

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,3-Diphenyl-1,3-thiazolidin-4-one

Hemant P. Yennawar,^a John Tierney^b and Lee J. Silverberg^c*

^aDepartment of Chemistry, Pennsylvania State University, University Park, PA 16802, USA, ^bPennsylvania State University, Brandywine Campus, 312 M Main Building, 25 Yearsley Mill Rd, Media, PA 19063, USA, and ^cPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA Correspondence e-mail: ljs43@psu.edu

Received 5 March 2014; accepted 26 June 2014

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.147; data-to-parameter ratio = 19.5.

The title compound, $C_{15}H_{13}NOS$, is a chiral molecule crystallized as a racemate, with two molecules in the asymmetric unit. In each of the molecules, the five-membered thiazine ring has an envelope conformation, with the S atom forming the flap. In one molecule, the angle between the two phenyl-ring planes is 82.77 (7)°, while in the other it is 89.12 (6)°. In the crystal, molecules are linked into chains along the *b*-axis direction by $C-H\cdots O$ hydrogen bonds.

Related literature

For the preparation of the title compound, see: Tierney (1989). For the crystal structure of a tin complex of the title compound, see: Smith *et al.* (1995). For the synthesis and crystal structures of related compounds, see: Yennawar & Silverberg (2013, 2014); Fun *et al.* (2011). For reviews on 1,3-thiazolidin-4-ones, see: Brown (1961); Singh *et al.* (1981); Metally *et al.* (2006); Abhishek *et al.* (2012).

a = 32.413 (13) Å

b = 6.196 (3) Å c = 25.964 (11) Å

Crystal data

C ₁₅ H ₁₃ NOS	
$M_r = 255.32$	
Monoclinic, C2/c	

$\beta = 100.258 \ (7)^{\circ}$
$V = 5131 (4) \text{ Å}^3$
Z = 16
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\rm min} = 0.807, T_{\rm max} = 0.981$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ 325 parameters $wR(F^2) = 0.147$ H-atom parameters not refinedS = 1.01 $\Delta \rho_{max} = 0.33 \text{ e } \text{Å}^{-3}$ 6334 reflections $\Delta \rho_{min} = -0.22 \text{ e } \text{Å}^{-3}$

Table 1	
Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C15-H15\cdots O1^{i}$	0.93	2.58	3.470 (2)	160
$C1 = H1 \cdots O1$ $C16 = H16 \cdots O2^{ii}$	0.98	2.49	3.301 (3)	172
$C17 - H17B \cdots O2^{iii}$	0.97	2.41	3.313 (3)	155

Symmetry codes: (i) x, y + 1, z; (ii) x, y - 1, z; (iii) -x, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XSHELL* (Bruker, 2001) and *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97*.

We acknowledge NSF funding (CHEM-0131112) for the X-ray diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: FY2114).

References

- Abhishek, K. J., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. K. (2012). *Bioorg. Med. Chem.* **20**, 3378–3395.
- Brown, F. C. (1961). Chem. Rev. 61, 463-521.
- Bruker (2001). SMART, SAINT, XSHELL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Fun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, 02706.

Metally, M. A., Etman, H. A., Keshk, E. M. & Fekry, A. (2006). Phosphorus, Sulfur Silicon Relat. Elem. 181, 1039–1058.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, S. P., Parmar, S. S., Raman, K. & Stenberg, V. I. (1981). Chem. Rev. 81, 175–203.
- Smith, F. E., Hynes, R. C., Tierney, J., Zhang, Y. Z. & Eng, G. (1995). Can. J. Chem. 73, 95–99.
- Tierney, J. (1989). J. Heterocycl. Chem. 26, 997-1001.
- Yennawar, H. P. & Silverberg, L. J. (2013). Acta Cryst. E69, 01659.
- Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133.

 $\mu = 0.24 \text{ mm}^{-1}$ T = 298 K

 $R_{\rm int} = 0.028$

 $0.14 \times 0.12 \times 0.08 \text{ mm}$

23146 measured reflections

6334 independent reflections 5015 reflections with $I > 2\sigma(I)$

supporting information

Acta Cryst. (2014). E70, o847 [doi:10.1107/S1600536814015128]

2,3-Diphenyl-1,3-thiazolidin-4-one

Hemant P. Yennawar, John Tierney and Lee J. Silverberg

1. Comment

We have recently reported the syntheses and crystal structures of 6,7-diphenyl-5-thia-7-azaspiro[2.6]nonan-8-one, a seven-membered heterocycle (Yennawar and Silverberg, 2013), and 2,3-diphenyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazin-4-one, a similar six-membered heterocycle (Yennawar and Silverberg, 2014). We report here the crystal structure of 2,3-diphenyl-1,3-thiazolidin-4-one (Tierney, 1989), the analogous five-membered heterocycle. The crystal structure of a tin complex of the title compound has been previously reported (Smith *et al.*, 1995), but the structure of the title compound has not. The crystal structure of similar compound 3-benzyl-2-phenyl-1,3-thiazolidin-4-one has been reported (Fun *et al.*, 2011). The 1,3-thiazolidin-4-ones are an important class of compounds with a wide range of biological activity (Brown, 1961; Singh, *et al.*, 1981; Metally *et al.*, 2006; Abhishek *et al.*, 2012).

2. Experimental

A sample of the title compound, prepared according to Tierney (1989), was recrystallized from ethanol. $R_f = 0.54$ (50% EtOAc/hexanes). m.p.: 131–133°C (lit. 131–132°C). Crystals for X-ray crystallography were grown by slow evaporation from toluene.

3. Refinement

The C-bound H atoms were geometrically placed with C—H = 0.93–0.97 Å, and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

ORTEP view of the title comound. Thermal ellipsoids are drawn at 50% probability.

Figure 2

View of *b*-*c* plane with C—H…O interactions shown as dashed lines.

Figure 3

Unit-cell contents.

2,3-Diphenyl-1,3-thiazolidin-4-one

Crystal data

C₁₅H₁₃NOS $M_r = 255.32$ Monoclinic, C2/c Hall symbol: -C 2yc a = 32.413 (13) Å b = 6.196 (3) Å c = 25.964 (11) Å $\beta = 100.258 (7)^{\circ}$ $V = 5131 (4) \text{ Å}^3$ Z = 16

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.34 pixels mm⁻¹ phi and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.807, T_{\max} = 0.981$ F(000) = 2144 $D_x = 1.322 \text{ Mg m}^{-3}$ Melting point: 405(1) K Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7831 reflections $\theta = 2.2-28.3^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.14 \times 0.12 \times 0.08 \text{ mm}$

23146 measured reflections 6334 independent reflections 5015 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 28.3^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -42 \rightarrow 42$ $k = -8 \rightarrow 8$ $l = -34 \rightarrow 30$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from
$wR(F^2) = 0.147$	neighbouring sites
S = 1.01	H-atom parameters not refined
6334 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0897P)^2 + 1.5154P]$
325 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.33 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (30 s exposure) covering -0.300° degrees in ω . The crystal to detector distance was 5.82 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.16111 (4)	0.4561 (2)	0.38426 (6)	0.0375 (3)	
H1	0.1730	0.5960	0.3771	0.045*	
C2	0.18453 (7)	0.1206 (3)	0.44221 (7)	0.0596 (5)	
H2A	0.2083	0.0676	0.4671	0.072*	
H2B	0.1601	0.0348	0.4455	0.072*	
C3	0.19346 (5)	0.1053 (3)	0.38717 (6)	0.0426 (3)	
C4	0.11402 (4)	0.4644 (2)	0.36653 (6)	0.0384 (3)	
C5	0.09284 (6)	0.6505 (3)	0.37624 (7)	0.0524 (4)	
Н5	0.1078	0.7693	0.3913	0.063*	
C6	0.04944 (6)	0.6605 (4)	0.36362 (8)	0.0656 (5)	
H6	0.0355	0.7856	0.3706	0.079*	
C7	0.02702 (6)	0.4875 (4)	0.34099 (8)	0.0682 (6)	
H7	-0.0021	0.4951	0.3324	0.082*	
C8	0.04765 (6)	0.3011 (4)	0.33086 (8)	0.0651 (5)	
H8	0.0325	0.1834	0.3154	0.078*	
C9	0.09108 (5)	0.2897 (3)	0.34371 (7)	0.0514 (4)	
Н9	0.1048	0.1639	0.3370	0.062*	
C10	0.18622 (4)	0.3123 (3)	0.30503 (5)	0.0373 (3)	
C11	0.17313 (5)	0.1509 (3)	0.26884 (7)	0.0511 (4)	
H11	0.1613	0.0246	0.2790	0.061*	
C12	0.17791 (7)	0.1806 (4)	0.21694 (8)	0.0693 (6)	
H12	0.1690	0.0736	0.1923	0.083*	

C13	0.19558 (7)	0.3659 (4)	0.20187 (8)	0.0704 (6)
H13	0.1989	0.3836	0.1673	0.084*
C14	0.20842 (6)	0.5253 (4)	0.23787 (7)	0.0629 (5)
H14	0.2203	0.6510	0.2275	0.075*
C15	0.20371 (5)	0.4996 (3)	0.28963 (6)	0.0471 (4)
H15	0.2123	0.6083	0.3139	0.057*
C16	0.08432 (5)	0.0210 (3)	0.54421 (6)	0.0402 (3)
H16	0.0716	-0.1127	0.5541	0.048*
C17	0.05773 (6)	0.3511 (3)	0.48483 (7)	0.0577 (5)
H17A	0.0809	0.4348	0.4764	0.069*
H17B	0.0321	0.3998	0.4628	0.069*
C18	0.05479 (5)	0.3792 (3)	0.54178 (6)	0.0426 (3)
C19	0.13159 (4)	-0.0004 (2)	0.55810 (5)	0.0371 (3)
C20	0.14969 (5)	-0.1974 (3)	0.55010 (6)	0.0455 (4)
H20	0.1327	-0.3128	0.5370	0.055*
C21	0.19270 (5)	-0.2246 (3)	0.56134 (7)	0.0513 (4)
H21	0.2044	-0.3573	0.5554	0.062*
C22	0.21819 (5)	-0.0559 (3)	0.58124 (7)	0.0521 (4)
H22	0.2471	-0.0746	0.5890	0.063*
C23	0.20071 (5)	0.1409 (3)	0.58958 (7)	0.0536 (4)
H23	0.2179	0.2552	0.6031	0.064*
C24	0.15749 (5)	0.1688 (3)	0.57782 (7)	0.0469 (4)
H24	0.1459	0.3024	0.5833	0.056*
C25	0.07029 (4)	0.1912 (3)	0.62627 (6)	0.0406 (3)
C26	0.08743 (5)	0.3596 (3)	0.65831 (7)	0.0531 (4)
H26	0.0975	0.4818	0.6439	0.064*
C27	0.08940 (6)	0.3447 (4)	0.71192 (8)	0.0694 (6)
H27	0.1007	0.4575	0.7336	0.083*
C28	0.07459 (7)	0.1627 (5)	0.73317 (8)	0.0745 (6)
H28	0.0758	0.1535	0.7692	0.089*
C29	0.05807 (7)	-0.0052 (4)	0.70153 (8)	0.0704 (6)
H29	0.0485	-0.1283	0.7162	0.084*
C30	0.05565 (5)	0.0088 (3)	0.64786 (7)	0.0537 (4)
H30	0.0442	-0.1042	0.6264	0.064*
N1	0.18173 (3)	0.28663 (19)	0.35879 (4)	0.0351 (3)
N2	0.06799 (4)	0.2018 (2)	0.57083 (5)	0.0397 (3)
O1	0.20931 (4)	-0.0527 (2)	0.37092 (5)	0.0597 (3)
O2	0.04255 (4)	0.54461 (19)	0.55954 (5)	0.0579 (3)
S1	0.175220 (14)	0.39920 (8)	0.454463 (16)	0.05330 (15)
S2	0.065806 (16)	0.06983 (9)	0.474346 (18)	0.06317 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0426 (7)	0.0352 (7)	0.0370 (7)	-0.0009 (6)	0.0132 (6)	-0.0069 (6)
C2	0.0781 (12)	0.0579 (11)	0.0449 (9)	0.0001 (9)	0.0168 (9)	0.0069 (8)
C3	0.0441 (8)	0.0392 (8)	0.0443 (8)	-0.0014 (6)	0.0074 (6)	0.0008 (6)
C4	0.0418 (7)	0.0411 (8)	0.0348 (7)	0.0036 (6)	0.0132 (6)	0.0014 (6)

Acta Cryst. (2014). E70, o847

~-				0.044.0 (0)		
C5	0.0591 (10)	0.0454 (9)	0.0545 (10)	0.0119 (8)	0.0146 (8)	-0.0003(8)
C6	0.0604 (11)	0.0722 (13)	0.0668 (12)	0.0306 (10)	0.0180 (9)	0.0060 (10)
C7	0.0427 (9)	0.1013 (17)	0.0607 (11)	0.0169 (10)	0.0097 (8)	0.0031 (11)
C8	0.0455 (9)	0.0795 (14)	0.0704 (13)	-0.0051 (9)	0.0104 (8)	-0.0143 (11)
C9	0.0426 (8)	0.0533 (10)	0.0592 (10)	0.0017 (7)	0.0114 (7)	-0.0104 (8)
C10	0.0342 (6)	0.0433 (8)	0.0352 (7)	0.0057 (6)	0.0079 (5)	-0.0031 (6)
C11	0.0538 (9)	0.0532 (10)	0.0463 (9)	-0.0014 (7)	0.0085 (7)	-0.0137 (8)
C12	0.0784 (13)	0.0829 (15)	0.0450 (10)	0.0099 (11)	0.0065 (9)	-0.0251 (10)
C13	0.0863 (14)	0.0896 (16)	0.0386 (9)	0.0114 (12)	0.0202 (9)	0.0010 (10)
C14	0.0737 (12)	0.0718 (13)	0.0473 (10)	-0.0001 (10)	0.0222 (9)	0.0105 (9)
C15	0.0515 (9)	0.0504 (9)	0.0408 (8)	-0.0016 (7)	0.0122 (7)	-0.0012 (7)
C16	0.0413 (7)	0.0379 (8)	0.0423 (8)	-0.0002 (6)	0.0096 (6)	-0.0062 (6)
C17	0.0537 (9)	0.0693 (12)	0.0489 (10)	0.0055 (9)	0.0055 (8)	0.0070 (9)
C18	0.0365 (7)	0.0410 (8)	0.0500 (9)	-0.0020 (6)	0.0067 (6)	-0.0005 (7)
C19	0.0411 (7)	0.0376 (8)	0.0336 (7)	0.0021 (6)	0.0093 (5)	0.0006 (6)
C20	0.0508 (8)	0.0392 (8)	0.0456 (8)	0.0029 (6)	0.0065 (7)	-0.0051 (7)
C21	0.0535 (9)	0.0496 (10)	0.0504 (9)	0.0174 (7)	0.0079 (7)	0.0010 (8)
C22	0.0414 (8)	0.0668 (11)	0.0474 (9)	0.0074 (8)	0.0057 (7)	0.0061 (8)
C23	0.0443 (8)	0.0546 (10)	0.0611 (11)	-0.0075 (7)	0.0073 (7)	-0.0021 (8)
C24	0.0471 (8)	0.0391 (8)	0.0553 (10)	0.0004 (6)	0.0116 (7)	-0.0029 (7)
C25	0.0351 (6)	0.0466 (9)	0.0405 (8)	0.0064 (6)	0.0079 (6)	-0.0038 (6)
C26	0.0509 (9)	0.0543 (10)	0.0531 (10)	0.0032 (7)	0.0069 (7)	-0.0110 (8)
C27	0.0635 (11)	0.0880 (15)	0.0518 (11)	0.0155 (11)	-0.0033 (9)	-0.0251 (11)
C28	0.0700 (12)	0.1132 (19)	0.0399 (10)	0.0204 (13)	0.0089 (9)	0.0033 (11)
C29	0.0716 (13)	0.0898 (16)	0.0521 (11)	0.0036 (11)	0.0171 (9)	0.0159 (11)
C30	0.0528 (9)	0.0592 (11)	0.0500 (10)	-0.0004 (8)	0.0114 (7)	0.0029 (8)
N1	0.0375 (6)	0.0343 (6)	0.0348 (6)	0.0018 (5)	0.0099 (5)	-0.0036 (5)
N2	0.0405 (6)	0.0379 (7)	0.0413 (7)	0.0023 (5)	0.0094 (5)	-0.0027 (5)
01	0.0756 (8)	0.0412 (7)	0.0634 (8)	0.0151 (6)	0.0151 (6)	0.0017 (6)
O2	0.0582 (7)	0.0416 (7)	0.0725 (9)	0.0086 (5)	0.0076 (6)	0.0006 (6)
S 1	0.0549 (2)	0.0697 (3)	0.0357 (2)	0.0024 (2)	0.00903 (17)	-0.01146 (19)
S2	0.0619 (3)	0.0795 (4)	0.0439 (3)	0.0126 (2)	-0.0019 (2)	-0.0167 (2)

Geometric parameters (Å, °)

C1—N1	1.4641 (18)	C16—N2	1.4638 (19)
C1—C4	1.515 (2)	C16—C19	1.516 (2)
C1—S1	1.8328 (17)	C16—S2	1.8315 (17)
C1—H1	0.9800	C16—H16	0.9800
C2—C3	1.511 (2)	C17—C18	1.509 (2)
C2—S1	1.791 (2)	C17—S2	1.790 (2)
C2—H2A	0.9700	C17—H17A	0.9700
C2—H2B	0.9700	C17—H17B	0.9700
C3—O1	1.216 (2)	C18—O2	1.219 (2)
C3—N1	1.360 (2)	C18—N2	1.359 (2)
C4—C5	1.387 (2)	C19—C24	1.383 (2)
C4—C9	1.386 (2)	C19—C20	1.386 (2)
C5—C6	1.388 (3)	C20—C21	1.383 (2)

С5—Н5	0.9300	C20—H20	0.9300
C6—C7	1.368 (3)	C21—C22	1.375 (3)
С6—Н6	0.9300	C21—H21	0.9300
C7—C8	1.383 (3)	C22—C23	1.378 (3)
С7—Н7	0.9300	С22—Н22	0.9300
C8—C9	1.389 (2)	C23—C24	1.391 (2)
C8—H8	0.9300	С23—Н23	0.9300
C9—H9	0.9300	C24—H24	0.9300
C10—C11	1 386 (2)	C_{25} C_{30}	1.382(2)
C10-C15	1.382(2)	$C_{25} = C_{26}$	1.382(2)
C10_N1	1.302(2) 1.4378(18)	$C_{25} = 0.20$	1.307(2) 1 430(2)
C_{11} C_{12}	1 206 (2)	C_{25} C_{25} C_{27}	1.430(2) 1 385(3)
C11_U11	0.0200	C_{20}	1.385(3)
	0.9500	C20—H20	0.9300
C12—C13	1.3/1 (3)	$C_{27} = C_{28}$	1.379 (4)
C12—H12	0.9300	C2/—H2/	0.9300
C13—C14	1.373 (3)	C28—C29	1.374 (4)
С13—Н13	0.9300	С28—Н28	0.9300
C14—C15	1.389 (2)	C29—C30	1.384 (3)
C14—H14	0.9300	С29—Н29	0.9300
C15—H15	0.9300	C30—H30	0.9300
N1—C1—C4	113.81 (12)	C19—C16—H16	108.6
N1-C1-S1	104.96 (10)	S2—C16—H16	108.6
C4—C1—S1	111.61 (10)	C18—C17—S2	107.33 (13)
N1—C1—H1	108.8	C18—C17—H17A	110.2
C4—C1—H1	108.8	S2—C17—H17A	110.2
S1—C1—H1	108.8	C18—C17—H17B	110.2
C3—C2—S1	107.19 (12)	S2—C17—H17B	110.2
C3—C2—H2A	110.3	H17A—C17—H17B	108.5
\$1—C2—H2A	110.3	02-C18-N2	124.19 (16)
C3-C2-H2B	110.3	02	123 34 (16)
S1—C2—H2B	110.3	$N_2 - C_{18} - C_{17}$	1123.51(10) 11246(14)
$H^2A - C^2 - H^2B$	108.5	C_{24} C_{19} C_{20}	112.10(11) 118.54(14)
O1 C3 N1	124.89 (15)	$C_{24} = C_{19} = C_{20}$	110.94(14) 122.80(14)
01 - 03 - 02	124.09(15) 122.80(15)	$C_{24} = C_{19} = C_{10}$	122.09(14) 118 57(14)
$N_1 = C_2 = C_2$	122.09(13) 112.22(14)	$C_{20} = C_{19} = C_{10}$	110.37(14) 120.00(15)
$N_1 = C_3 = C_2$	112.22(14) 112.22(15)	$C_{21} = C_{20} = C_{19}$	120.90 (13)
$C_{5} - C_{4} - C_{9}$	110.02(13)	$C_{21} = C_{20} = H_{20}$	119.5
$C_3 = C_4 = C_1$	118.55 (14)	C19—C20—H20	119.5
C_{9}	122.56 (13)	$C_{20} = C_{21} = C_{22}$	120.17 (15)
C4—C5—C6	120.52 (18)	C20—C21—H21	119.9
C4—C5—H5	119.7	С22—С21—Н21	119.9
С6—С5—Н5	119.7	C23—C22—C21	119.70 (15)
C7—C6—C5	120.33 (18)	C23—C22—H22	120.2
С7—С6—Н6	119.8	C21—C22—H22	120.2
С5—С6—Н6	119.8	C22—C23—C24	120.14 (16)
C6—C7—C8	119.88 (17)	С22—С23—Н23	119.9
С6—С7—Н7	120.1	C24—C23—H23	119.9
С8—С7—Н7	120.1	C19—C24—C23	120.55 (15)

C7 $C8$ $C9$	120.04 (19)	C10 C24 H24	110 7
$C_7 = C_8 = U_9$	120.04 (19)	C13 - C24 - 1124	119.7
$C = C = H \delta$	120.0	$C_{23} = C_{24} = H_{24}$	119.7
C9—C8—H8	120.0	$C_{30} = C_{25} = C_{26}$	120.09 (16)
C4—C9—C8	120.41 (17)	$C_{30} = C_{25} = N_2$	119.07 (14)
C4—C9—H9	119.8	C26—C25—N2	120.84 (15)
С8—С9—Н9	119.8	C27—C26—C25	119.63 (19)
C11—C10—C15	120.12 (15)	C27—C26—H26	120.2
C11—C10—N1	120.44 (15)	С25—С26—Н26	120.2
C15—C10—N1	119.43 (13)	C28—C27—C26	120.0 (2)
C10—C11—C12	119.10 (18)	С28—С27—Н27	120.0
C10-C11-H11	120.5	С26—С27—Н27	120.0
C12—C11—H11	120.5	C29—C28—C27	120.43 (19)
C13—C12—C11	120.64 (18)	C29—C28—H28	119.8
C13—C12—H12	119.7	C27—C28—H28	119.8
C11—C12—H12	119.7	C28—C29—C30	120.0 (2)
C12—C13—C14	119.99 (18)	С28—С29—Н29	120.0
C12—C13—H13	120.0	С30—С29—Н29	120.0
C14—C13—H13	120.0	C_{25} — C_{30} — C_{29}	119.84 (19)
C_{13} C_{14} C_{15}	120.30(19)	C25—C30—H30	120.1
C13 - C14 - H14	110.0	C_{29} C_{30} H_{30}	120.1
C_{15} C_{14} H_{14}	119.9	C_{3} N1 $-C_{10}$	123.39(12)
C_{10} C_{15} C_{14}	119.9	$C_3 $ N1 C_1	125.59(12) 116.00(12)
$C_{10} = C_{15} = C_{14}$	120.1	C_{10} N1 C_{1}	110.99(12) 110.50(12)
$C_{10} = C_{15} = H_{15}$	120.1	C10 N2 $C25$	119.30(12)
V2 C1(C10	120.1	C18 - N2 - C25	123.43(13)
N2	112.93 (12)	C18 - N2 - C16	117.51 (13)
N2—C16—S2	105.00 (10)	C25—N2—C16	118.80 (12)
C19—C16—S2	112.89 (10)	C2—S1—C1	91.65 (8)
N2—C16—H16	108.6	C17—S2—C16	92.37 (8)
<u>81 C2 C3 O1</u>	164 20 (14)	N2 C25 C26 C27	-170 78 (15)
$S_1 = C_2 = C_3 = O_1$	104.39(14)	$N_2 = C_{23} = C_{20} = C_{27}$	-1/9.78(13)
SI = C2 = C3 = NI	-15.05(18)	$C_{23} = C_{20} = C_{27} = C_{28}$	0.4(3)
NI = CI = C4 = C5	-162.23(14)	$C_{26} = C_{27} = C_{28} = C_{29}$	0.4(3)
SI_CI_C4_C5	79.20 (16)	C27—C28—C29—C30	-0.9 (3)
N1—C1—C4—C9	21.5 (2)	C26—C25—C30—C29	0.1 (3)
S1—C1—C4—C9	-97.08 (15)	N2—C25—C30—C29	179.28 (16)
C9—C4—C5—C6	0.4 (3)	C28—C29—C30—C25	0.7 (3)
C1—C4—C5—C6	-176.01 (16)	O1—C3—N1—C10	0.9 (2)
C4—C5—C6—C7	-0.6 (3)	C2-C3-N1-C10	-179.02 (14)
C5—C6—C7—C8	0.3 (3)	O1—C3—N1—C1	176.89 (15)
C6—C7—C8—C9	0.1 (3)	C2-C3-N1-C1	-3.07 (19)
C5-C4-C9-C8	0.0 (3)	C11—C10—N1—C3	47.6 (2)
C1—C4—C9—C8	176.27 (17)	C15—C10—N1—C3	-132.45 (15)
C7—C8—C9—C4	-0.3 (3)	C11—C10—N1—C1	-128.26 (15)
C15—C10—C11—C12	0.1 (2)	C15—C10—N1—C1	51.69 (18)
N1-C10-C11-C12	-179.99(15)	C4-C1-N1-C3	-102.68(15)
C10-C11-C12-C13	05(3)	S1-C1-N1-C3	19 64 (15)
$C_{11} - C_{12} - C_{13} - C_{14}$	-0.6(3)	C4-C1-N1-C10	73 44 (16)
$C_{12} = C_{12} = C_{13} = C_{14}$	0.0(3)	$S_1 = C_1 = N_1 = C_{10}$	-164.24(10)
U12 - U13 - U14 - U13	0.2 (3)	SI = CI = INI = CIU	104.24 (10)

C11—C10—C15—C14 N1—C10—C15—C14 C13—C14—C15—C10 S2—C17—C18—O2 S2—C17—C18—N2 N2—C16—C19—C24 S2—C16—C19—C24 N2—C16—C19—C20 C24—C19—C20—C21 C16—C19—C20—C21 C16—C19—C20—C21 C19—C20—C21—C22 C20—C21—C22—C23 C21—C22—C23—C24 C20—C19—C24—C23	$\begin{array}{c} -0.5 \ (2) \\ 179.58 \ (15) \\ 0.4 \ (3) \\ -167.49 \ (13) \\ 13.64 \ (17) \\ -21.5 \ (2) \\ 97.45 \ (16) \\ 159.33 \ (14) \\ -81.74 \ (16) \\ -0.2 \ (2) \\ 178.98 \ (15) \\ 0.7 \ (3) \\ -0.5 \ (3) \\ -0.1 \ (3) \\ -0.4 \ (2) \end{array}$	$\begin{array}{c} 02-0.18-0.2-0.25\\ 02-0.18-0.2-0.25\\ 02-0.18-0.2-0.16\\ 020-0.25-0.2-0.18\\ 020-0.25-0.2-0.18\\ 020-0.25-0.2-0.18\\ 020-0.25-0.2-0.16\\ 020-0.25-0.2-0.16\\ 020-0.25-0.2-0.18\\ 020-0.16-0.2-0.18\\ 020-0.16-0.2-0.18\\ 010-0.16-0.2-0.25\\ 020-$	$\begin{array}{c} -2.1 \ (2) \\ 176.81 \ (13) \\ -176.11 \ (14) \\ 2.75 \ (19) \\ 135.69 \ (16) \\ -45.1 \ (2) \\ -50.32 \ (19) \\ 128.84 \ (15) \\ 106.20 \ (15) \\ -17.21 \ (15) \\ -68.14 \ (17) \\ 168.44 \ (10) \\ 22.65 \ (14) \\ -23.76 \ (11) \\ 99.98 \ (12) \end{array}$
C21—C22—C23—C24	$\begin{array}{c} -0.1 (3) \\ -0.4 (2) \\ -179.55 (15) \\ 0.5 (3) \\ -0.6 (2) \end{array}$	N1-C1-S1-C2	-23.76 (11)
C20—C19—C24—C23		C4-C1-S1-C2	99.98 (12)
C16—C19—C24—C23		C18-C17-S2-C16	-19.83 (12)
C22—C23—C24—C19		N2-C16-S2-C17	20.77 (11)
C30—C25—C26—C27		C19-C16-S2-C17	-102.66 (12)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H···A	
C15—H15…O1 ⁱ	0.93	2.58	3.470 (2)	160	
C1—H1···O1 ⁱ	0.98	2.49	3.466 (2)	172	
C16—H16…O2 ⁱⁱ	0.98	2.34	3.301 (3)	168	
C17—H17 <i>B</i> ····O2 ⁱⁱⁱ	0.97	2.41	3.313 (3)	155	

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*, *y*-1, *z*; (iii) -*x*, -*y*+1, -*z*+1.