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Abstract
Ran (RanGTPase) in insects participates in the 20-hydroxyecdysone signal transduction

pathway in which downstream genes, FTZ-F1, Krüppel-homolog 1 (Kr-h1) and vitellogenin,
are involved. A putative Ran gene (NlRan) was cloned from Nilaparvata lugens, a destruc-

tive phloem-feeding pest of rice. NlRan has the typical Ran primary structure features that

are conserved in insects. NlRan showed higher mRNA abundance immediately after molt-

ing and peaked in newly emerged female adults. Among the examined tissues ovary had

the highest transcript level, followed by fat body, midgut and integument, and legs. Three

days after dsNlRan injection the NlRan mRNA abundance in the third-, fourth-, and fifth-

instar nymphs was decreased by 94.3%, 98.4% and 97.0%, respectively. NlFTZ-F1 expres-

sion levels in treated third- and fourth-instar nymphs were reduced by 89.3% and 23.8%,

respectively. In contrast, NlKr-h1mRNA levels were up-regulated by 67.5 and 1.5 folds,

respectively. NlRan knockdown significantly decreased the body weights, delayed develop-

ment, and killed >85% of the nymphs at day seven. Two apparent phenotypic defects were

observed: (1) Extended body form, and failed to molt; (2) The cuticle at the notum was split

open but cannot completely shed off. The newly emerged female adults from dsNlRan
injected fifth-instar nymphs showed lower levels of NlRan and vitellogenin, lower weight
gain and honeydew excretion comparing with the blank control, and no offspring. Those

results suggest that NlRan encodes a functional protein that was involved in development

and reproduction. The study established proof of concept that NlRan could serve as a target

for dsRNA-based pesticides for N. lugens control.

Introduction
RanGTPase belongs to the Ras superfamily of small GTPases, and is essential for the transloca-
tion of RNA and proteins through the nuclear pore complex. It possesses a distinctive acidic C
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terminal D(E)E(D)DD(E)DL motif and predominantly localizes in the nucleus [1, 2]. Ran
switches between the GDP-bound (RanGDP) and GTP bound (RanGTP) states for its activity.
RanGDP combines with nuclear transport factor 2 and is transported into the nucleus [3, 4].
Once inside, RanGDP switches to RanGTP and is transported into the cytoplasm. Therefore,
Ran plays a key role in controlling nucleocytoplasmic trafficking. However, nucleocytoplasmic
transport is only one of Ran’s functions. Studies have indicated that it plays a wide range of
roles in coordinating nuclear functions throughout the cell cycle, including nuclear assembly
and DNA replication [5] and mitotic spindle assembly [6]. Ran was linked to cancer [7, 8] and
was a potential therapeutic target for cancer cells [9]. It played a role in shrimp immunity
against virus infection [10, 11]. Some recent researches demonstrated that Ran protein played
an important role in plant development and mediated plant responses to the environment [12,
13]. In insects, Ran participated in the 20-hydroxyecdysone (20E) signal transduction pathway
by regulating the location of ecdysone receptor-B1 (EcR-B1) in Helicoverpa armigera. RNAi
knockdown of Ha-Ran resulted in suppression of other 20E regulated genes and blocked the
nuclear location of EcR-B1 [14]. Although Ran has been well studied inH. armigera, the roles
of Ran in hemiptera insect species have not been documented until now.

The brown planthopper, Nilaparvata lugens (Stål), is one of the most destructive insect
pests of rice in Eastern and Southeastern Asia. The insects suck directly from the phloem tissue
of growing rice plants causing wilting or drying of the crop, which is referred as “hopperburn”
[15, 16]. Since 2005, rice planthoppers caused millions of hectares of rice to fail every year in
major rice producing countries of Asia including Vietnam, Indonesia, China, South Korea and
Japan [17]. Considerable quantities of insecticides are applied in attempts to control N. lugens
each season with serious consequences of insecticide resistance development [18, 19]. To effi-
ciently control N. lugens and successfully avoid insecticide resistance, novel control strategies
must be explored.

RNA interference (RNAi) is a powerful tool for studying gene function through regulating
gene expression at the mRNA level by double-stranded RNA (dsRNA) [20, 21], and potentially,
for developing novel pest management strategies by plant-mediated RNAi [22–24]. Systemic
RNAi in vivo has been successfully used to study a number of genes functioning in insects [25].
For N. lugens in particular, RNAi could be used in silencing vital genes by injection of dsRNA
[26]. Suppression of chitin synthase 1 (CHS1) and CHS1a in N. lugens resulted in abnormal
morphology and death [27]. Silencing of NlEcR expression by in vivo injection of dsRNA
caused phenotypic defects in molting and resulted in high mortality (87–100%) of treated
nymphs [28]. Knockdown of Nlflightin changed the indirect flight muscle and male dorsal lon-
gitudinal muscle structure [29]. NlCPR-dsRNA injection resulted in increased susceptibility of
N. lugens to beta-cypermethrin and imidacloprid [30].

In the present study, we characterized the Ran gene in N. lugens and analyzed its temporal
and spatial expression profiles. Furthermore, gene knockdown was performed through NlRan-
dsRNA injection, and the insecticidal action was investigated. Since Ran participates in the 20E
signal transduction pathway, in which the nuclear receptor FTZ-F1 is involved [14], and
FTZ-F1 probably is also involved in juvenile hormone (JH) biosynthesis [31, 32]. The expres-
sion of Krüppel-homolog 1 (Kr-h1) is responsive to JH and promotes vitellogenesis and oocyte
maturation [31, 33, 34]. The effect of NlRan knockdown on the transcript levels of NlFTZ-F1
and NlKr-h1 also was examined. It was found that dsRNA injection significantly silenced the
gene expression, delayed nymphal growth, affected nymphal molting and caused lethality.
More importantly, the inhibition of ovary development by Ran-dsRNA injection resulted in no
offspring.
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Materials and Methods

Insect culture
N. lugens used in the study were stablished from a field collection in Fuyang (119.95E, 30.07N),
Zhejiang, China, in 1996, and reared on rice (Oryza sativa) variety Taichung Native 1 (TN1, an
insect susceptible rice variety) in China National Rice Research Institute under controlled con-
ditions of 28±1°C, 80±10% relative humidity and a 16/8 h light/dark photoperiod for more
than 170 generations. All animal work has been conducted according to relevant national and
international guidelines.

RNA extraction and cDNA synthesis
Total RNA was extracted using the RNeasy Mini Kit (Qiagen, Valencia, CA) according to the
manufacturer’s instructions. RNA concentration and purity were measured with the Nano-
Drop 1000 spectrophotometer (Thermo Fisher Scientific, Rockford, USA) and the integrity
was checked by agarose gel electrophoresis. A quantity of 1 μg of the total RNA was reverse
transcribed to cDNA by using ReverTra Ace qPCR RT kit (Toyobo Co. LTD, Osaka, Japan).

Molecular cloning and sequence analysis
Based on N. lugens genome and transcriptome [35, 36], one RanGTPase homology (a single
copy gene) was identified and the sequence was confirmed by reverse transcription polymerase
chain reaction (RT-PCR) using primers listed in Table 1. The PCR product was gel purified,
ligated into the vector TOPO2.1 (Invitrogen, Carlsbad, CA) and transformed into Escherichia
coli DH5α competent cells (Novagen, Darmstadt, Germany). Ten recombinant plasmids from
several independent subclones were fully sequenced on the Applied Biosystems 3730 auto-
mated sequencer (Applied Biosystems, Foster City, USA) from both directions. The resulting
sequence (NlRan) was submitted to GenBank (KT313028).

The theoretical isoelectric point and molecular weight of the deduced NlRan protein were
calculated using ExPASy [37]. Homologues from Drosophila melanogaster, Aedes aegypti, Apis
mellifera,Harpegnathos saltator, Riptortus pedestris, Helicoverpa armigera, Bombyx mori,
Acyrthosiphon pisum and Pediculus humanus corporis were aligned with NlRan using Clus-
talW2 [38].

dsRNA synthesis and bioassay
A 454 bp of NlRan cDNA and a 355 bp green fluorescent protein (GFP) fragments were ampli-
fied by PCR using specific primers conjugated with the T7 RNA polymerase promoter (50-taa-
tacgactcactataggg-30) (primers listed in Table 1). This targeted region was further BLAST
(BLASTN) searched against the N. lugens draft genome to identify any possible off-target
sequences that had an identical match of 20 bp or more. The products were gel purified and
used as templates to synthesis dsRNA, using MEGAscript T7 High Yield Transcription kit
(Ambion, Austin, USA). The quality and concentration of dsRNA were determined by agarose
gel electrophoresis and the Nanodrop 1000 spectrophotometer and kept at -70°C until use.

A previously reported procedure was used to carry out dsRNA injection in vivo bioassay
[39]. Briefly, dsNlRan (stock solution estimated at 4.000 mg/mL), dsGFP (estimated at 4.000
mg/mL, negative control), or double distilled water (blank control) was injected into the thorax
between the mesocoxa and the hind coxa of third-instar nymphs (2-day old), fourth-instar
nymphs (2-day old) or fifth-instar nymphs (3-day old) in volumes of 0.025 μL, 0.05 μL and
0.1 μL, respectively, with different doses. One day after injection, dead individuals (assumed to
be caused by physical damage) were discarded (for the current study, no mortality was found
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in treatment groups, and 2% mortality was found in control groups), and the survived ones
were observed daily for survival rate, nymph development and phenotype formation. Further-
more, the weight gain and honeydew excretion in 48 h, ovary development and fecundity of
the emerged female adults from dsRNA injected 5th instar nymphs were assessed. All treat-
ments were performed with 10 replicates (25 nymphs per replication and a total of 250 nymphs
per treatment). The experiment was repeated three times as independent biological replicates.

Real-time quantitative PCR (qPCR)
Total RNA samples were prepared from eggs, each day of the first- through fifth-instar nymphs
and newly emerged female adults (FeAd), and from integument (In), midgut (Mg), leg (Lg), fat
body (Fb) of normal fifth-instar nymphs and adults, and ovary (Ov). Furthermore, total RNA
was extracted from nymphs at 4 days after dsRNA injection. The mRNA levels of NlRan, hor-
mone response genes, FTZ-F1, NlKr-h1 and vitellogenin (NlVg) were estimated by qPCR, using
ribosomal protein S15e (rps15) and rps11 as internal control genes [40]. All qRT-PCR primers
were listed in Table 1. No template was added to negative control reactions. Each sample was
repeated in biological and technical triplicates and the transcriptional levels of those genes
were calculated by the 2−ΔΔCT method [41].

Data analysis
Data were analyzed using the Data Processing System software [42]. The student’s t-test was
applied for comparing two samples, and one-way analysis of variance (ANOVA) with pro-
tected Fisher’s least significant difference (LSD) test was applied when more than two samples
were compared.

Results

Identification of the Ran gene of N. lugens
A cDNA of putative Ran gene in N. lugens was cloned (NlRan). The NlRan contains a complete
coding region and encodes 214 amino acid residues. The deduced protein was predicted with
molecular weight and isoelectric point of 24.52 kDa and 6.96, respectively. NlRan contains four
ATP/GTP binding motifs, two effector molecular binding motifs (GAP and GEF interaction

Table 1. Primers used for RT-PCR, dsRNA synthesis and qRT-PCR.

Primer name Forward sequence (5'-3')† Reverse sequence (5'-3')† Amplicon size (bp)

RT-PCR

NlRan CCATTGTGGACCGTAACGTCT ACGCGTATTTTGCACTCGAAC 1426

dsRNA synthesis

dsNlRan T7-AGTATGTTGCCACCCTTGGAG T7-ATTGTGACCTCGGGAGGGAG 454

dsGFP T7-CCTGAAGTTCATCTGCACCAC T7-TGATGCCGTTCTTCTGCTTGT 355

qPCR

qNlRan GAGAAGCCGTTCCTGTGGTT AACAAGTTCGCACGGTTGATT 260

qNlFTZ-F1 GCTACCACTATGGCCTGCTC TTGTCGTTGGCGCATCATTT 278

qNlKr-h1 CAAGTGTGGTGCCATAGGTC CCTCCCTCCGTATTGAACAT 131

qNlVg AGTCAACTACAAGCAGGGAGCAGTG GCTCATCAACATCGTAGTGGGTCTC 235

qNlRPS11 CCGATCGTGTGGCGTTGAAGGG ATGGCCGACATTCTTCCAGGTCC 159

qNlRPS15 TAAAAATGGCAGACGAAGAGCCCAA TTCCACGGTTGAAACGTCTGCG 150

Note: T7 promoter sequences, 5'-TAATACGACTCACTATAGGGAGA-3'.

doi:10.1371/journal.pone.0142142.t001
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site) and two switch regions (Switch I and II). Two interaction sites, GTPase-activating protein
(GAP) and guanine-nucleotide-exchange factor (GEF) sites are located at position 36–44 and
92–99, respectively, which are conserved among various insect Rans (Fig 1A). The highly acidic
C-terminal motif EDDEDL can be found at positions 209–214, though it was slightly modified
from DEDDDL that exited in other insects.

The multiple sequence alignment showed that NlRan shares the highest identity with that of
Harpegnathos saltator (95.8%), followed by 95.3–87.3% identities with that of D.melanogaster,
A. aegypti, A.mellifera, R. pedestris,H. armigera, B.mori, A. pisum and P. humanus corporis
(Fig 1A).

Analysis of the genomic position and structure showed that NlRan is located between 119
kb to 125 kb on scaffold1292 (GenBank accession no. KN153157) [36]. NlRan possesses five
exons and four introns, which are similar with that from A. pisum (Fig 1B). One less exons or
introns of Ran, however, were observed from T. castaneum, A.mellifera, A. aegypti, D.melano-
gaster and B.mori. Eight exons and seven introns are present in that of P. corporis, which is
shorter than NlRan in length.

Temporal and spatial expression profiles
The expression levels of NlRan were examined throughout the developmental stages, including
eggs, the first- to fifth-instar nymphs and newly emerged female adults. NlRan was ubiqui-
tously but unevenly expressed in nymphs and adults. Started at 2nd instar, the expression levels
of NlRan was higher in the newly-molted individuals and decreased gradually as they grew
until the next molt. The highest level was found in newly emerged female adults (Fig 2A).
NlRan expressed the highest level in ovary, followed by fat body, midgut and integument, and
the lowest level in legs (Fig 2B) (P<0.05, ANOVA protected Fisher’s LSD test).

Effect of dsRNA on the expression of NlRan and downstream genes
After four days of dsNlRan injection, Ran transcript levels in the surviving nymphs were signif-
icantly reduced. In the third-instar nymphs, injection of dsNlRan (0.025 μL) at the concentra-
tions of 0.001, 0.010, 0.100 and 1.000 mg/mL suppressed NlRan expression level by 85.7%,
74.1%, 94.3% and 91.7%, respectively, comparing with the blank control. In contrast, NlRan
expression levels in dsGFP injected planthoppers remained unchanged (S1 Fig). Concentration
of 0.100 mg/mL was selected to inject the fourth-instar nymphs. The mRNA level of NlRan in
the treated nymphs were significantly reduced by 98.4% (Fig 3B), comparing with the blank
control. Similarly, the NlRan expression level varied little in dsGFP-injected nymphs (P<0.05,
ANOVA protected Fisher’s LSD test).

As expected, NlFTZ-F1 expression levels in nymphs treated at the third- and fourth instar
stage were reduced by 89.3% and 23.8%, respectively. The former is significantly silenced, com-
paring to the blank control. In the meanwhile, NlKr-h1mRNA levels were significantly up-reg-
ulated by 67.0 folds in the third instar nymphs and 1.5 folds in the fourth instar nymphs (Fig
3A and 3B).

Effect of dsNlRan injection on nymph survival and development
The survival and development of the dsNlRan injected third- and fourth-instar nymphs were
examined. ANOVA analysis revealed significant effects at three days after injection and
beyond. The survival rates at the seventh day were only 14.0% and 12.0% for the third- and
fourth-instar nymphs, respectively (Fig 4A and 4B) (P = 0.0019; P = 0.0265). All individuals
were died at the tenth day.
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The development of nymphs injected with dsNlRan was delayed significantly. The weight
gain of nymphs treated at the third- and fourth-instar stage were significant reduced by 50%
and 26%, respectively, compared with the blank control, while dsGFP injected nymphs were
similar compared to the blank control (Fig 4C and 4D) (P = 0.0008; P = 0.0082). The duration
of the fourth- or fifth-instar nymphs of NlRani treated at third- and fourth-instar stage were
4.2 and 5.0 days, respectively, statistically longer than the blank control (3.1 and 4.1 days,
respectively) (P = 0.0000) (Fig 4E and 4F).

Three days after injection, all individuals in the blank and dsGFP controls were successfully
molted to the next stage and showed normal morphology. In contrast, on average 57.8% of
dsNlRan-treated nymphs failed to molt on time, and exhibited two apparent phenotypic
defects: (1) Extended body form with a pitched first and perhaps second abdominal segments,
and failed to shed their old cuticle and died; (2) The old cuticle at the notum split normally, but
could not shed off, and evenly died (Fig 4G).

Fig 1. Sequence alignment and gene structure comparison ofRan. A: Rans from N. lugens (N_lug), Drosophila melanogaster (D_mel, AAF30287.1),
Aedes aegypti (A_aeg, XP_001659895.1), Apis mellifera (A_mel, XP_393761.1), Harpegnathos saltator (H_sal, EFN84506.1), Riptortus pedestris (R_ped,
BAN20580.1), Helicoverpa armigera (H_arm, ACN67046.1), Bombyx mori (B_mor, NP_001040274.1), Acyrthosiphon pisum (A_pis, NP_001155556.1) and
Pediculus humanus corporis (P_hum, XP_002423913.1). The domain elements are marked with filled rectangles. Amino acids with 100%, >80%, and >60%
conservation are shaded in black, dark gray and light gray, respectively. Gaps have been introduced to permit alignment. B: Exons and introns are denoted
with black boxes and lines, respectively, the protein-coding regions are indicated with gray lines. The genome sequence data were downloaded from
GenBank with the follow accession numbers: KN153157 (N. lugens), ABLF02039222 (Acyrthosiphon pisum), AAJJ01002638 (Tribolium castaneum),
AADG06001923 (Apis mellifera), CH477572 (Aedes aegypti), AE014298 (Drosophila melanogaster), BABH01008630 (Bombyx mori) and DS235063
(Pediculus humanus corporis).

doi:10.1371/journal.pone.0142142.g001
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Fig 2. Temporal and spatial expression patterns ofNlRan. A) Relative expression level of NlRan at different developmental stages. N1D1 (day one of
first-instar nymph) to N5D4 (day 4 of fifty-instar nymph) refers to first- to fifth-instar nymphs of different age, FeAd, newly emerged female adult. B) Relative
expression levels of integument (In), midgut (Mg), ovary (Ov), leg (Lg), fat body (Fb) of 2-day old female adults. The bars represent 2−ΔΔCT values (±SE)
normalized to the geometrical mean of housekeeping gene expression. SE was determined from 3 independent biological replicates, each with three
technical replications. Different letters indicate a significant difference at P value <0.05.

doi:10.1371/journal.pone.0142142.g002
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Fig 3. Effect of dsNlRan on the expression levels ofNlRan,NlFTZ-F1,NlKr-h1 in injected third-instar (N3) (A) and fouth-instar (N4) nymphs (B) at
four days after injection. The expression levels of 5–10 individuals were determined by qPCR. The bars represent 2−ΔΔCT values (±SE) normalized to the
geometrical mean of housekeeping gene expression. SE was determined from 3 independent biological replicates, each with three technical replications.
Different letters indicate a significant difference at P value <0.05.

doi:10.1371/journal.pone.0142142.g003
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Effect of dsNlRan injection on oogenesis
Four days after dsNlRan injection, the mRNA level of NlRan in the treated fifth-instar nymphs
were significantly reduced by 97.0%, comparing to the blank control. Since the NlVgmRNA is
only expressed in female adults and nymphs treated with dsNlRan at the third- and fourth-
instar stages cannot survive into adults, the expression level of NlVg was measured only for the
fifty-instar treated adult survivals, and the result showed a significant decrease by 93.4% (Fig
5A). All the fifth-instar nymphs treated with dsNlRan, dsGFP or water successfully molted into
adults. The fecundity, weight gain and honeydew excretion of these adults were examined. The
results revealed that dsNlRan-treated females had no offspring (no eggs or nymphs observed),
while the adults of the blank control and negative control had similar number of offspring, 278
and 303, respectively (Fig 5B). The dsNlRan treatment significantly reduced the weight gain
and honeydew excretion of the females by 1.16 mg and 31.87 mg, respectively, comparing to
the blank control (Fig 5C and 5D).

Dissection of the females treated with dsNlRan at the fifth-instar stage revealed that the
ovary development of all individuals was abnormal: the oocytes remained at primitive stage
with no eggshells (Fig 5E).

Discussion
In the present paper, we cloned and characterized Ran gene in N. lugens. The Ran is important
for all organisms as it is essential for nuclear assembly, nuclear transport, spindle assemble,
and mitotic regulation. Interestingly, it has been shown to participate in the 20E signal trans-
duction pathway by regulating the location of EcR-B1 inHelicoverpa armigera [14]. So Ran
may participant in theecdysteroid-signaling pathway, which plays a critical role in insect devel-
opment and reproduction. The RNAi based gene knockdown of the current study showed that
NlRan can be successfully silenced through dsNlRan injection. Using this approach we

Fig 4. The performance of N. lugens nymphs subjected to dsNlRan injection. A, B: The survival rate (%) in N3 injection and N4 injection. C, D: Weight
gain in 4 days (mg per individual) after N3 injection and N4 injection. E, F: Development duration (days) to the next molt (e.g. days between molts) after N3
injection and N4 injection, respectively. G: Two apparent phenotypic defects: the extended body forms and the old cuticle at notum split open but not
complete shed off. The columns represent averages and SE. Different letters indicate a significant difference at P value <0.05.

doi:10.1371/journal.pone.0142142.g004
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provided, for the first time, direct evidence to support the hypothesis that NlRan is involved in
the development and reproduction of N. lugens. Firstly, NlRan has the typical protein motifs,
active sites and gene structure of insect Ran. NlRan has four ATP/GTP binding motifs, two
effector molecular binding motifs (GAP and GEF interaction site) and two switch regions
(Swith I and II), similar with the structure of Ran orthologs [11, 43]. ATP/GTP binding motif
is the signature of phosphate-binding loop, and GAP and GEF interaction site is effector bind-
ing site, which are common in GTPase superfamily [3, 4, 44]. The switch I and II regions have
been defined as those regions that change their structure between the GTP- and GDP-bound
conformation [45]. These structural features indicate that NlRan can switch its activity by
RanGDP and RanGTP transformation. Moreover, the temporal and spatial expression patterns
suggest an association with insect development and reproduction. Throughout the develop-
ment of N. lugens, the Ran gene was expressed universally with higher levels at the beginning of
each nymphal molt and in female adults. Among the tissues examined, NlRan also was
expressed universally with the highest level in ovaries and the lowest level in legs. This expres-
sion profile of NlRan gene is similar to those of 20E signal transduction pathway and JH bio-
synthesis in Hemimetabolan species [28, 46].

Secondly, we found that dsNlRan knocked out the targeting gene and its down-stream
genes. Compared with the blank control, the mRNA level of nymphs treated with dsNlRan

Fig 5. Effect of dsNlRan on the expression levels ofNlRan,NlVg andN. lugens female performance
and ovary development. A: The expression levels ofNlRan and NlVg four days after dsRNA injection. B:
Spawning numbers in N5 injection. C: Weight gain in 48 h (mg per individual) in N5 injection. D: Honeydew
excretion in 48h (mg per female adult) in N5 injection. E: Abnormal ovary in dsNlRan-treated females.

doi:10.1371/journal.pone.0142142.g005
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injection at the third- and fourth-instar stages was dramatically decreased. The dsNlRan also
significantly inhibited the mRNA level of NlFTZ-F1 and increased the mRNA levels of a down-
stream gene Kr-h1 that is involved in JH cascade. InH. armigera, knockdown ofHa-Ran
resulted in the suppression of 20E regulated genes including EcR [43]. The levels of EcR from
insects that were treated with dsEcR concomitantly decreased with the levels of FTZ-F1 tran-
scripts [47]. The decreased levels of FTZ-F1 lowered 20E titer, and induced the expression of a
JH biosynthesis gene, hence increased JH titer [32]. Furthermore, Kr-h1 gene expression was
regulated through JH-Met-Kr-h1 pathway, which mediates metamorphic transformations [33,
48, 49]. Our results support the hypothesis that NlRan was involved in 20E signal transudation
pathway, and was cross talking with JH pathway to control hormone balance during develop-
ment and reproduction.

At in vivo level, the knockdown of NlRan in the third and fourth instar nymphs caused sig-
nificant phenotypic impairment of N. lugens with two apparent defects in body formation and
molting process that were fatal. Similar phenotypes have been documented in insects including
Blattella germanica and L. decemlineata, after knockdown of FTZ-F1, a 20E signal transduction
pathway gene [32, 50]. This further suggests that Ran is an important factor in the regulation
of hormonal balance that is essential to the normal physiology of insects.

Thirdly, the fifth instar nymphs that were treated with dsNlRan had no offspring at adult
stage. The dissection revealed significantly reduced ovariole development and vitellogenin pro-
duction with no eggshell. These observations corresponded well with that NlRan transcript
level knockdown significantly inhibited the mRNA level of NlVg because the biosynthesis of Vg
is important for egg laying insects as their reproductive capacity depends heavily on Vg accu-
mulation in the oocytes [51–54]. Apparently, factors other than Ran may also cause abnormal
ovarioles, which we plan to study in the near future.

RNAi-based knockdown of functional genes by injection of dsRNA have been successful in
N. lugens [26–30, 36]. This current study added Ran (up to 0.025 ng of the minimum volume,
seen in the S1 Fig) in the examined gene list that includes calreticulin, cathepsin-B, nicotinic
acetylcholine receptors β2 subunit, chitin synthase, EcR, CYP6AY1, flightin, glutathione S-trans-
ferase, NADPH-cytochrome P450 reductase, chitin deacetylases, Vg and Vg receptor, insulin-like
and insulin-like receptor, forkhead box, phosphatase and tensin homolog deleted on chromosome
ten, chico, AKT, LnK, Tor, Raptor, Raf, ErK and Bicaudal-C with the volume of 0.05–250 ng
dsRNA [26–30, 34, 36, 55–58]. To our limited knowledge, Ran requires a low volume of
dsRNA to efficiently knock down the target gene, which is only next to Bicaudal-C gene. The
silencing of Ran during nymphal development was fatal and stopped reproduction completely.
Compared with other studied genes, Ran seems a better candidate as a target for pest control
purpose if a level of selectivity (targets vs. non targets) can be installed.

In summary, we identified a putative Ran and revealed its potential roles in the development
and reproduction of N. lugens. In addition to EcR gene in 20E signal transduction pathway
[24], NlRanmaybe a potential target for RNAi-based pest control. More relevant research is in
progress.

Supporting Information
S1 Fig. The survival rates (A) and NlRanmRNA abundance (B) of N. lugens that treated
with different concentrations of dsNlRan at the third-instar nymph stage. Total RNAs were
isolated from 5–10 nymphs subjected to dsNlRan, dsGFP and double distilled water injection.
The bars represent 2−ΔΔCT values (±SE) normalized to the geometrical mean of housekeeping
gene expression. SE was determined from 3 independent biological replicates, each with three
technical replications. Asterisks indicate significant difference between values at �� = 0.01 or �
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= 0.05 of P values. Different letters indicate a significant difference at P value<0.05.
(TIF)
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