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Epidural anesthesia needle 
guidance by forward‑view 
endoscopic optical coherence 
tomography and deep learning
Chen Wang1,7, Paul Calle2,7, Justin C. Reynolds2,7, Sam Ton1, Feng Yan1, 
Anthony M. Donaldson1, Avery D. Ladymon1, Pamela R. Roberts3, Alberto J. de Armendi3, 
Kar‑ming Fung4,5, Shashank S. Shettar3, Chongle Pan2 & Qinggong Tang1,6*

Epidural anesthesia requires injection of anesthetic into the epidural space in the spine. Accurate 
placement of the epidural needle is a major challenge. To address this, we developed a forward-view 
endoscopic optical coherence tomography (OCT) system for real-time imaging of the tissue in front of 
the needle tip during the puncture. We tested this OCT system in porcine backbones and developed 
a set of deep learning models to automatically process the imaging data for needle localization. A 
series of binary classification models were developed to recognize the five layers of the backbone, 
including fat, interspinous ligament, ligamentum flavum, epidural space, and spinal cord. The 
classification models provided an average classification accuracy of 96.65%. During puncture, it is 
important to maintain a safe distance between the needle tip and the dura mater. Regression models 
were developed to estimate that distance based on the OCT imaging data. Based on the Inception 
architecture, our models achieved a mean absolute percentage error of 3.05% ± 0.55%. Overall, 
our results validated the technical feasibility of using this novel imaging strategy to automatically 
recognize different tissue structures and measure the distances ahead of the needle tip during the 
epidural needle placement.

Epidural anesthesia has become a well-established anesthetic method widely used in painless delivery1, thoracic 
surgeries2, orthopedic surgeries3, organ transplantation surgeries4, abdominal surgeries5, and chronic pain relief6. 
Epidural anesthesia uses an epidural needle to inject the anesthetic medications into the epidural space, which 
averages 1–6 mm in width and several centimeters in depth behind the skin layer7. During the placement of 
the epidural needle, the epidural needle penetrates subcutaneous fat, supraspinous ligament, interspinous liga-
ment and ligamentum flavum before reaching the epidural space (between flavum and dura mater) to inject the 
medications8. Therefore, accurate positioning of the needle in the epidural space is critical for safe and effective 
epidural anesthesia.

Inadvertent penetration and damage to neurovascular structures leads to several complications, such as 
headache, transient paresthesia, and severe epidural hematomas1. Puncturing the dura will cause excessive loss 
of cerebrospinal fluid (CSF) and can damage nerves in the spinal cord9. It has been reported that more than 6% 
of patients have abnormal feelings during the placement of needle, and this has been shown to be a risk factor of 
persistent paresthesia10. Post dural puncture headache (PDPH) is one of the most common complications in epi-
dural anesthesia11. It occurs in over 50% of the accidental dural puncture cases12. Some researchers reported the 
PDPH incidence rate for females was two to three times greater than men, and pregnancy could further increase 
the possibility of PDPH13. Besides PDPH, more serious consequences such as spinal cord damage, paralysis or 
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epidural hematoma and the development of an abscess might occur due to inaccurate puncture14,15. Moreover, 
the neurologic injury caused by inadvertent puncture can lead to other symptoms like fever or photophobia16,17.

In current clinical practice, accurate placement of the needle relies on the experience of the anesthesiologist18. 
The most common method of detecting the placement of the needle in the epidural space is based on the loss of 
resistance (LOR)19. To test the LOR, the anesthesiologist keeps pressing on the plunger of a syringe filled with 
saline or air during the inserting the epidural needle20. When the needle tip passes through the ligamentum 
flavum and reaches at the epidural space, there is a sudden decrease of the resistance that can be sensed by 
anesthesiologists21. Nevertheless, this method has been shown to be inaccurate in predicting needle location and 
actual needle insertion could be further inside the body than the expectation22. Up to 10% of patients undergoing 
epidural anesthesia are not provided with adequate analgesia by using LOR23,24. And the LOR technique can fail 
in up to 53% of the attempts without image guidance in more challenging procedures such as cervical epidural 
injections25,26. Moreover, complications such as pneumocephalus27, nerve root compression28, subcutaneous 
emphysema29 and venous air embolism30 have been shown to be related to the air or liquid injection while using 
LOR technique. To improve the success rate of epidural puncture and decrease the number of puncture attempts, 
there is a strong demand for an effective imaging technique to guide the epidural needle insertion.

Currently, imaging modalities, such as ultrasound and fluoroscopy, have been utilized during the needle 
access31,32. However, the complex and articulated encasement of bones allows only a narrow acoustic window for 
the ultrasound beam26. Fluoroscopy does not have soft tissue contrast and, thus, cannot differentiate critical soft 
tissues (such as blood vessels and nerve roots) that need to be avoided during the needle insertion. Moreover, 
the limited resolution and contrast in fluoroscopy make it difficult to distinguish different tissue layers in front of 
the needle tip, especially for the cervical and thoracic epidural anesthesia where the epidural space is as narrow 
as 1–4 mm33. To improve the needle placement accuracy, novel optical imaging systems have been designed and 
tested. A portable optical epidural needle system based on fiberoptic bundle was designed to identify the epidural 
space34, but there are some limitations for the optical signal interpretation and needle trajectory identification 
due to the uncertain direction of needle bevel or the surrounding fluid35. Additionally, optical spectral analysis 
has been utilized for tissue differentiation during epidural space identification36,37. However, the accuracy of 
measured spectral results can be compromised by the surrounding tissues and the bleeding during the puncture.

Optical coherence tomography (OCT) is a non-invasive imaging modality that can visualize the cross-sections 
of tissue samples38. At 10–100 times higher resolution (~ 10 µm) than ultrasound and fluoroscopy, OCT can 
improve the efficacy of tissue imaging39. OCT has been integrated with fiber-optic catheters and endoscopes for 
numerous internal imaging applications40–43. Fiber-optic based OCT probe systems have been proposed in epi-
dural anesthesia needle guidance and provided promising results in identifying epidural space in pig models44,45. 
In the previous study, our group has also reported a forward-imaging endoscopic OCT needle device for real-
time epidural anesthesia placement guidance and demonstrated its feasibility in piglets in vivo26. By fitting the 
OCT needle inside the hollow bore of the epidural needle, no additional invasiveness is introduced from the 
OCT endoscope. The high scanning speed of OCT system allows real-time imaging of the tissue OCT images in 
front of the needle. The tissues in front of the needle tip can be recognized based on the distinct OCT imaging 
features of the different tissues.

Convolutional neural networks (CNN) has been widely used for classification of medical images46,47 and 
have been applied for OCT images in macular, retina and esophageal related research for automatic tissue 
segmentation48–50. To help improve the efficiency of tissue recognition, herein we proposed to use CNN to clas-
sify and recognize different epidural tissue types automatically. In this study, we developed a computer-aided 
diagnosis (CAD) system based on CNN to automatically locate the epidural needle tip based on the forward-view 
OCT images. To the best of our knowledge, this is the first attempt to combine forward-view OCT system with 
CNN for guiding the epidural anesthesia procedure. Five epidural layers (fat, interspinous ligament, ligamentum 
flavum, epidural space and spinal cord) were imaged to train and test the CNN classifiers based on Inception51, 
Residual Network 50 (ResNet50)52 and Xception53. After the needle tip arrives the epidural space, the OCT images 
can then be used to estimate the distance of the needle tip from the dura mater to avoid spinal cord damage. 
We trained and tested regression models based on Inception, ResNet50 and Xception using OCT images with 
manually labeled distances. The Inception model achieved the best performance with a mean absolute percent-
age error of 3.05% ± 0.55%. These results demonstrated the feasibility of this novel imaging strategy for guiding 
the epidural anesthesia needle placement.

Results
OCT images of five epidural layer categories.  The schematic of the experiment using our endoscopic 
OCT system was shown in Fig. 1A. Cross-sectional 2D OCT image examples of fat, interspinous ligament, liga-
mentum flavum, epidural space and spinal cord were shown in Fig. 1B. Because of the gap between needle tip 
and dura mater, epidural space was the simplest to be recognized. Among the other four tissues, interspinous 
ligament showed the most obvious imaging features, including the maximum penetration depth and the clear 
transverse stripes due to the thick fiber structure. Compared to other tissue types, ligamentum flavum showed 
higher imaging brightness close to the surface and the shallowest imaging depth. Imaging depths of fat and 
spinal cord were similar, but the imaging intensity of fat was not as evenly distributed as spinal cord. The corre-
sponding histology results were also included in Fig. 1B. These tissues presented different cellular structures and 
distributions and correlated well with their OCT results except for fat. The fat tissue was featured with pockets of 
adipocytes in the histology, while this feature was not clear in the OCT results. This may be caused by the tissue 
compression we applied to mimic the clinical insertion scenario.
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Multi‑class classification of OCT images by tissue layers using sequential binary method.  OCT 
images of the five tissue layers were classified using CNN models based on three architectures, including: 
ResNet5052, Xception54 and Inception55. The prediction accuracies of the three models were shown in Supple-
mentary Table 1. Its corresponding average multi-class confusion matrix was shown in Supplementary Table 2. 
The detailed sevenfold cross-validation results using ResNet50, Xception and Inception were shown in Sup-
plementary Tables 3–5, respectively. The corresponding average cross-validation ROC curves of Inception was 
shown in Supplementary Figure 1. However, the overall accuracies of the multi-class classification models based 
on Inception reached ~ 66%. Although this was significantly higher than the accuracy of 20% by random guess-
ing, further improvement was needed for clinical use.

Since the multi-class classification results were not satisfactory, herein we proposed to use sequential binary 
methods to improve the classification accuracies. During the needle placement, the needle was inserted through 
fat, interspinous ligament, and ligamentum flavum until reaching the epidural space. Continuing the needle 
insertion beyond the epidural space can puncture the dura and damage the spinal cord. The classification pro-
cess was thus divided into a sequential process of four binary classifications: (1) fat vs interspinous ligament; (2) 
interspinous ligament vs ligamentum flavum; (3) ligamentum flavum vs epidural space; and (4) epidural space 
vs spinal cord. A flowchart of the sequential binary classifications was shown in the Supplementary Figure 2. 
The prediction results were shown in the Table 1.

Overall, ResNet50 showed the best prediction results. The average cross-validation performance of the four 
binary classifications was shown in Supplementary Table 6. Table 2 further showed the test accuracy of the best-
performing model (ResNet50) in each of the 8 testing folds and almost all the results were over 90%. There was 
substantial variability in the test accuracy among different subjects especially for the prediction accuracy of “Fat 
vs Interspinous Ligament”. While three subjects had test accuracies higher than 98.8%, the subjects in the S2 fold 
had the lowest test accuracy of 67.3%. This may be due to the tissue variability among different back bone samples 
and the different tissue compression during imaging especially considering fat is subject to tissue compression. 
Additionally, the representative ROC curves were shown in Supplementary Figure 3. The areas under the ROC 

Figure 1.   (A) Endoscopic OCT scanner setup and the representative OCT images of five epidural tissue layer 
categories. (B) Histology results of different tissue layers.
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curve (AUC) differed among different samples. The detailed confusion matrices for cross testing using ResNet50 
average and standard error were shown in Supplementary Table 7–10.

Class activation heatmaps of ResNet50 models were created for representative images to show the salient 
features used for classification (Fig. 2A). Each binary classification model paid attention to different regions of 
the images. For example, the black empty space was important for the models to recognize the epidural space 
images. A video stream of the OCT images was used to demonstrate the sequential binary models. The number 
of images was 100, 700, 100, 100, and 150 for fat, interspinous ligament, ligamentum flavum, epidural space and 
spinal cord, respectively, which was proportional to the width of these tissue layers56–60. After the binary classifier 
of fat vs. ligament detects 35 interspinous ligament images in the last 50 images, the needle was considered to be 
in the interspinous ligament and the next binary classifier of interspinous ligament vs. ligamentum flavum was 
activated to detect the upcoming ligamentum flavum. This simple logic was used to switch all the subsequent 
classifiers. Figure 2B showed some images from a video that can be found in the Github repository. Scenes from 
the video showing the switch from classifier 2 to classifier 3 and its arrival to epidural space. Each image showed 
three important pieces of information. First, the proportion of the last 50 images that were predicted to belong 
to Class 1, e.g., Class 1 was interspinous ligament in the first Classifier and was ligamentum flavum in the second 
Classifier. Initially, when the number of images was less than 50, the denominator shows the total number of 
images. Additionally, the color of fraction followed traffic lights colors. It changed from green to yellow at 26 and 
from yellow to red at 35. The second information was the current classifier. The last information was the truth 

Table 1.   Average accuracies and standard error based on the practical tissue layer sequence during puncture 
for cross-validation.

Testing fold

Fat vs Ligament Ligament vs Flavum

ResNet50 Xception Inception ResNet50 Xception Inception

S1 95.1% ± 2.2% 82.8% ± 8.5% 90.4% ± 2.2% 97.9% ± 1.7% 98.5% ± 1.2% 97.8% ± 2.0%

S2 93.6% ± 2.4% 88.2% ± 6.5% 92.4% ± 2.1% 98.7% ± 1.2% 98.9% ± 1.0% 98.9% ± 1.0%

S3 94.5% ± 2.5% 84.4% ± 6.5% 88.0% ± 2.4% 99.4% ± 0.5% 99.6% ± 0.3% 99.0% ± 0.5%

S4 90.9% ± 2.9% 84.7% ± 6.3% 89.7% ± 2.8% 98.5% ± 1.3% 98.7% ± 0.8% 97.7% ± 1.9%

S5 89.9% ± 2.3% 86.9% ± 4.7% 89.3% ± 2.5% 98.4% ± 1.4% 98.4% ± 0.9% 98.0% ± 1.5%

S6 90.6% ± 3.7% 82.3% ± 8.5% 89.9% ± 2.2% 98.8% ± 0.9% 98.2% ± 1.2% 97.8% ± 1.9%

S7 90.7% ± 3.5% 86.0% ± 3.3% 88.1% ± 3.0% 98.4% ± 1.4% 99.1% ± 0.7% 97.0% ± 2.7%

S8 88.7% ± 3.8% 82.7% ± 6.3% 86.3% ± 2.7% 98.7% ± 1.1% 98.8% ± 0.6% 98.7% ± 0.8%

Average 91.8% ± 1.0% 84.7% ± 2.2% 89.3% ± 2.2% 98.6% ± 0.4% 98.8% ± 0.3% 98.1% ± 0.6%

Testing fold

Flavum vs Epidural Space Epidural Space vs Spinal Cord

ResNet50 Xception Inception ResNet50 Xception Inception

S1 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0%

S2 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0%

S3 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0%

S4 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0%

S5 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0%

S6 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0%

S7 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0%

S8 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0%

Average 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0%

Table 2.   Average and standard error for cross-testing for the four binary comparisons for ResNet50.

Testing fold Fat vs Ligament Ligament vs Flavum Flavum vs Epidural Space
Epidural Space vs Spinal 
Cord Average

S1 81.3% 98.8% 100.0% 100.0% 95.0% ± 4.6%

S2 67.3% 98.0% 100.0% 100.0% 91.3% ± 8.0%

S3 92.0% 87.7% 98.8% 100.0% 94.6% ± 2.9%

S4 99.9% 99.4% 100.0% 100.0% 99.8% ± 0.1%

S5 98.8% 99.4% 100.0% 100.0% 99.6% ± 0.3%

S6 79.5% 99.0% 100.0% 100.0% 94.6% ± 5.1%

S7 94.2% 99.8% 100.0% 100.0% 98.5% ± 1.4%

S8 98.8% 100.0% 100.0% 100.0% 99.7% ± 0.3%

Average 89.0% ± 4.2% 97.8% ± 1.5% 99.8% ± 0.2% 100.0% ± 0.0% 96.65% ± 1.32%
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and predicted label. The switch of binary classifier occurred when the number of images predicted as Class 1 
reached 35. The fraction did not appear anymore when the last classifier was reached.

Estimation of the distance between the needle tip and dura mater by regression.  Inception, 
ResNet50, and Xception were compared for the regression task of estimating the distance of the needle tip to 
the dura mater. In Table 3, the mean and standard error of the cross-validation mean absolute percentage error 
(MAPE) for ResNet50, Xception, and Inception in all testing folds were shown. In every fold, the Inception 
model outperformed the ResNet50 and Xception models, indicated by the lowest MAPE.

In each testing rotation, a new Inception model was trained using all the images in the seven cross-validation 
folds and then evaluated on the unseen testing images in the one testing fold. Examples of OCT images with 
different distances between needle tip and tissue were shown in Fig. 3A. A model was trained on 21,000 images 
belonging to subjects 1, 2, 3, 4, 5, 6, and 8, and tested on 3,000 images belonging to subject 7. The distribution of 
the errors from the Inception model during the seventh testing fold (i.e., testing images belong to subject 7) can 
be visualized with the violin plots in Fig. 3B. The MAPE on this testing set was 3.626%, and the mean absolute 
error (MAE) was 34.093 μm. From the testing results on the Inception architecture, it was evident that the regres-
sion model can accurately estimate the distance to the dura mater in most of the OCT images. The distribution of 
the errors from the Inception model from all the other testing folds can be found in Supplementary Figure 5–6.

Discussion
In this study, we validated our endoscopic OCT system for epidural anesthesia surgery guidance. The OCT 
endoscope can provide 10–100 times higher resolution than conventional medical imaging modalities. Moreo-
ver, this proposed endoscopic OCT system is compatible with the clinical-used epidural guiding methods (e.g., 

Figure 2.   Class activation heatmaps for Subject 7 using ResNet50 in cross-testing (A) and video captures of the 
insertion process (B).
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ultrasound, fluoroscopy, and CT), and will complement these macroscopic methods by providing the detailed 
images in front of the epidural needle.

Five different tissue layers including fat, interspinous ligament, ligamentum flavum, epidural space and spinal 
cord were imaged. To assist the OCT image interpretation, a deep learning-based CAD platform was developed 
to automatically differentiate the tissue layers at the epidural needle tip and predict the distance from the needle 
tip to dura mater.

Three convolutional neural network architectures, including ResNet50, Xception and Inception, were tested 
for image classification and distance regression. The best classification accuracy of the five tissue layers were 
60–65% from a multi-class Inception classifier. The main challenge was the differentiation between fat and 
spinal cord (Supplementary Table 2) because they had similar feature in OCT images (Fig. 1). Based on the 
needle puncture sequence, we divided the overall classification into four sequential binary classifications: Fat 
vs Interspinous Ligament; Interspinous Ligament vs Ligamentum Flavum; Ligamentum Flavum vs Epidural 
Space, and Epidural Space vs Spinal Cord. The overall prediction accuracies of all four classifications reached 
to more than 90%. ResNet50 presented the best overall performance compared to Xception and Inception. Due 
to the unique features of epidural space in OCT images, it was possible to achieve > 99% precision when the 
needle arrived the epidural space. Table 2 showed the accuracies of ~ 99.8% and 100% when classifying Epidural 
Space vs Ligamentum Flavum and Epidural Space vs Spinal Cord. This will allow accurate detection of the 
epidural space for injection of the anesthetic during epidural anesthesia. The sequential transition from one 
binary classifier to the next was controlled accurately using a simple logic, which was demonstrated in a video 
simulating the insertion of a needle through the five tissue layers (Fig. 2). In the future, this can be improved by 
combining CNN with Recurrent Neural Network (RNN) to handle the temporal dimension of video streaming 
data61. Additionally, we developed a CNN regression model to estimate the needle distance to the dura mater 
upon entry of the epidural space. For the regression task, Inception provided better performance compared to 
Xception and ResNet50. The mean relative error was 3.05%, which was able to track the accurate location of the 
needle tip in the epidural space.

CNNs have shown to be a valuable tool in biomedical imaging. Manually configuring CNN architectures for 
an imaging modality can be a tedious trial-and-error process. ResNet, Inception, and Xception are commonly 
used architectures for general image classification tasks. Here, we showed that the architectures can be easily 
adapted for both classification and regression tasks in biomedical imaging applications. The best performance 
was obtained by ResNet50 for the binary classifications and by Inception for the distance regression.

The nested-cross validation and testing procedure was computationally expensive, but it provided the uncer-
tainty quantification of the test performance across subjects. The wall-clock time for training the binary classifi-
cation models on NVIDIA Volta GPUs were ~ 11 min per validation fold for ResNet50, ~ 32 min per validation 
fold for Xception, and ~ 11 min per validation fold for Inception. The wall-clock time for training the regression 
models on NVIDIA RTX 3090 GPUs were ~ 50 min per validation fold for ResNet50, ~ 145 min per validation 
fold for Xception, and ~ 36 min per validation fold for Inception. The inferencing for the binary classifications on 
NVIDIA Volta GPUs took 13 ms per image on average. The inferencing for the distance regression on NVIDIA 
RTX 3090 GPUs took 2.1 ms per image on average. In future, the inferencing by these large CNN models can be 
further accelerated by weight pruning and knowledge distillation62.

In the next study, we will use the GRIN lens with a suitable diameter for practical 16-gauge Tuohy needle used 
in epidural anesthesia in our future hardware design63,64. Furthermore, we will miniaturize the size of our OCT 
scanner to make our system more portable and convenient for anesthesiologists to use in clinical applications. 
Finally, we will test the performance of our endoscopic OCT system together with the deep learning-based CAD 
platform in the in-vivo pig experiments. Difference of OCT images from in-vivo and ex-vivo condition may 
deteriorate the in-vivo testing results. In that case, we will re-train our model using in vivo pig data. Addition-
ally, during the in-vivo experiments, there will be blood vessels surrounding the spinal cord65. To address this, 
we plan to further use Doppler OCT method for the blood vessel detection to avoid the rupture of blood vessels 
during epidural needle insertion.

Table 3.   The average loss for each model type in cross-validation for each testing fold.

Testing folds ResNet50 Xception Inception

S1 3.71% ± 0.91% 3.99% ± 1.14% 3.13% ± 0.60%

S2 4.04% ± 0.99% 3.84% ± 0.98% 3.42% ± 0.82%

S3 3.82% ± 0.88% 3.62% ± 0.78% 3.09% ± 0.69%

S4 3.97% ± 1.34% 4.67% ± 1.68% 3.31% ± 0.82%

S5 3.88% ± 0.84% 4.15% ± 1.08% 3.23% ± 0.60%

S6 3.89% ± 0.82% 4.71% ± 1.31% 3.41% ± 0.83%

S7 3.88% ± 1.31% 4.51% ± 1.61% 3.81% ± 1.25%

S8 2.77% ± 0.32% 3.33% ± 0.39% 2.61% ± 0.37%

Average 3.74% ± 0.14% 4.10% ± 0.18% 3.25% ± 0.12%
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Figure 3.   (A) Examples of epidural space images with different distances between needle tip and spinal cord 
surface. G: labeled ground truth value (μm); P: prediction value (μm); Scale bar: 250 μm. (B) The distribution of 
the predicted absolute percentage errors and absolute error in testing fold 7 with 3000 testing images.
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Method
Experiment setup.  The schematic of our forward-view OCT endoscope was shown in Fig. 4. Its working 
principle was based on a Michaelson interferometer with a reference arm and a sample arm38. The endoscopic 
system was built on a swept-source OCT (SS-OCT). The light source was a wavelength-swept laser with 1300 nm 
central wavelength and 100 nm bandwidth66. The laser had the maximum scanning speed at 200 kHz A-Scan 
rate. The light from the laser was first unevenly split by a fiber coupler (FC). 97% power was split into the circu-
lator and transmitted into the interferometer, and the other 3% was input to the Mach–Zehnder interferometer 
(MZI) which provided the triggering signal for data sampling. The 97% power was further split by another 50:50 
FC to the reference arm and the sample arm. The reflected signal from the reference arm and the backscattered 
signal from the sample arm interfered with each other and were collected by a balanced detector (BD) for noise 
reduction. The signal was then sent to data acquisition board (DAQ) and computer for post-processing based 
on Fourier transform67. While imaging the samples in the air, the axial resolution reached to 10.6 μm and the 
lateral resolution was 20 μm.

To achieve the endoscopic imaging, a gradient-index (GRIN) rod lens was added in the sample arm. It was 
fixed in front of the scanning lens of the galvanometer scanning mirror (GSM). The GRIN lens used in this 
study had a total length of 138 mm, an inner diameter of 1.3 mm, and a view angle of 11.0°. It was protected by a 
thin-wall steel tubing. For dispersion compensation, a second set of identical GRIN lens was stabilized in front 
of the reflector (mirror) of the reference arm. In addition, two polarization controllers (PC) were placed in each 
arm to reduce the noise level.

The GRIN lens utilized in the sample arm was assembled in front of the OCT scanning lens of the GSM. To 
decrease the reflection from the proximal end surface of the GRIN lens that significantly degraded the imag-
ing quality, the proximal surface of the GRIN lens was aligned ~ 1.5 mm off the focus of the scanning lens. The 
GRIN lens had four integer pitch length to relay the images from the distal end to its proximal surface68. In the 
sample arm, the proximal GRIN lens surface was adjusted close to the focus point of the objective after the OCT 
scanner. Thus, the spatial information from the distal surface (tissue sample) of the GRIN lens transmitted to 
the proximal surface was further collected by the OCT scanner. Therefore, OCT images of the epidural tissues 
in front of the GRIN lens can be successfully obtained. Our endoscopic system provided ~ 1.25 mm field of view 
(FOV) with sensitivity of 92 dB.

Data acquisition.  Backbones from eight pigs were acquired from local slaughterhouses and cut at the mid-
dle before imaging to expose different tissue layers. From the cross-section of the sample, different tissue types 
could be clearly distinguished through the tissue anatomic features and their positions as shown in Fig. 5. To 
further limit the number of misclassified results, two lab members confirmed the tissue types before imaging 
started. In Fig. 5, five tissue layers including fat, interspinous ligament, ligamentum flavum, epidural space and 
spinal cord can be distinguished from their anatomic appearance. The OCT needle was placed against these 
confirmed tissue layers to obtain their OCT structural images. Following the practice of epidural needle place-
ment, we mimicked the puncturing process by inserting the OCT endoscope through fat, interspinous ligament, 
ligamentum flavum and epidural space of our sample. Since the targeted position of the anesthetic injection is 
the epidural space with width ~ 1–6 mm69, we also obtained OCT images of epidural space by positioning the 
needle tip in front of the spinal cord at different distances. To mimic the condition of accidental puncture into 
spinal cord, we took OCT images while inserting the endoscope into the spinal cord. Some force was applied 

Figure 4.   Schematic of forward-view OCT endoscope system.
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during imaging the four tissue types (fat, interspinous ligament, ligamentum flavum, and spinal cord) to gener-
ate compression to better represent the actual in-vivo clinical situation.

For each backbone sample, 1000 cross-sectional OCT images were obtained from each tissue layer. To 
decrease noise and increase the deep-learning processing speed, the original images were further cropped to 
smaller sizes that only contained the effective tissue information. Imaged were cropped to 181 × 241 pixels for 
the tissue classification. The data was uploaded to Zenodo (http://​doi.​org/​10.​5281/​zenodo.​50185​81)70.

At the end of imaging, tissues of fat, interspinous ligament, ligamentum flavum and spinal cord with dura 
mater of the porcine back bones were excised and processed for histology following the same orientation of 
OCT endoscope imaging to compare with corresponding OCT results. The tissues were fixed with 10% formalin, 
embedded in paraffin, sectioned (4 µm thick) and stained with hematoxylin and eosin (H & E) for histological 
analysis. Images were analyzed by Keyence Microscope BZ-X800. Sectioning and H & E staining was carried 
out by the Tissue Pathology Shared Resource, Stephenson Cancer Center (SCC), University of Oklahoma Health 
Sciences Center. The Hematoxylin (cat# 3801571) and Eosin (cat# 3801616) were purchased from Leica biosys-
tems, and the staining was performed utilizing Leica ST5020 Automated Multistainer following the HE staining 
protocol at the SCC Tissue Pathology core.

Convolutional neural networks.  Convolutional Neural Networks (CNN) were used to classify OCT 
images by epidural layers. Three CNN architectures, including ResNet5052, Inception51 and Xception53, were 
imported from the Keras library71. The output layer of the models was a dense layer that represented the num-
ber of categories. The images were centered by subtracting training mean pixel value. The SGD with Nesterov 
momentum optimizer was used with a learning rate of 0.01, a momentum of 0.9, and a decay of 0.01. The batch 
size was 32. Early stopping was used with a patience of 10. The loss function used was sparse categorical cross 
entropy.

Nested cross-validation and testing72,73 were used for model selection and benchmarking as described 
previously66. This evaluation strategy provided an unbiased estimation of model performance with uncertainty 
quantification using two nested loops for cross-validation and cross-testing. Images were acquired from eight 
subjects in this dataset. The images were divided to 8 folds by subjects to account for the subject-to-subject vari-
ability. An eight-fold cross-testing loop was performed by rotating through every subject for testing and using 
the remaining seven subjects (7000 images) for cross-validation. In the cross-validation, six subjects were used 
for training and one subject for validation in each rotation. The sevenfold cross-validation loop was used to 
compare the performance of three architecture models: ResNet50, Xception and Inception. The model with the 
best cross-validation performance was automatically selected for performance benchmarking in the correspond-
ing testing fold. Supplementary Figure 7 depicted this evaluation strategy with Subject 1 used for testing. The 
performance of this overall procedure was evaluated by aggregating the testing performance from all 8 testing 
folds. Grad-CAM74 was used to generate instance-wise explanation of selected models75,76.

The computation was performed using the Schooner supercomputer at the University of Oklahoma and the 
Summit supercomputer at Oak Ridge National Laboratory. The computation on Schooner used five computa-
tional nodes, each of which had 40 CPU cores (Intel Xeon Cascade Lake) and 200 GB of RAM. The computation 
on Summited used up to 10 nodes, each of which had 2 IBM POWER9 processors and 6 NVIDIA Volta Graphic 
cards. The complete code for the classification models can be found at https://​github.​com/​thepa​nlab/​Endos​
copic_​OCT_​Epidu​ral.

The classification accuracy of the models was computed as:

where TP was True Positives, TN was True Negatives, FP was False Positives, and FN was False Negatives.

(1)Accuracy =
TP + TN

TP + TN + FP + FN

Figure 5.   Data acquisition process.

http://doi.org/10.5281/zenodo.5018581
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Receiver Operating Characteristic (ROC) curves were used to visualize the relationship between sensitivity 
and specificity. The area under the curve (AUC) of ROC was also used to assess the overall performance of the 
models.

Epidural distance prediction using deep learning.  OCT images of epidural space were obtained at 
a range of distances between approximately 0.2 mm and 2.5 mm from the needle tip to the spinal cord surface 
(dura mater). A total of 24,000 images from eight subjects were used for this task. For each image taken in the 
epidural space for the distance estimation task, the distance in micrometers (μm) from the epidural needle to 
the dura mater was manually calculated and labeled. This distance label served as the ground truth for comput-
ing the loss during the training process in the regression model. All images were of 241 × 681 pixels on X and Z 
(depth) axes with pixel size of 6.25 µm. The pixel values for each image were scaled in the range of 0–255.

The regression model was developed to estimate the distance from the epidural needle to the dura upon 
entry into the epidural space automatically. Three architectures, including ResNet50, Inception, and Xception, 
were compared using nested cross-validation and testing as described above. The final output layer consisted of 
a single neuron with an identity activation function for regression on the continuous distance values77. The SGD 
algorithm with Nesterov momentum optimization was used with a learning rate of 0.01, momentum of 0.9, and 
a decay rate of 0.01. Training took place with a batch size of 32 over 20 epochs. The mean absolute percentage 
error (MAPE) and mean absolute error (MAE) were the metrics used to evaluate the regression performance 
due to their intuitive interpretability in relation to the relative error. The MAPE and MAE performance metrics 
are defined in Eqs. (2) and (3), respectively. Model training and testing for the regression task was performed on 
a workstation equipped with dual NVIDIA RTX 3090 GPUs. The complete code for the regression models can 
be found at: https://​github.​com/​thepa​nlab/​Endos​copic_​OCT_​Epidu​ral.

The classification accuracy of the models was computed as:

where Yi was the ground truth distance, Xi was the predicted distance, and n was the number of OCT images.

Data availability
The datasets generated and/or analyzed during the current study are available in the Github repository, https://​
github.​com/​thepa​nlab/​Endos​copic_​OCT_​Epidu​ral.
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