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Abstract: An extension of the Rayleigh–Ritz variational method to objects with superquadric and
superellipsoid shapes and cylinders with cross-sections delimited by a superellipse is presented.
It enables the quick calculation of the frequencies and displacements for shapes commonly observed
in nano-objects. Original smooth shape variations between objects with plane, convex, and concave
faces are presented. The validity of frequently used isotropic approximations for experimentally
relevant vibrations is discussed. This extension is expected to facilitate the assignment of features ob-
served with vibrational spectroscopies, in particular in the case of single-nanoparticle measurements.
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1. Introduction

The normal modes of the free vibration of 3D objects are involved in a variety of
different processes at the nanoscale through electron–vibration coupling. Vibrational
spectroscopies take advantage of this to provide a means to study the nano-objects them-
selves through their vibrations and their electronic properties. Inelastic light scattering
(low-frequency Raman or Brillouin) and time-resolved transient absorption measurements
are such experimental approaches that have been extensively used in particular to study
metallic nano-objects [1–3]. Models to describe the vibrations are required to interpret
experimental measurements. Models based on continuum elasticity have been shown to
be suitable even in the case of small nano-objects for which the number of atoms near the
surface is large [4,5]. Analytical solutions exist for isotropic spheres and isotropic circular
infinite cylinders. A few other analytical solutions exist in other cases, but only for some
particular vibrations or with additional approximations [6,7]. Numerical methods have
fewer restrictions. The finite element method (FEM) can handle objects with complex
shapes and anisotropic elasticity. The Rayleigh–Ritz variational approach (RR) is an inter-
mediate solution. It can handle some nonspherical shapes and anisotropic elasticity and be
much faster than FEM in some cases. For this reason, it is a method of choice in resonant
ultrasound spectroscopy (RUS) [8]. RUS is a method based on the measurement of the
frequencies of the free vibrations of a solid object in order to determine the elastic tensor of
the material of which the object is made. It has been successfully applied to macroscopic
objects in materials science and geology [9]. Three-dimensional objects are prepared with
known dimensions and shapes before the eigenfrequencies are measured. Their mass
density is measured as well, leaving only the elastic tensor as unknown. The vibrations
are calculated, and a numerical procedure is used to minimize the difference with the
measured frequencies. Quick calculations are needed for this method to be convenient. The
RR approach meets this requirement when integrals over the volume of the nano-object
can be computed quickly, which is the case for some simple analytic shapes (spheroids,
rectangular parallelepipeds, elliptical cylinders, etc.) because the integrals can be expressed
analytically [10].

Several issues appear when trying to use acoustic resonances to study nano-objects.
The natural mechanical frequencies cannot be measured with piezoelectric transducers,

Nanomaterials 2021, 11, 1838. https://doi.org/10.3390/nano11071838 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-1249-2730
https://doi.org/10.3390/nano11071838
https://doi.org/10.3390/nano11071838
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11071838
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11071838?type=check_update&version=2


Nanomaterials 2021, 11, 1838 2 of 12

and vibrational spectroscopies must be used. These spectroscopies provide only a few
natural frequencies in the general case due to restrictive selection rules, while the RUS
method is effective only when many frequencies are available. However, recent works
have shown that these selection rules can be broken for large nanoparticles (NPs) or for
NPs in close proximity with other NPs [11,12]. Another issue is that it is often impossible
to control the shape of nano-objects accurately enough to match one of the simple shapes
mentioned before. For example, corner rounding in NPs is commonly observed [13], and
it is known to modify the properties of the nano-objects such as the electronic properties
of metallic NPs [14]. It seems therefore necessary to take into account the exact shape
to describe the vibrations as well. This work focuses on extending the RR approach to
rounded and spiky shapes with concave or convex faces and using it to study the influence
of a few original shape variations on the frequencies.

2. Superquadrics and Superellipsoids

RR calculations were performed in this work using the xyz algorithm introduced
by Visscher et al. [10]. The displacements are decomposed on the basis of functions
φλ = xpyqzr with p, q, and r integers and p + q + r ≤ N. The RR approach turns the
dynamic problem into the generalized eigenvalue problem ω2Ea = Γa with ω the pulsa-
tion, a the amplitudes of the φλ components, and E and Γ two square matrices, defined
as follows:

Eλiλ′i′ = δii′

∫
V

φλρφλ′dV (1)

Γλiλ′ j = Ciji′ j′

∫
V

φλ,jφλ′ ,j′dV (2)

Cijkl is the stiffness tensor, ρ the mass density, and V the volume of the object. The
xyz algorithm is very efficient when analytic expressions for the integrals exist. This is
the case for spheroids, rectangular parallelepipeds, elliptical cylinders, and a few other
shapes, as pointed out in the original work [10]. In addition, the Γ matrix is block-diagonal
when the shape and elastic properties are symmetric with respect to the x = 0, y = 0, or
z = 0 planes [15]. In those cases, the linear system can be turned into a few smaller linear
systems requiring less computer time and resources.

To extend the xyz algorithm to more shapes, analytic expressions for the volume
integrals in the case of superquadrics and superellipsoids are derived in the following. The
surface of superquadrics and superellipsoids is given by the implicit Equations (3) and (4)
where Li is the half-length in the i direction and ni > 0. The shape is an octahedron if
ni = 1, ∀i and spheroidal if ni = 2, ∀i, and it tends to a rectangular parallelepiped when
ni → ∞, ∀i. A large variety of shapes is obtained by independently varying the five
or six parameters because superquadrics and superellipsoids are different except when
nx = ny = nxy = nz. In particular, the shape can be varied continuously among cubes (or
rectangular parallelepipeds), spheres (or spheroids), and octahedra and octahedra with
concave faces, as illustrated in Figure 1, for L = Li and n = ni, ∀i. It is worth noting
that similar NP shapes have been reported in the literature. Reports about spheres are
numerous. There are many works on nanocubes, and it is worth noting that, most often,
their corners are rounded even when they are considered to be sharp [13,16]. Such rounded
nanocubes are usually modeled by imposing a radius of curvature at the edges. The
superquadric shape makes it possible to control the rounding of the corners through the n
shape parameter. One disadvantage of this approach is that the faces are not flat near their
center. However, the deviation from a perfectly flat surface is very small for large enough n.
Finally, the shape obtained for n < 1 is reminiscent of nanostars [17]. The present approach
is not flexible enough to accurately model the large variety of reported nanostars because
the number and position of the branches are fixed and the tips are not rounded. Still, it
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provides a very quick method to approach such a complex geometry. To the best of my
knowledge, using the xyz algorithm for such shapes has not been reported [10].∣∣∣∣ x

Lx

∣∣∣∣nx

+

∣∣∣∣ y
Ly

∣∣∣∣ny

+

∣∣∣∣ z
Lz

∣∣∣∣nz

= 1 (3)

(∣∣∣∣ x
Lx

∣∣∣∣nxy

+

∣∣∣∣ y
Ly

∣∣∣∣nxy) nz
nxy

+

∣∣∣∣ z
Lz

∣∣∣∣nz

= 1 (4)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

octahedron sphere cube
∞

Figure 1. Superquadrics or superellipsoids with Lx = Ly = Lz. The value of n = nx = ny = nz = nxy

is shown below each shape.

3. Volume Integrals

The expressions in Equations (1) and (2) come down to evaluating f , the volume
integral of power functions xpyqzr, over the volume V of the object (Equation (5)). In the
following, only the octant with x ≥ 0, y ≥ 0, and z ≥ 0 is considered. The integral in this
octant is denoted f8. The values in the seven other octants have the same absolute value,
and the signs are deduced from the parity of p, q, and r.

f (p, q, r) =
∫

V
xpyqzrdV

f8(p, q, r) =
∫

V∩{x,y,z≥0}
xpyqzrdV

(5)

3.1. Superquadrics

In the octant mentioned before, the volume of the superquadrics can be described by
the parametric description given in Equation (6). The intermediate variables (X, Y, Z) are
introduced. Equation (3) becomes X2 + Y2 + Z2 = 1, which allows further parametrizing
by introducing the spherical-like variables r ∈ [0, 1], θ ∈ [0, π

2 ], and φ ∈ [0, π
2 ].

(
x

Lx

) nx
2
= X = r sin θ cos φ

(
y
Ly

) ny
2
= Y = r sin θ sin φ(

z
Lz

) nz
2
= Z = r cos θ

(6)

After having performed these changes of variables, the volume integral is the product
of three one-dimensional integrals over r, θ, and φ. The ones over θ and φ involve products
on sine and cosine functions with various powers, which can be expressed with the B or Γ
functions using Equation (7) ([18], Equations 5.12.1 and 5.12.2). The calculation steps are
given in Appendix A, and the resulting expression for f8 is given in Equation (8).

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

= 2
∫ π

2

0
sin2a−1 t cos2b−1 tdt (7)
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f8(p, q, r) =
Lp+1

x Lq+1
y Lr+1

z

(p + 1)(q + 1)(r + 1)

Γ
(

p+1
nx

+ 1
)

Γ
(

q+1
ny

+ 1
)

Γ
(

r+1
nz

+ 1
)

Γ
(

p+1
nx

+ q+1
ny

+ r+1
nz

+ 1
) (8)

3.2. Superellipsoids

Similarly, using the parametric representation for superellipsoids given in Equation (9),
which is valid in the same octant, the volume integral can be transformed into the product
of three integrals and expressed as a function of the B or Γ functions. The calculation steps
are given in Appendix B, and the resulting expression is given in Equation (10).

x = rLx sin
2

nz θ cos
2

nxy φ

y = rLy sin
2

nz θ sin
2

nxy φ

z = rLz cos
2

nz θ

(9)

f8(p, q, r) =
Lp+1

x Lq+1
y Lr+1

z

(p + 1)(q + 1)(r + 1)

Γ
(

p+1
nxy

+ 1
)

Γ
(

q+1
nxy

+ 1
)

Γ
(

r+1
nz

+ 1
)

Γ
(

p+q+r+3
nz

+ 1
) Γ

(
p+q+2

nz
+ 1
)

Γ
(

p+q+2
nxy

+ 1
) (10)

3.3. Nanowires

A similar approach can be used to model acoustic phonons in nanowires (NWs) [3,19,20].
In that case, the integrals of interest are over the cross-section S instead of the volume, and
calculating the elements of the E and Γ matrices comes down to calculating f as defined in
Equation (11). As before, we consider only the x ≥ 0 and y ≥ 0 quadrant, and the value
of the integral in this domain is noted f4. The integrals in the three other quadrants are
obtained by symmetry from the parity of p and q.

f (p, q) =
∫

S
xpyqdS

f4(p, q) =
∫

S∩{x,y≥0}
xpyqdS

(11)

Let us consider an NW aligned along z having a cross-section delimited by a superel-
lipse defined by implicit Equation (12).∣∣∣∣ x

Lx

∣∣∣∣nx

+

∣∣∣∣ y
Ly

∣∣∣∣ny

= 1 (12)

The analytic expression for f4 obtained using the same approach as before is given in
Equation (13).

f4(p, q) =
Lp+1

x Lq+1
y

(p + 1)(q + 1)

Γ
(

p+1
nx

+ 1
)

Γ
(

q+1
ny

+ 1
)

Γ
(

p+1
nx

+ q+1
ny

+ 1
) (13)

3.4. Comparison with Previous Works

The analytic formula for spheroids given by Visscher et al. [10] can be obtained from
Equation (8) or (10) by setting ni = 2, ∀i. The expression for the rectangular parallelepiped
is recovered with 1

ni
= 0. Similarly, finite circular cylinders aligned along z with flat ends

correspond to superquadrics or superellipsoids with 1
nz

= 0 and ni 6=z = 2. As expected,
analytic expressions for f8 equivalent to those in Visscher et al. [10] were obtained using
these values. The expressions for infinite circular and square cylinders also match those
obtained in previous works [19,20].
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4. Results
4.1. General Case

NPs of low symmetry are easily obtained by using superquadrics with different values
for Li and ni (i ∈ {x, y, z}) in each octant. The surface of the resulting shape is not smooth
as it includes parts of the x = 0, y = 0, and z = 0 planes. More interestingly, the surfaces
of the eight superquadrics are connected across the x = 0, y = 0, and z = 0 planes when
using two sets of parameters for positive and negative values of i: (L+

x , n+
x ), (L−x , n−x ),

. . . (L−z , n−z ). This shape fits inside the (L+
x + L−x )× (L+

y + L−y )× (L+
z + L−z ) rectangular

parallelepiped. Its length along i is exactly (L+
i + L−i ). The resulting shapes are still quite

complex because different parts of the surface can be concave or convex. In addition, the
surface is of class Ck if n±i > k, ∀i. In the general case, such shapes are only invariant
under the identity operation. In the following, we consider symmetric shapes that are
at least invariant by reflection through the x = 0, y = 0, and z = 0 planes by choosing
Li = L+

i = L−i and ni = n+
i = n−i , ∀i. If the elastic tensor is also invariant under the

same reflections, the linear system is block-diagonal and can be solved for each irreducible
representation separately within a few seconds with modern processors [10,15]. In this
work, calculations were performed using the eigensystems and special functions provided
by the GNU Scientific Library [21]. The method is stable up to N = 20, which was used
throughout this work. For an actual implementation running in a web browser, see [22].

When the same set of parameters is used in the eight octants and for the three directions
(L = Lx = Ly = Lz and n = nx = ny = nz), the shape of the NPs has cubic symmetry
(Oh point group). The point group is unchanged if the elasticity of the material the NP is
made of is cubic with the lattice directions corresponding to x, y, and z or better (isotropic).
Similarly, NWs and nanorods (NRs) with identical parameters along x and y have tetragonal
symmetry (D4h), provided the elasticity is tetragonal or better (cubic or isotropic) and the
lattice is aligned along x, y, and z as well.

In the following, such cubic NPs or tetragonal NWs and NRs made of cubic gold are
considered. We focused on modes coming from the Raman active vibrations of the isotropic
sphere, which are the experimentally relevant ones [23]. In particular, we checked the
validity of common isotropic approximations to predict the frequencies of such vibrations.
Original continuous shape variations among objects with plane, concave, and convex faces
were investigated.

In the framework on continuum elasticity, the eigenfrequencies scale as the inverse of a
characteristic length. In other words, if the lengths of a given nano-object are all multiplied
by α, then all its eigenfrequencies are divided by α. For a sphere, the frequencies ν vary as
1/radius. For a cube, the frequencies vary as 1/edge length. In other words, ν× radius or
ν× edge length is a constant for a given mode. In order to define a characteristic length
appropriate for objects having different shapes, it is useful to remember that frequency
is related to mass. For this reason, in the following, we consider the characteristic length
defined as the cube root of the volume (V) for finite NPs or the square root of the surface
area of the cross-section (S) for infinite cylinders. The product of the frequency with one of
these characteristic lengths is considered in the following. It is expressed in m/s.

4.2. Breathing Modes

Breathing modes are precisely defined for spheres made of an isotropic material. In
that case, they correspond exclusively to spheroidal vibrations with angular momentum
` = 0, which are the only vibrations for which the volume changes during oscillation. For
nonspherical or anisotropic NPs, no such simple assignment exists [24]. Volume varies for
totally symmetric vibrations only (i.e., vibrations for which the deformed shape is invariant
for all the symmetry operations), but the variations are very different and can be very small
for some of these vibrations, contrary to the previous case. To identify breathing-like modes
in the following, we focused on the ones with the largest volume variation. We considered
NPs made of gold (ρ = 19.293 g/cm3) with an isotropic approximation (C11 = 213.83 and
C12 = 153.57 GPa) or cubic elasticity (C11 = 191, C12 = 162, and C44 = 42.4 GPa).
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Figure 2 (left) shows the frequency variations of the A1g vibrations for isotropic gold.
The shapes correspond to those plotted in Figure 1. The frequencies were normalized by
multiplying by the cubic root of the volume V of the NPs. Note that this normalization
plays a very significant role because the volume was multiplied by 90 when n varies from
½ to ∞, while L was kept constant. The thickness of the lines is proportional to the relative
volume variation during oscillation ∆V/V. ∆V is the volume integral of the divergence of
the normalized displacement. Since the displacements are expanded on an xlymzn basis, it
was calculated using the expressions derived in the previous section. As written above,
pure breathing modes exist only for the sphere. Indeed, the thickness of all the branches
vanishes at n = 2 except for the spheroidal modes with ` = 0. Two horizontal red lines
mark the frequencies of the fundamental mode and the first overtone. For nonspherical
shapes, the largest volume variation occurs close to these two lines. Assuming the existence
of a breathing mode at the frequency of a sphere having an identical volume is therefore a
good approximation. For octahedra with concave faces (n < 1), this approximation looks
less and less valid as n decreases. In particular, a deviation toward larger frequencies is
observed for the first overtone. One reason for this deviation could be the poor convergence
of the xyz algorithm. Indeed, as n decreases, the branches of the nanostars become thinner
and thinner. This manifests in the calculations with large displacements at the tips, which
might be an indication that the convergence is not good enough. However, the frequency
range where the volume variation is large is obtained in the other cases (n > 1) even with
quite small values of N (N < 10). Therefore, it is reasonable to assume that the same
pattern holds for 1/2 ≤ n ≤ 1 with N = 20 and that the observed deviation is real.

Because nanocrystals (NCs) are seldom elastically isotropic, we considered next the
case of NPs made of cubic gold. The cubic lattice is aligned with the x, y, and z axes to
preserve the cubic symmetry (Oh). Figure 2 (right) shows the frequency variation of all the
A1g vibrations. As in the previous figure, the frequencies of the first two breathing modes
of a sphere made of the isotropic approximation of gold are plotted as horizontal lines.
Complex patterns between the A1g branches are observed in Figure 2 including in the case
of the sphere. Still, the isotropic approximation is also valid with the same restriction as in
the case of isotropic elasticity.

Using a similar approach, the radial breathing modes of infinite cylinders made of
isotropic (left) and cubic (right) gold are presented in Figure 3 as a function of the shape of
the cross-section. The frequencies are normalized by multiplication with the square root
of the cross-section surface area S. The width of the lines is proportional to the surface
variation ∆S/S. The modes of interest are the A1g modes at the center of the Brillouin
zone (q = 0). In this case, the horizontal lines correspond to the first two radial breathing
mode frequencies of the circular isotropic NW. The same observations as before apply. The
circular isotropic approximation is quite good for n > 1. For n < 1, deviations toward
higher frequencies appear reaching ∼ +15% for the fundamental mode and ∼ +10% for
the first overtone at n = 1/2.



Nanomaterials 2021, 11, 1838 7 of 12

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

∞421½

 0 0.5 1 1.5 2

cube

sphere
octahedron

a

fr
e
q

u
e
n
cy

 ×
 V

1
/3
 (

m
/s

)

n

1/n

∞421½

 0 0.5 1 1.5 2

cube

sphere
octahedron

b

n

1/n

Figure 2. Normalized frequencies of the A1g vibrations (Oh) of isotropic (a) and cubic (b) gold
superquadrics (or superellipsoids) with identical dimensions (Li) and shape factors (ni = n) along x,
y, and z as a function of n. The frequencies are multiplied by the cubic root of the volume. The width
of the lines is proportional to the relative volume variation of each mode ∆V/V. The horizontal red
lines correspond to the first two breathing mode frequencies of the isotropic gold sphere.
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Figure 3. Normalized frequencies of the A1g vibrations (D4h) at the center of the Brillouin zone
(q = 0) for isotropic (a) and cubic (b) gold NWs with cross-sections delimited by superellipses with
Lx = Ly as a function of nx = ny = nxy. The frequencies are multiplied by the square root of the
surface. The width of the lines is proportional to the relative volume variation of each mode ∆S/S.
The horizontal red lines correspond to the first two radial breathing mode frequencies of the isotropic
circular gold NW.
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4.3. Quadrupolar Modes

The quadrupolar modes of spherical NPs (spheroidal modes with ` = 2, degeneracy
2` + 1 = 5) are of interest as well, in particular because they play a significant role in
inelastic light-scattering experiments. In cubic symmetry, they split into the Eg (degeneracy
2) and T2g (degeneracy 3) irreducible representations [25] making it a very useful signature
of elastic anisotropy in spherical NPs, in particular for strongly anisotropic materials such
as gold [26]. Figure 4 shows the variations of the normalized frequencies for the Eg (left)
and T2g (right) vibrations when varying the superquadric shape. Only cubic elasticity is
considered in the following as in Figure 2 (right). The lowest frequency Eg mode agrees
quite well with the isotropic spherical approximation prediction for a sphere having the
same volume over the full n range. This approximation is obtained using the transverse
speed of sound of gold in the [110] direction [27]. A similar approximation exists for the
T2g mode using the [100] direction. It works reasonably well also, in particular, for n > 1.
For n < 1, there are many anticrossing patterns with branches whose frequency decreases
quickly with decreasing n (bending of the branches of the “nanostars”).
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Figure 4. Normalized frequencies of the Eg (a) and T2g (b) vibrations of cubic gold superquadrics
(or superellipsoids) with identical dimensions (Li) and shape factors (ni = n) along x, y, and z as a
function of n. The frequencies are multiplied by the cubic root of the volume. The lowest horizontal
red line corresponds to the frequency of an isotropic sphere with the longitudinal and transverse
sound velocities of cubic gold in the 110 (a) and 100 (b) directions.

Similarly, the frequencies of the quadrupolar-like vibrations of NWs when varying
the shape of the cross-section are plotted in Figure 5. As discussed in a previous work [20],
these are the B1g and B2g modes (D4h point group). A similar result was obtained, namely a
very good agreement with the circular isotropic approximation for the lowest B1g frequency
and a mode complex picture for the B2g vibrations with anticrossing patterns for n < 1,
but otherwise a good agreement as well. As before, different transverse sound speeds were
used for both modes. Note that for n = 1, the shape of the cross-section is a square rotated
by 45 degrees around the z axis, i.e., a square with faces aligned with the [110] direction.
As expected, even if the shapes are identical for n = 1 and n→ ∞, the frequencies differ
because of the different orientations of the lattice structure.

A very similar picture is obtained in both cases (NPs and NWs) for isotropic gold (not
shown). In that case, anisotropy comes from the shape only. For the NPs, the frequencies
of the spherical isotropic approximations are the same for Eg and T2g (nondegenerate
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spheroidal mode with ` = 2). For the NWs, the frequencies of the circular isotropic
approximations are also the same for B1g and B2g (nondegenerate |m| = 2 mode).
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Figure 5. Normalized frequencies of the B1g (a) and B2g (b) vibrations of cubic gold cylinders
with cross-sections delimited by superellipses with Lx = Ly as a function of nx = ny = nxy. The
frequencies are multiplied by the square root of the surface area. The lowest horizontal red line
corresponds to the frequency of an isotropic cylinder with the longitudinal and transverse sound
velocities of cubic gold in the 110 (a) and 100 (b) directions.

4.4. Edge Modes in Nanorods

In a previous work [20], it was shown that eigenmodes in finite-length circular cylin-
ders (NRs) can be approximated by standing waves of the corresponding infinite cylinder
or NW. The resulting mode frequencies fall therefore in the frequency range of the cor-
responding phonon branch. Additional modes having the same symmetry have been
reported. They are localized at both ends of the finite cylinder. Their frequency can be
lower than the minimum frequency of the branch, and it reaches a minimum when the
ends of the NRs are flat. This behavior can be tested easily with the superquadratic and
superellipsoid shapes instead of half spheroids positioned at the ends of the NRs, as in the
previous work. Figure 6 presents the B1g (bottom) and B2g (top) frequencies for NRs (left,
Lz/Lxy = 3) and NWs (right) having a circular cross-section. In both cases, frequencies
below the corresponding phonon band minimum are observed for large nz, showing the
presence of edge modes for NRs when their ends are flat or almost flat. These edge modes
appear at lower nz for superellipsoids. This is because for a given nz, superellipsoids are
closer to rods with flat ends than superquadrics.
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Figure 6. (a) Normalized frequencies of the B1g vibrations of cubic gold superquadrics (blue) and
superellipsoids (red) with Lz/Lxy = 3 and nx = ny = nxy = 2 as a function of nz. The dashed
horizontal line corresponds to the minimum frequency of the corresponding phonon branch of the
circular NW. (b) Corresponding phonon branches of the NW.

5. Conclusions

An extension of the xyz algorithm to NPs having superquadratic and superellipsoid
shapes and NWs having a superellipse cross-section was proposed. It enables quickly
assessing the vibrational properties of commonly reported nano-objects such as rounded
nanocubes and nanostars. For nano-objects having the x, y, or z planes as mirror planes,
the method enables quickly calculating the eigenmodes having a specific irreducible repre-
sentation. The possibility to smoothly vary the shape of NPs from a cube to a sphere, an
octahedron, and then an octahedron with concave faces was used to examine the evolution
with the shape of experimentally relevant vibrations. The frequencies of the breathing and
quadrupolar vibrations can be estimated reliably in most cases from the corresponding
frequency for an isotropic sphere having the same volume or a circular isotropic cylinder
having the same cross-section surface area. For the quadrupolar vibrations, the anisotropy
of the material the nano-objects are made of must be taken into account for this approxima-
tion to be useful. The diverse set of shapes offered by this extension to the xyz algorithm
makes it easier to model the exact shape of actual NPs. This is of interest in the context
of single-NP measurements. In that case, the experimental features are narrow, and they
depend on the actual shape of the NPs, which is in general neither perfectly rounded, nor
having perfectly flat faces.
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Appendix A. Volume Integral for the Superquadrics

The volume element dV is expressed following the changes of variables according to
Equation (A1).

dV = dxdydz =
8LxLyLz

nxnynzX
nx−2

nx Y
ny−2

ny Z
nz−2

nz

dXdYdZ

dXdYdZ = r2 sin θdrdθdφ

(A1)

The volume integral can be analytically derived according to Equation (A2).

f8(p, q, r) =
∫ 1

0
r2dr

∫ π
2

0
sin θdθ

∫ π
2

0
dφLp

x X
2p
nx Lq

yY
2q
ny Lr

zZ
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nz

8LxLyLz

nxnynzX
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ny Z
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nz
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x Lq+1
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z
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r
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nz dr

×
∫ π

2
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sin
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nx−2
nx +

2q
ny −

ny−2
ny +1

θ cos
2r
nz −

nz−2
nz θdθ

×
∫ π

2

0
sin

2q
ny −

ny−2
ny φ cos

2p
nx −

nx−2
nx φdφ

=
Lp+1

x Lq+1
y Lr+1

z

nxnynz

(
p+1
nx

+ q+1
ny

+ r+1
nz

) × B
(

p + 1
nx

+
q + 1

ny
,

r + 1
nz

)
B
(

q + 1
ny

,
p + 1

nx

)

(A2)

Equation (8) is obtained by expanding the B function in terms of Γ and using the
relation aΓ(a) = Γ(a + 1) ([18], Equation 5.5.1).

Appendix B. Volume Integral for the Superellipsoids

The volume element obtained from Equation (9) is given by Equation (A3).

dV = dxdydz =
4LxLyLz

nxynz
r2 sin

4
nz −1 θ cos

2
nz −1 θ sin

2
nxy −1

φ cos
2

nxy −1
φdrdθdφ (A3)

The resulting expression for f8 is:

f8(p, q, r) =
4LxLyLz

nxynz

∫ 1

0
r2dr

∫ π
2

0
sin

4
nz −1 θ cos

2
nz −1 θdθ

∫ π
2

0
sin

2
nxy −1

φ cos
2

nxy −1
φxpyqzrdφ

=
4Lp+1

x Lq+1
y Lr+1

z

nxynz

∫ 1

0
r2+p+q+rdr×

∫ π
2

0
sin

4
nz −1+ 2(p+q)

nz θdθ cos
2

nz −1+ 2r
nz θdθ

×
∫ π

2

0
sin

2
nxy −1+ 2q

nxy φ cos
2

nxy −1+ 2p
nxy φdφ

=
Lp+1

x Lq+1
y Lr+1

z

nxynz(3 + p + q + r)
B
(

p + q + 2
nz

,
r + 1

nz

)
B
(

q + 1
nxy

,
p + 1
nxy

)
(A4)

Equation (10) is obtained by expanding the B function in terms of Γ and using the
relation aΓ(a) = Γ(a + 1) ([18], Equation 5.5.1).
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