interestingly, we have observed that a seed
gene tends to first pull up motif members that share a glo-
bally similar interaction pattern. If such genes are lacking,
then it finds genes with locally similar interaction pattern.
This enables us to probe the case when two genes' interac-
tion partners are only similar on a local scale. This is not

ˆ , ˆ ˆ( ) ( ) ( ) ( )a z b Q aM
q

i
q

i

Q

M
q

M
q+ +

=

+ += = −∑1 1

1

1 1

p̂a p̂b

ẑ
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Table 1: Motif members of four seed genes.

Seed Motif members

p = 0.6 p = 0.7 p = 0.8 p = 0.95

ARL1 ARL3, SWF1, RIC1, YPT6 RIC1, YPT6, ARL3
SKT5 CHS6, CHS3, CHS7, CHS5 CHS3, CHS7, CHS5 CHS3, CHS5
CTF8 CTF4, CTF18, DCC1, 

BIM1, CIN8, KAR3
CTF4, CTF18 DCC1, BIM1 CTF4, CTF18, DCC1 CTF4, CTF18, DCC1

RIC1 YPT6

Motif members of ARL1, SKT5, CTF8 and RIC1 are obtained by choosing different values of initialization parameter p. Most motifs show little 
dependency on p for p ≥ 0.9.
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possible with pair-wise comparison metrics, which are
commutative. For a more systematic analysis, we use
GIMF to build gene networks. First, query genes with very
few interactions (5 or fewer) are removed from the list of
seeds. Then each of the remaining query genes is used as a
seed and its motif members are generated by GIMF. For
every query gene pair(i, j), if i and j are each other's motif
member, then connect i and j with a Type 1 edge. We call
the network thus constructed a Type 1 GIMF network (Fig.
3). This network contains 31 nodes and 42 edges, which
form two clusters and eight individual pairs. The smaller
cluster is a fully connected sub-graph corresponding to
the PAC10 complex. The larger cluster with 10 genes
(ARP1, NUM1, DYN1, PAC11, PAC1, DYN2, JNM1,
YMR299C, NIP100, KIP2), representing the Dynein-Dyn-
actin spindle orientation pathway. KIP2 was not detected
by hierarchical clustering [12].

Apparently, the bi-directional rule only retains genes with
globally similar interaction pattern. This can be quite
stringent since genes have multiple functions and two
genes operating in one pathway may have distinct roles in
other pathways they participate and thus only share a frac-
tion of synthetic lethal interaction partners. Thus we
extend Type 1 network by the following simple rule: for
each gene pair (i, j) in the Type 1 network, add common
motif members k of genes i and j that are not already in
the network (hence neither i nor j is motif member of k).
Connect k to i and j with a Type 2 edge. We call the
extended network a Type 2 network (Fig. 4). This analysis
reveals more information in the Dynein-Dynactin path-
way. The majority of Type 2 edges occur between the
group members of this cluster, which elevates the confi-
dence that the genes within this cluster are closely related.
Evidence that genes in this cluster are biologically related
include the presence of a dynactin protein complex
(ARP1, JNM1, NIP100), reported protein-protein interac-
tions between NIP100-PAC11, PAC11-DYN2, PAC11-

NUM1 [22,23] and the suggestion that YMR299C func-
tions as dynein light intermediate chain [12]. In the Type
2 network, several new members are incorporated into the
cluster, including NBP2, BIK1 and CTF18. The molecular
function of NBP2 and CTF18 are unknown while BIK1 is
involved in microtubule binding. NBP2 shows hyperos-
motic and heat response and is a negative regulator of pro-
tein kinase activity. CTF18 is a subunit of a complex with
CTF8P that shares some subunits with Replication Factor
C and is required for sister chromatid cohesion. It has
been known that the mutants of six genes (NUM1, DYN1,
DYN2, ARP1, JNM1, NIP100) in this cluster show nuclear
migration defect in cell division process. A recent experi-
ment has confirmed that deletion mutants of KIP2, BIK1
and CTF18 also exhibit moderate to severe nuclear migra-
tion defects [24]. These three genes have not been
detected by two way clustering [12].

Under our hypothesis, genes with a similar synthetic inter-
action pattern (especially when the similarity is global)
are likely to reside in the same pathway or map to proteins
in the same complex. Thus the motif members are
expected to have functional similarities at various levels.
We evaluate the biological relevance of the Type 1 and
Type 2 networks by computing three parameters for each
edge (gene pair): the correlations with the Gene Ontology
(GO) annotations (described in Appendix); the fraction
of gene products that are within the same protein complex
as determined by high-throughput mass spectrometry;
and the fraction that are synthetic lethal. These parameters
have also been computed for all directly synthetic lethal
gene pairs. The Type 1 gene pairs' correlations for biolog-
ical process, molecular function and cellular component
GO annotations are (0.47, 0.20, 0.43), while those of the
Type 2 network are (0.47, 0.15, 0.40), comparing to (0.25,
0.05, 0.31) for directly synthetic lethal gene pairs (Table
3). Clearly, much tighter functional associations are
obtained between gene pairs with either globally or

Table 2: Seven representative motifs identified by GIMF.

Pathway or complex Seed gene Motif gene list

1 Actin patch assembly ARC40 ARP2
2 Chitin synthase III pathway CHS7 CHS3, SKT5, CHS5

CHS6 CHS3, SKT5
3 Prefoldin complex PAC10 GIM3, GIM4, GIM5, YKE2
4 Membrane traffic ARL1 ARL3, RIC1, YPT6

GYP1 RIC1
5 Dynein Dynactin pathway DYN1 ARP1, DYN1, PAC11, YMR299C, DYN2, JNM1, PAC1, NIP100, NUM1

PAC1 ARP1, DYN1, PAC11, YMR299C, DYN2, JNM1, NIP100, NUM1
JNM1 ARP1, DYN1, PAC11, YMR299C, DYN2, NIP100, NUM1
NUM1 JNM1

6 DNA replication checkpoint MRC1 TOF1
7 Sister chromatid cohesion DCC1 CTF4, CTF18

CTF8 CTF18, DCC1, CTF4

These gene modules correlate well with pathways inferred by hierarchical clustering (Tong et al. 2004).
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locally similar synthetic lethal interactions than gene pairs
that are directly synthetic lethal interactions, confirming
the observation of between-pathway enrichment by Wong
et al. and Kelly et al. [13,14]. Significantly more Type 1
gene pairs map to proteins within the same complex than
either Type 2 gene pairs or directly synthetic lethal gene
pairs. Same-complex membership may explain the higher
molecular function correlation for Type 1 gene pairs.

Discussion
In this section, we explore a few important issues in terms
of the robustness and tuning of GIMF. Without loss of
generality, the discussion is primarily based on learning
pathway association on the SGA dataset.

It has been widely known that EM algorithm very often
converges to local maxima in the evaluation of posterior
likelihood function or log-likelihood [18,19]. In applica-
tion to motif (e.g. transcription binding sites) discovery in
DNA sequences, early versions EM assumed the existence
of a single motif and aimed to find the motif that globally
optimized the likelihood function. However, when multi-

ple consensus sequences are present in the dataset,
numerous local maxima in the likelihood function can
well correspond to biologically meaningful motifs. One
approach to finding multiple motifs is to initialize the EM
from different starting points, typically selected from pat-
terns occurring in the data, which may then relax to local
maxima. This approach may be enhanced, as in the MEME
algorithm, by erasing motifs previously found so that
multiple motifs are found in decreasing order of likeli-
hoods. Using these two strategies, MEME successfully
detects multiple promoter consensuses from the com-
bined CRP/LexA datasets[18].

In GIMF, we achieve a similar effect by initializing the
model using seed gene's interactions, thus narrowing
down the search space to the module that includes the
seed. Without any prior knowledge of goodness of seeds
and their consensus interactions, two problems are note-
worthy: i) Motifs generated by different seeds may be
redundant; ii) Certain motifs may deviate from their seeds
during the iterative process. These two issues are
addressed below:

GIMF Type 1 networkFigure 3
GIMF Type 1 network. The network is created by applying Rule 1 to the motif member lists of all query genes. The network 
contains 31 nodes and 42 edges, where the nodes are query genes and an edge between node i and node j indicates that i and j 
are each other's motif members.
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i) Motifs generated by different seeds may be redundant

To better understand the dissimilarity between distinct
motifs, we have calculated the Euclidean distance between

each pair of motifs  and  generated by seed S1 and

S2, respectively, resulting in a 126 by 126 distance matrix
D. To visualize this matrix, we embed it in two dimen-
sions using classic multidimensional scaling, which is
essentially equivalent to projecting the two leading princi-
pal components. Motifs corresponding to connected com-
ponents in the Type 1 network are close together in this
embedding (Fig. 5). In most cases, the seed genes in a
Type 1 connected component have either overlapping
motifs (several motifs collapse onto one point) or motifs
that are very similar to each other. In comparison with the
greater number of maxima identified for all query genes
(Fig. S2), this analysis suggests that the local maxima cor-

responding to queries in the Type 1 network are reproduc-
ibly identified. These local maxima could be considered
global maxima conditioned on the seed gene remaining
in the motif.

ii) Certain motifs may deviate from their seeds during the 
iterative process
In some cases, the EM algorithm may eject a seed gene
from a motif. This occurs for eight seed genes when p =
0.95 using the threshold Zi > 0.9 (Table S2). Those seeds
either have few interactions and/or have interactions that
overlap largely with the interaction partners of some hub
genes, such as the PAC10 complex genes. Indeed, most of
their motif members are hub genes, whose interaction
profiles override that of the seed genes during the itera-
tion. Thus to ensure each seed stay in the motif, we can
slightly modify the algorithm by fixing Zseed = 1 during all
iterations. In other words, the motif search is conditioned

p̂al
S1 p̂al

S2

GIMF Type 2 networkFigure 4
GIMF Type 2 network. This network is created by applying Rule 2 to all the edges in the GIMF Type 1 network. See text for 
details. The solid edges are inherited from the Type 1 network while the dashed edges are added by applying Rule 2.
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on the seed being part of the motif. Indeed, for the eight
seeds mentioned above, this modification keeps the seed
gene itself in the motif till convergence while all other
motif members stay unchanged. Clearly, this procedure
has no effect on the 106 seeds that are already in motif
without such conditioning.

Symmetry imposed by Type 1 edges serves as a conserva-
tive filtering procedure that eliminates redundancy and
impact of hub genes dominating interaction profiles,
which reveals gene networks with tight functional correla-
tions, which supports our finding that the local optimums
in GIMF correspond to biologically relevant modules.

We have investigated how the choice of p, the initializa-
tion parameter that represents our confidence on seed
gene's interactions, affect the motifs. Indeed, the sensitiv-
ities of different motifs to p is non-uniform. We quantify
the goodness of a seed and its motif by observing stability
of its motif members across different choices of p. Genes
with less than five interaction partners (12 out of 126) are
not used as seeds. For every remaining query gene, we
extract its motif members with p ranging from 0.6 to 0.95.
The sets of motif members extracted at p = 0.95 is used as
the reference to compute a Jaccard coefficient [14].
Denote the set of motif members for seed gene i obtained

with initialization parameter p by . The corresponding

Jaccard coefficient  is given by . The

seeds can be divided into four categories based on their
Jaccard coefficient averaged over the different values of p:

i)  = 1. Those seeds have invariant motif members and

are hence categorized as very strong seeds. Special cases
are seeds that exact only themselves. Those seeds have
unique interaction patterns but most likely do not have
any pathway members included in the query set. ii)0.9

<  < 1. These are strong seeds with almost invariant

motif members. iii)0.6 <  < 0.9. This case corresponds

to moderately strong seeds whose motif members change
moderately and hierarchically. Decreasing p decreases the
confidence in the seed gene's interactions, and genes with
more distant interaction profiles can be incorporated into
the motif set. The motif members converge at confidence
level close to the true experimental false positive rate.

iv)  < 0.6. Those seeds have highly variable motif mem-

bers and hence are weak seeds. The numbers of seeds in
the four categories are 14, 6, 45 and 49, respectively (Table
S1). When analyzing the SGA dataset, p = 0.95 is reasona-
ble because interactions in the SGA dataset have been
experimentally validated and has a low false-positive rate.
This analysis has three important indications: i) Not all
the query genes are good seeds, partly due to the incom-
pleteness of the synthetic lethal genetic interaction map in
the query axis; ii) To achieve optimal detection of motifs
for different seeds, we might need to employ different ini-
tialization parameter p. Given a minimum Jaccard coeffi-
cient, the algorithm can be optimally initialized for each
seed. iii) The Type 1 network obtained at p = 0.95 is most
likely conservative. Thus to build gene networks with bet-
ter confidence, we may eliminate bad seeds, relax confi-
dence constraints on strong and moderately strong seeds
while imposing an initialization parameter close to 1 on
weak seeds.

To better evaluate the statistical significance of motifs
detected by GIMF, we have computed the false positive
rates on randomized datasets with the same degree distri-
bution as the original synthetic lethal dataset. Randomi-
zation is done by a rewiring procedure as detailed in [21].
The fraction of overlapping links between the randomized
network and the original network is around 15%. Since a
random network should not contain any biologically rel-
evant motif, any motif detected is a false positive. Thus for
the GIMF algorithm, we use every query as a seed gene and
any motif member returned other than the seed itself is
considered a false positive. The numbers of false positives

Mp
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i J

M M

M M
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i p
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Table 3: GO annotation correlations for GIMF Type 1, Type 2 gene pairs, and gene pairs that are directly synthetic lethal (SL).

Gene pairs GO correlation FSL FPC Number of 
pairs

Number of 
genes

P F C

Type 1 0.47 0.20 0.43 0 0.26 42 31
Type 2 0.47 0.15 0.40 0.07 0.14 78 36

SL 0.25 0.05 0.31 -- 0.01 3474 1004

P: biological process; F: molecular function C: cellular component. FSL: fraction of pairs that are directly synthetic lethality; FPC: fraction of pairs 
that are within the same protein complex. The GIMF Type 1 network contains 31 genes and 42 edges while the Type 2 network contains 36 genes 
and 78 edges.
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on 100 randomized networks are shown in Fig. S1. With-
out imposing the bi-directionality constraint, the average
total number of false positives for 126 seed genes is 15.
The average number of seeds that generates any false pos-
itives is 9.7 out of 126. On the real dataset, the number of
seeds leading to motif detection is T = 82. Thus this corre-
sponds to a p-value of 10-15 calculated as tail probability
at T = 82 from a Poisson distribution. A detailed look at
the false positive pairs of GIMF shows that most seeds that
lead to false positives have very few interactions with the
library genes. The top 10 seeds producing the most false
positives have 6.3 interactions on average and their false
positive motif genes are mostly promiscuous hub genes.

However, no false positives are observed when the pro-
miscuous genes are used as seeds. When bi-directionality
is imposed on motif detection, false positive drops to 0 for
all the 100 trials. Thus for an asymmetric metric like
GIMF, we can impose symmetry constraint to mask the
effects of promiscuous genes. Additional information can
be obtained by elevating stringency once the reliable gene
pairs are identified.

The treatment of hub genes is a problematic issue in the
analysis of power-law networks. Hubs arise from many
different sources including intrinsic error in the experi-
mental technique (such as sticky proteins in yeast two

Two-dimensional embedding of Type 1 network motifsFigure 5
Two-dimensional embedding of Type 1 network motifs. Each motif is represented by two leading principal components 
generated by multidimensional scaling based on a Euclidean distance matrix. Colors indicate connected components from the 
Type 1 network.
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hybrid system) and experimental bias (such as the choice
of query genes for SGA). Because of this heterogeneity, the
treatment of promiscuous genes should be context-based.
In the case of experimental error-induced hubs, a straight-
forward approach is to ignore all hub-associated links.
This filtering method has been used to reduce the number
of candidate pathways dramatically in the analysis of sig-
nal transduction networks [25]. However, the role of hub
genes in the SGA data set is subtle. Genes in the PAC10
complex are hubs that have enriched synthetic lethal
interaction with genes in many other complexes, such as
CTF18 and PAC11. Many of the PAC10-associated links
are biologically relevant since PAC10 is indeed function-
ally coupled to a broad spectrum of biological pathways
which themselves are functionally associated. Thus
removing hub links entirely unsurprisingly leads to the
loss of useful information and failure to detect some rele-
vant pathways. GIMF treats this problem by permitting an
increase in the parameter pbj for hub library genes that are
not part of the motif. Thus, we are able to extract biologi-
cally meaningful pathways by keeping the hub library
genes whose impact is, however, automatically down-
weighted.

This idea is tested on the Dynein-Dynactin gene pairs.
Using GIMF we identified 24 Dynein-Dynactin pairs with
the original SGA dataset. Then we tested GIMF on five fil-
tered datasets generated by removing interactions with the
top 5, 10, 15, 20 and 25 hub library genes, respectively.
The corresponding fractions of interaction eliminated are
4.4%, 7.8%, 10.9%, 13.6% and 16%. With model param-
eters unchanged, GIMF recovers (18, 15, 10, 7, 1) Dynein-
Dynactin pairs on the five datasets, respectively. The
reduced coverage is expected from the removal of some
biologically relevant hub links. However, a substantial
number of those pairs are retained when interactions with
the top 5 and 10 hub library genes are absent. These
results suggest that a statistical method that explicitly
models the skewed degree distribution is a better strategy
for pattern discovery in the presence of hubs than using
simple filtering techniques in conjunction with methods
that do not take into account the hub effect.

The assumption in GIMF that the probability of an edge
between a query and a library gene pair is proportional to
the degree of the library gene works sufficiently well for
the synthetic lethal interaction dataset. However, when
extending the present model to other types of networks
especially those with non-directional links, it would be
beneficial to characterize the link probability in a sub-
graph based on local connectivities [26]. In this model,
the link probability between a pair of genes depends on
the degree of both genes. This allows us to consider each
interaction in the context of its subgraph, thus has a good
promise to extract motifs in power-law networks by their
local deviations from randomness [27]. It would be inter-
esting to integrate the local models into our algorithm in
motif extraction of other interaction networks such as pro-
tein interaction networks.

Recently, Kelley et al. have integrated physical protein-
protein interactions to dissect synthetic lethal gene pairs
into between-pathway and within-pathway paradigms
[14]. While the focus of our study is different from their
work, GIMF has an interesting correspondence with their
algorithm. The algorithm proposed by Kelley et al. to con-
struct between-pathway or within-pathway model is
essentially a local search procedure described by Sharan et
al [28]. Starting from a seed node, nodes whose contribu-
tions to the current seed are maximal are added one at a
time. The operation is repeated in a breadth-first search
fashion so long as it increases the overall score of the sub-
graph. This is equivalent to maintaining a set of motif and
non-motif nodes each with probability 1 and only the
interaction between directly linked nodes are considered
during the iteration. In contrast, GIMF maintains a prob-
ability of being in the motif set for each node, thus allow-
ing all nodes to have contribution in each iteration during
motif building. The assignment of a node to the motif ver-

Within-pathway and between-pathway patternsFigure 6
Within-pathway and between-pathway patterns. Par-
tial interaction profiles are shown for five query genes where 
"interaction", "no-interaction", "prohibited self-interaction" 
are represented by red, black and grey in the interaction 
matrix respectively. Genes A, B, C and D, E belong to two 
different pathways. Interactions involving members of the 
same pathway are enriched in the within-pathway model and 
depleted in the between-pathway model.
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sus non-motif category is only determined when the prob-
abilities converge. A similar breadth-first search procedure
can also be applied to GIMF in automatically extracting
gene pathways. The between-pathway and within-path-
way discovery by Kelley et al. [14] aligns with the conclu-
sion by Tong et. al [12] that synthetic lethal interactions
are more abundant between genes that have the same
mutant phenotype and the genes encoding proteins
within the same protein complex.

This idea is illustrated in Fig. 6, where "interaction", "no-
interaction", "prohibited self-interaction" are represented
by red, black and grey respectively. The matrix shows par-
tial interaction profiles for five query genes. Query genes

A, B, C and D, E belong to two different motifs. The
within-pathway pattern shows the situation where syn-
thetic lethal interactions are more abundant between
motif members than between genes belonging to different
motifs. The between-pathway pattern shows two motifs
that represent two complementary pathways, with syn-
thetic lethal interactions enriched between the pathways
and depleted within a pathway. To permit a quantitative
discussion, we define a within-motif score (WMS) to char-
acterize whether synthetic lethal interactions for motif
genes with each other are enriched (corresponding to the
within-pathway pattern) or depleted (corresponding to
the between-pathway pattern). Let WMSi represent the
score for motif i given by

Within-Pathway Score (WMS) probability distributionsFigure 7
Within-Pathway Score (WMS) probability distributions. Distributions of the WMS on motifs from Type 1 network set 
(blue), all query set (red) and random network set (yellow). The WMS mean ± standard error for the Type 1 network is -0.250 
± 0.055; all query set, -0.011 ± 0.089 ; random network, 0.91 ± 0.21
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where

The total number of motif members is the denominator of

Eq. 10, and the add-one pseudocounts in  and 

bound the output of the log transform. The more negative
an WMS, the more a motif reflects between-pathway inter-
actions.

The WMS was computed for three sets of motifs gener-
ated: i) for seeds in the Type 1 network; ii) for all seeds
from the query set; iii) for seeds in 100 randomized data-
sets described earlier (Fig. 7). The distribution of WMS
values for motifs in the actual network appears bimodal,
with greater probability for motifs with between-pathway
character (WMS < 0). The WMS distribution for the Type
1 network has significantly more between-pathway char-
acter compared to motifs discovered in random network
(one-sided, unequal variance t-test on WMS values, p-
value = 1.4 × 10-5). Motifs in the entire network also have
significantly more between-pathway character, as judged
by smaller WMS values, than motifs in the random net-
work (p-value = 6.6 × 10-5). Motifs from the Type 1 net-
work show marginal significance for negative WMS values
(one-sided z-test, p-value = 0.055), whereas motifs from
the random network have significantly positive WMS val-
ues (p-value 4.5 × 10-6). In summary, these results demon-
strate that synthetic lethal interactions leading to motifs
have significant between-pathway character, particularly
when compared with motifs detected in randomized net-
works.

Though the purpose of this study is to develop a probabi-
listic model for characterizing synthetic lethal interaction
motifs and a pathway identification algorithm based on
synthetic lethal interaction datasets, the model holds
good potential as an integrative method which combines
multiple sources of evidence. If the sources of evidence are
independent, the new likelihood function should be the
multiplication of those for individual evidences. When
the sources of evidence are not independent, then a Baye-
sian learning approach such as the framework developed
by Jansen et al. [29] should be considered. A detailed dis-
cussion on the extension of GIMF into an integrative

approach is however, beyond the scope of this study and
hence will not be further considered here.

Conclusion
A probabilistic model and an automated algorithm
(GIMF) have been shown to be effective in unsupervised
motif learning of genetic interaction data. Starting from a
seed pattern of genetic interaction partners, the method
iteratively identifies genes that share the pattern and char-
acterizes the pattern with a probabilistic motif. Functional
associations are inferred from motif membership, rather
than from existence of a direct genetic interaction linking
two genes. Genes that belong to the same connected com-
ponents in Type I and Type II networks have well corre-
lated GO annotations, and are more likely to share
annotations than genes connected by direct synthetic
lethal interactions. Synthetic lethal interactions tend to be
depleted between genes within a motif, suggesting that
synthetic lethal interactions occur primarily between-
pathway rather than within-pathway.

Several desirable features of the proposed algorithm for
analyzing genetic interaction data include strong 0/1 pre-
dictions for genes sharing a motif, asymmetric property
and the ability to automatically down-weight the impact
of promiscuous genes with large degrees. We have shown
that the asymmetry can be exploited to identify even
tighter associations between genes and mask the impact of
promiscuous genes. Furthermore, we conjecture that this
asymmetric property may be useful in discriminating
genes that are exclusive to a single pathway from genes
that are shared in multiple pathways.

The probabilistic motifs naturally down-weight the
importance of promiscuous genes with many interaction
partners. When the roles of hubs are not purely due to
experimental bias, it is more likely to retain biologically
relevant information by modelling it probabilistically
than by simple filtering. GIMF has an interesting corre-
spondence with a log-odd score based approach. How-
ever, an important difference is GIMF performs a global
search of a subgraph with best cohesiveness based on a
seed. The computation of GIMF is highly efficient. It is
well suited for building motifs around a subset of genes of
interest with several choices of stringency.

Methods
Correlations for Gene Ontology (GO) annotation are
computed for three categories: biological process, molec-
ular function and cellular component (unpublished data,
Ye et al). Within each category, the correlation coefficient
is computed as follows:

Find the deepest level in GO hierarchy at which the pair of
genes shares an annotation, which we denote by d.
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Find the maximum and minimum value of d among all
query gene pairs (i, j) where i = 1,2,..., Q and j = 1,2,...,Q,
Q is the total number of query genes.

The GO annotation correlation (biological process,
molecular function and cellular components) for a pair of
gene is defined by
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