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Machine Learning Demonstrates High Accuracy for
Disease Diagnosis and Prognosis in Plastic Surgery

Introduction: Machine learning (ML) is a set of models and methods that can
detect patterns in vast amounts of data and use this information to perform vari-
ous kinds of decision-making under uncertain conditions. This review explores the
current role of this technology in plastic surgery by outlining the applications in
clinical practice, diagnostic and prognostic accuracies, and proposed future direc-
tion for clinical applications and research.

Methods: EMBASE, MEDLINE, CENTRAL and ClinicalTrials.gov were searched
from 1990 to 2020. Any clinical studies (including case reports) which present the
diagnostic and prognostic accuracies of machine learning models in the clinical
setting of plastic surgery were included. Data collected were clinical indication,
model utilised, reported accuracies, and comparison with clinical evaluation.
Results: The database identified 1181 articles, of which 51 articles were included
in this review. The clinical utility of these algorithms was to assist clinicians in diag-
nosis prediction (n=22), outcome prediction (n=21) and pre-operative planning
(n=8). The mean accuracy is 88.80%, 86.11% and 80.28% respectively. The most
commonly used models were neural networks (n=31), support vector machines
(n=13), decision trees/random forests (n=10) and logistic regression (n=9).
Conclusions: ML has demonstrated high accuracies in diagnosis and prognostica-
tion of burn patients, congenital or acquired facial deformities, and in cosmetic
surgery. There are no studies comparing ML to clinician's performance. Future
research can be enhanced using larger datasets or utilising data augmentation,
employing novel deep learning models, and applying these to other subspecial-
ties of plastic surgery. (Plast Reconstr Surg Glob Open 2021;9:e3638; doi: 10.1097/
GOX.0000000000003638; Published online 24 June 2021.)
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INTRODUCTION

An expanding population in the United States has
resulted in an increasing demand for plastic surgery ser-
vices, which, coupled with static number of residents and
increasing number of retiring surgeons, is increasing the
pressure for the delivery of high-quality care.! It is now
estimated that there is a workforce shortage of 800 attend-
ing physicians in the United States, reducing the avail-
ability of care.' Artificial Intelligence (AI) could have a
major impact on addressing challenges that healthcare
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systems face. Digital technologies are predicted to affect
more than 80% of the healthcare workforce in the next
2 decades, changing the way physicians practice medicine
and meeting the increasing demand for services.” Al can
help drive this change by automating repetitive tasks to
free up time from clinicians, improving the diagnostic
accuracy of diseases and predicting patient outcomes.”
Machine learning (ML), a subfield of Al is a set of
models able to learn from past cases (data) to make
future predictions. A wide variety of such algorithms are
in use today, such as in the automated, individualized
suggestions generated during a Google Search, based on
ones’ previous searches. These models can be classified
into two broad categories: supervised learning and unsu-
pervised learning. The difference between these two cat-
egories of learning models lies in the existence of labeled
data. In supervised learning, the models are trained
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using examples of data with known labels, labeled data,
and after training, they aim to predict outcomes utilizing
new data. This function has been utilized in healthcare
to assist in both making a diagnosis and for disease out-
come prediction. Authors have utilized supervised learn-
ing to successfully classify whether a skin lesion is benign
(eg, benign nevi) or malignant (malignant melanoma),
outperforming the accuracy of 21 board-certified derma-
tologists (accuracy 72% versus 66%, P < 0.05)." Similarly,
supervised learning has also been utilized in predicting
the risk of developing a condition such as breast cancer
based on epidemiological data, and the risk of recurrence
after treatment.®’

In contrast, unsupervised learning models are trained
using unlabeled data, and after training, aim to discover
underlying groupings or patterns from the data them-
selves.”® These algorithms can be particularly useful in
identifying previously unknown patterns in vast amounts
of unprocessed data, which may then be used in clinical
practice. Examples include novel classification of diseases
into various subtypes and identifying subgroups of patients
with increased risk of certain conditions based on various
characteristics (for example, their genome).>"

In addition to meeting demand for plastic surgery ser-
vices, this technology has the potential to revolutionize
how plastic surgery is practiced and enhance surgeon’s
diagnosis prediction, preoperative planning, and out-
come prediction, leading to improved patient care. In
burn surgery, even the most experienced surgeons have
a clinical estimation of 64%—76% accuracy in the diagno-
sis of burn depth.'"'> ML models may outperform this,
achieving correct burn depth identification from 2D pho-
tographs up to 87%, potentially leading to more appropri-
ate clinical management at presentation.'” Further, in the
prognostication of whether a burn injury will heal within
14 days of presentation, ML. models have demonstrated an
accuracy of 86%, again surpassing the accuracy of prog-
nostication by clinicians.’ In the field of microsurgery,
postoperative monitoring via 2D image analysis achieves
a 95% accuracy in classifying a flap as normal, presence
of venous obstruction, or presence of arterial occlusion,
leading to potential early identification of flap failure and
increased salvage rates.* However, the evidence of appli-
cations of ML is abstract, with no systematic reviews that
summarize the clinical accuracy of such models in prac-
tice. This could act as a starting point of developing clini-
cal practice guidelines and to guide future research.'*""
The aim of this study was to systematically synthesize and
report the current literature in the clinical applications of
ML in plastic surgery.

METHODS

Search Strategy

The protocol for this systematic review was registered
with PROSPERO international prospective registration of
systematic reviews registration number: CRD42019140924.
The full protocol was published a priori, and there were
no deviations from the original protocol.” This systematic
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review was conducted and reported according to the
Preferred Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) guidelines.'

A systematic literature search was performed in
MEDLINE (OVID SP), EMBASE (OVID SP), CENTRAL,
and ClinicalTrials.gov databases to identify relevant stud-
ies for review. The reference lists of all included studies
were also screened, and relevant studies were included in
the search. Lastly, manual searches of bibliographies, cita-
tions, and related articles (Pubmed function) were also
performed to identify missed relevant studies. Medical
Subject Headings (MeSH) terms were used in combina-
tion with free text to construct our search strategy. A sam-
ple search strategy used in MEDLINE (OVID SP) is shown
in Table 1.20-7

Selection Criteria

All eligible studies between January 1990 and June 2020
were included in this review. We included any primary
studies (including case reports) that present clinical data
on the application of ML in plastic surgery. Only articles in
the English language were included. Our exclusion crite-
ria included descriptions of ML in plastic surgery without
clinical data, review articles, conference abstracts, animal
studies, and articles pertaining to the use of ML outside
the remit of the specialty (as defined by the Intercollegiate
Surgical Curriculum Program in Plastic Surgery).

After the library preparation, two independent review-
ers (AM and PS) screened the search results for inclusion
based on the title and abstracts. Subsequently, a full-text
review was performed independently by the same two
researchers (AM and PS) for all included studies. At each
step, any discrepancy of opinion was resolved with consen-
sus, and if not resolved, was referred to a third reviewer
(AK). If any doubt remained, the article proceeded to the
next step of the review. The search results of all included
articles, abstracts, full-text articles, and records of the
reviewers’ decisions, including reasons for exclusion, were
recorded.

Outcome Measures

The primary outcome was the ML algorithm statisti-
cal accuracy in performing a prespecified clinical task
(eg, prediction of a clinical diagnosis or postoperative
outcome). Secondary outcomes include the reported

Table 1. Example Search Strategy Used for MEDLINE?*-7°

1 (“deep learning” OR *“artificial intelligence” OR “machine
learning” OR “decision trees” OR “random forests” OR
SVM OR “support vector machine”)

exp “NEURAL NETWORKS (COMPUTER)”/ OR exp
“DEEP LEARNING”/

exp “ARTIFICIAL INTELLIGENCE”/

(1OR2OR 3)

(microsurgery OR (surgery AND (plastic OR
reconstructive OR esthetic OR aesthetic OR burns OR
hand OR craniofacial OR “peripheral nerve”)))

6 exp “SURGERY, PLASTIC”/ OR exp “RECONSTRUCTIVE
SURGICAL PROCEDURES”/

(5 OR 6)

(4 AND 7)

N

G OO
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specificity, sensitivity, area under the curve, and technical
characteristics of the algorithms.

Data Extraction and Analysis

The data from all full-text articles accepted for the
final analysis were independently retrieved by AM and PS,
using a standardized data extraction form. Any disagree-
ments were resolved by discussion or referred to the third
researcher (AK). The following data (where available)
were extracted:

a) Study details (year of publication, country),
patient demographics, study setting, clinical con-
dition examined.

b) ML algorithm characteristics (intended function,
whether the model was supervised or unsuper-
vised, function via classification or outcome pre-
diction, usage of real or synthetic data, and which
type of ML model was used)

c) Primary and secondary outcomes, as above.

Statistical meta-analysis could not be performed
because of the heterogeneity of the studies in the condi-
tions examined and software models utilized. Instead, a
narrative review was performed, with a subgroup analysis
of the mean accuracy of the models, calculated by mea-
suring the number of correct predictions over the total
predictions made.

The subgroup analyses are based on the model func-
tion (diagnosis prediction, preoperative planning and
outcome prediction) and type of models (NNs, SVMs,
decision tree/random forest, and linear regression).
This subgroup classification was utilized based on the
objectives set for AI models in clinical practice by NHS
England.?

Quality Assessment

The quality of the included studies was assessed
based on the Quality Assessment of Diagnostic Accuracy
Studies-2 (QUADAS-2), performed by two independent
reviewers (AM and PS).”" There were no disagreements
between the authors. The QUADAS-2 tool allows for risk
of bias assessment and applicability concern assessment
of primary diagnostic accuracy studies. Risk of bias was
assessed based on the patient selection, index test (in
this review, this is the ML algorithm), reference stan-
dard (comparator), and flow and timing. Concerns
regarding applicability were assessed on the first three
terms alone.

RESULTS

Literature Search Results

From a total of 1536 studies, after removal of dupli-
cates, 1181 articles were eligible for a title and abstract
review. Of these, 1074 articles did not meet the inclusion
criteria and were excluded. Following full-text review
of the remaining 107 articles, 56 articles were excluded
because the inclusion criteria were not met. A total of
51 articles were included and formed the basis of this
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systematic review (Fig. 1). Details of the included studies
are summarized in Table 2,207

Breakdown of the Applications of ML Models in Diagnosis
Prediction, Outcome Prediction, and Preoperative Planning

In total, 51 studies were included in the review, which
evaluated the accuracy of 103 ML algorithms. Of these,
27 were on burns surgery and 24 on general reconstruc-
tive surgery. The publication years ranged from 1996 to
2020, with 25 studies published in the past year alone
(2019-2020). The clinical utility of these algorithms was
to assist clinicians in diagnosis prediction (n = 22), out-
come prediction (n = 21), and preoperative planning
(n=38).

In diagnosis prediction, algorithms were created to
assist in automated burn depth diagnosis from 2D pho-
tography (n = 9) and total burn surface area (n = 1),
automated diagnosis of craniosynostosis (n = 5), wound
identification in 2D photography (n = 2), diagnosis and
severity assessment of facial palsy (n = 1), diagnosis of
congenital auricular deformities (n = 1), identification of
emotional responses to plastic surgery on Twitter (n = 1),
automated age estimation after rhinoplasty (n = 1), and
identifying the correct answer to frequently asked ques-
tions (n =1).

In outcome prediction, the ML algorithms created
predicted mortality in burn patients (n = 5), the occur-
rence of AKI in burn and trauma patients (n = 4), occur-
rence of postoperative complications in breast and head
and neck free flap reconstruction (n = 3), concentration
and response of aminoglycosides in burn patients (n = 2),
postoperative faces after oculoplastic and craniosynosto-
sis surgery (n = 2), burn healing time (n = 1), mortality
in patients with necrotizing soft tissue infection (n = 1),
delay in radiotherapy following cancer excision (n = 1),
posttraumatic stress disorder following burns (n = 1), and
factors predicting the occurrence of burns in the pediatric
population (n = 1).

In preoperative planning, ML was used to predict
which wounds will need grafting (n = 2), which patients
will need orthognathic or cleft palate operations (n = 2),
planning orthognathic and mandibular resections (n =2),
predicting open wound size (n = 1), and complexion of
reconstruction following head and neck cancer excision

(n=2).

ML Models Demonstrate High Accuracy, Sensitivity, and
Specificity That May Enhance Clinical Decision-making

The 51 studies evaluated 103 ML algorithms (Table 2).
The pooled mean of accuracy of ML algorithms was
86.84% (range 60.00-100%). The pooled mean sensitiv-
ity and specificity is 81.88% (range 5.00- 99.30%) and
86.38% (range 60.00-100%), respectively, as reported in
39 models.

A subgroup analysis was performed based on the clin-
ical utility of the algorithms. For diagnosis prediction,
the pooled accuracy, sensitivity, and specificity of ML
algorithms was 88.80% (range 66.20-97.60%), 90.62%
(range 75.80-97.90%), and 86.81% (range 60.00—
99.60%). In outcome prediction, this was 86.11% (range
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Fig. 1. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram.

66.20-97.60%), 69.67% (range 5.00-100%), and 85.94%
(range 60.00-100%), respectively. In preoperative plan-
ning, two studies reported the accuracy, sensitivity, and
specificity, which were 80.28% (range 77.30-83.80%),
98.00% (range 97.00-99.00%), and 67.05% (range
60.00-74.10%).

A second subgroup analysis on the reported accuracy
was performed based on the type of model utilized. The
mean accuracy for NNs was 88.25% (range 73.80-100%),
SVMs 88.02% (range 67.20-100%), decision trees/ran-
dom forest 78.75% (range 60.00-96.12%), and linear
regression 76.85% (range 66.40-95.00%).

Breakdown and Analysis of the Supervised and
Unsupervised ML Models Utilized

Supervised ML was utilized in 50 of the included stud-
ies and unsupervised learning in three studies (two studies
employed both supervised and unsupervised learning).
The supervised ML algorithms identified are summa-
rized in Table 3. The most commonly used ones were NNs

4

(n = 34), SVMs (n = 13), decision trees/random forests
(DT/RF, n = 10), and LR (n = 9). The unsupervised ML
models utilized were K-means clustering, a shapeswork
software with principal component analysis and the algo-
rithm was not reported in one study.

Lack of Data Augmentation and Validation during Training

Data augmentation is often used in small datasets,
to artificially create more data samples and increase
the effective dataset size, and as a result the statistical
performance of a model. Data augmentation was used
in only six of the 51 included studies. The remaining
articles relied only on real data. For diagnostic predic-
tions, the majority of studies utilized 2D photographs
(n = 15) and CT scans (n = 4). For clinical outcome
prediction, patient risk factors and laboratory measure-
ments on admission was utilized in most models (n =
17). In preoperative planning, CT scans (n = 3) and 2D
photographs (n = 2) comprised the majority of inputs
utilized.
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Table 2. Primary Outcomes of Accuracy, Sensitivity, and Specificity for Reconstructive and Burns Surgery

Study Author, Year Function Model Accuracy Sensitivity Specificity AUC
1 Abubakar et al, 2020*° DP CNN White: 99.3% Afro- NR NR NR
Carribean: 97.1%
2 Chauhan J et al, 2020°' DP BPBSAM (CNN + SVM) 91.70% NR NR NR
3 Desbois et al, 2020* DP DNN with 3 measures 91.98% NA NA NR
DNN with 4 measures 92.45% NA NA NR
Boost with 3 measures 97.89% NA NA NR
Boost with 4 measures 98.08% NA NA NR
avNN with 3 measures 97.45% NA NA NR
avNN with 4 measures 98.30% NA NA NR
4 Rashidi et al, 2020  OP DNN 100% 92% 93% 0.880
LR 95% 91% 90% 0.940
SVM 98% NR NR 0.780
RF 93% NR NR 1.000
k-NN 98% 91% 82% 0.960
5 Bhalodia et al, 2020** DP Shapeswork software with PCA NR NR NR NR
6 Guarin et al, 2020% DP NR NR NR NR NR
7 Formeister et al, 2020*° OP Gradient Boosted Decision Tree 60.00% 62.00% 60.00% NR
8 Boczar et al, 2020%" Intervention IBM Watson 92.30% NR NR NR
9 O’Neil et al, 2020 OoP Decision Tree NR 5.00% 86.80% 0.672
10 Yoo et al, 2020% or Deep Learning (Generative NR NR NR NR
adversarial network- GAN)
Pix2pix NR NR NR NR
Lightweight CycleGAN NR NR NR NR
DP Deep Learning + No data augmentation 74.20% 75.80% 7270%  0.824
Deep Learning + Std data augmentation  83.3% % 78.80% 87.90%  0.872
Deep Learning + GAN data augmentation  90.90% 87.80% 93.90%  0.957
11 Angullia et al, 2020 OP Least squares radial basis function NA NA NA NA
12 Eguia et al, 2020”' opP Decision Tree NA NA NA 0.690
Stepwise Logistic Regression NA NA NA 0.800
LR NA NA NA 0.830
k-NN NA NA NA 0.840
13 Ohura et al, 2019* DP SegNet 97.60% 90.90% 98.20% 0.994
LinkNet 97.20% 98.90% 98.90% 0.987
U-Net 98.80% 99.30% 99.30% 0.997
Unet_ VGG16 98.90% 99.20% 99.20% 0.998
14 Porras et al, 2019% DP SVM 95.30% 94.70% 96% NR
15 Knoops etal, 2019 DP SVM 95.40% 95.50% 95.20%  NR
op LRRRLARLASSO NR NR NR NR
16 Hallac et al, 2019% DP Pretrained Google-Net 94.10% 97.80% 86% NR
17 Levites et al, 20197 DP Text-based emotion analysis NR NR NR NR
18 Shew et al, 2019°7 op 2-class Decision Forest 64.40% NR NR NR
19 Dorfman et al, 2019°*  DP Neural Nets NR NR NR NR
20 Qiu etal, 2019% PP U-Net CNN NR NR NR NR
21 Aghei et al, 2019" opP ANN-MLP 73.3% 76.20% 70.2 0.762
SVM 67.20% 66.10% 68.40% 0.731
RF 67.20% 61% 73.70% 0.751
LR (FS) 67.20% 61% 73.70% 0.711
LR (BS) 66.40% 64.40% 67.70% 0.718
22 Cirillo et al, 2019* DP VGG-16 77.53% NR NR NR
Google-Net 73.80% NR NR NR
Res-Net 50 77.719% NR NR NR
Res-Net 101 without data aug 90.54% 74.35% 94.25%  NR
Res-Net 101 with data aug 82.72% NR NR NR
23 Tran et al, 2019* or k-NN with k = 1-6 or 8-20 100% NA NA NR
24 Yadav et al, 2019* DP MDS modeling 80% 97.00% 60.00%  NR
SVM 82.43% 87.80% 83.33%  NR
25 Jiao etal, 2019* DP R101A CNN 82.04% NA NA NR
IV2RA CNN 83.02% NA NA NR
R101FA CNN 84.51% NA NA NR
26 Liu et al, 2018 ppP Least Squares Regression NR NR NR NR
Decision tree NR NR NR NR
Sigmoid Neural Nets NR NR NR NR
Hyperbolic Tangent Neural Net NR NR NR NR
Combined Model (Tree +NN) NR NR NR NR
27 Martinez-Jemenez or Recurrent Partitioning 85.35% NR NR NR
etal, 2018 Random Forest
28 Su et al, 20187 OP Random Forest NA NA NA NR
29 Tang etal, 2018* opP LR 80.50% 84.40% 77.70% 0.875
XGBoost 85.40% 82.0%%  89.7%%  0.920
30 Cobb et al, 2018* or Random Forest NA NA NA NR
Stochastic Gradient Boosting NR
31 Cho MJ etal, 2018 DP K-means 96% NR NR NR
32 Kuo etal, 2018 op MLR 72.70% 22.10% 93.30% NR
33 Tan et al, 2017 PP NR NR NR NR NR
34 Huang et al, 2016> opP SVM 100% NA NA NR
35 Park et al, 2015 PP Feature wrapping 77.30% 99% 74.10%  NR
(Continued )
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Study Author, Year Function Model Accuracy Sensitivity Specificity AUC
36 Serrano et al, 2015 PP SVM 79.73 97% 60% NR
37 Mukherjee et al, 2014 DP SVM with 3rd polynomial kernel 86.13% NA NA NR
Bayesian classifier 81.15% NA NA NR
38 Mendoza et al, 2014° DP LDA 95.70% 97.90% 99.60% NR
DP Random Forest 87.90% NR NR NR
DP SVM 90.80% NR NR NR
39 Acha et al, 2013 DP k-NN 66.2% NR NR NR
SVM 75.7% NR NR NR
PP k-NN 83.8% NR NR NR
SVM 82.4% NR NR NR
40 Schneider et al, 2012 OP CART Decision Tree with Gini splitting ~ 73.30% NA NA NR

function

41 Patil et al, 2009%° op Bayesian classifier 97.78% 100% 95.50% 0.978

Decision Tree 96.12% 96.60% 95.51%  0.961

SVM 96.12% 98.60% 93.26% 0.961

Back propagation 95% 96.71% 93.26%  0.949
49 Yamamura et al, 2008  OP ANN 100% NA NA NR
LR 72% NA NA NR
43 Correa et al, 2008 DP SVM 95.05% NR NR NR
44 Acha et al, 2005% DP Fuzzy-ArtMap Neural Network 82.26% 83.01% NA NR
45 Yeong et al, 2005"* op ANN 86% 75% 97% NR
46 Serrano et al, 2005%° DP Fuzzy-ArtMap Neural Network 88.57% 83.01% NA NR
47 Yamamura et al, 2004°°  OP ANN 100% 100% 100% NR
LR 80% 66.70% 85.70% NR
ANN with leave-one-out crossvalidation  86.60% 66.70% 95.20%  NR
43 Acha et al, 2003 or Fuzzy-ArtMap Neural Network 82.60% NR NR NR
49 Estahbanati et al, (0)3 ANN 90% 80% NA NR

2002

50 Hsu et al, 2000% PP Shallow Neural Net NA NA NA NR
51 Fyre etal, 1996 or Feed forward, back propagation error 98% NA NA NR
adjustment model 77% NA NA NR

ADTree, alternating decision tree; AUC, area under the curve; CNN, convoluted NNs; DNN, deep neural network; DP, diagnosis prediction; k-NN, k-nearest neigh-
bor; LASSO, least absolute shrinkage and selection operator; LDA, liner discriminant analysis; MLR, multiple logistic regression; NA, not applicable; NB classifier,
Naive Bayes classifier; NR, not reported; OP, outcome prediction; PP, preoperative planning; RF, random forest .

Training ML models requires splitting the data set in
training, validation, and test sets, where the validation set
is used for hyperparameter tuning during training to pre-
vent “overfitting” of the model to the given data. Only 10
of the 35 studies utilized a validation set during training.
In total, 35 studies report their data training and testing
splits, with an 80%—20% split between the training and
testing set being the most common methodology pre-
sented (n =9).

In terms of output, ML algorithms functioned primar-
ily via classification in 45 studies and via regression in six
studies. Classification was utilized for the allocation of
a new subject to a specific outcome (for example, burn
patient needing a grafting versus healing via secondary
intention). Regression was used in studies aiming to recre-
ate a prediction of a postoperative outcome (postopera-
tive CT scan, postoperative 2D photograph, and predicted
wound size).

Risk of Bias Assessment

The risk of bias was assessed via the QUADAS-2 tool
for risk of bias assessment and concerns over applicabil-
ity (Fig. 2). The majority of studies had an unclear risk
of bias (RoB) in the patient selection (n = 20) and index
test domains (n = 24). Most had a low RoB by the refer-
ence standard (n = 39) and flow and timing domains
(n = 35). For applicability concern, more than half of the
studies had a low risk of RoB regarding the patient selec-
tion, index test, and reference standard domains (n = 32,
n = 33, and n = 38 respectively).

6

DISCUSSION

This is the first systematic review focusing on the
application of ML in plastic surgery, adding to previous
reviews on Al in the specialty.”” After careful selection
of studies that demonstrated the clinical application of
these algorithms, we identified 51 articles describing
the application of 103 ML algorithms. In our review, the
mean accuracy for diagnosis prediction, outcome predic-
tion, and preoperative planning was 88.80%, 86.11%, and
80.28%, respectively. The model with the highest mean
accuracy was NNs (88.25%), followed by SVMs (88.02%),
decision trees/random forest (78.75%), and linear
regression (76.85%).

Similar findings have been reported in systematic
reviews of other surgical specialties. In orthopedic sur-
gery and neurosurgery, the most common models utilized
have been Neural Networks (NNs), followed by support
vector machines (SVMs) and logistic regression (LR).*™
Outcome prediction of ML models in these specialties
ranged from 70% to 97%, which is in line with the find-
ings of this report®” Nonsurgical specialties have also uti-
lized NNs and SVMs the most frequent, with accuracies
approaching 96% depending on the specialty and model
intent.”” The reason behind this preference is potentially
that NN, SVM, and DT most closely resemble the cogni-
tion behind clinical judgment, where clinicians aim to
derive outcome classifications based on multiple, nonlin-
ear inputs. In plastic surgery, ML demonstrated potentially
superior accuracy in diagnosis and outcome prediction
when compared with clinician judgment. In burn surgery,
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Fig. 2. Summary of the QUADAS-2 (Quality Assessment on Diagnostic Accuracy Studies-2) analysis.

models included in this review were able to classify burn
thickness with an accuracy of up to 99.3%, in contrast to
the 60%-70% achieved by surgeons.?"”* Models have also
demonstrated the ability to predict mortality rates with an
accuracy of 93%, outperforming commonly used predic-
tive models such as the Belgian score, Boston score, and
APACHE II with a sensitivity of 72%, 66%, and 81 %, respec-
tively.”” In microsurgery, models produced high accuracy
in prognosis of free flap failure (66%), whereas com-
monly used prognostic surgical risk calculators have been
deemed unreliable for head and neck and breast micro-
surgical reconstruction (Brier score <0.01 and 0.09-0.44,
respectively).””” In addition, ML models demonstrated

10

a predictive capacity for outcomes for which predictive
models have not yet been developed but may assist the
surgeon in the clinical workplace. Examples include pre-
diction of AKI in burn patients, mortality from necrotizing
infections, and postoperative surgical outcomes in cranio-
synostosis surgery and reconstructive surgery following
craniosynostosis correction.?”:4:5

ML in plastic surgery has an incredible potential to
advance patient care, but it is still in its infancy. This review
has highlighted several patterns in successful application.
Whenever a diagnosis is solely reliant upon a visual stimu-
lus, for example 2D photography or CT, ML has consis-
tently and reliably outperformed surgeons’ diagnostic
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accuracy.!##799404651535963 Further, in conditions in which

there are well-established correlations between certain
risk markers and an outcome of interest, such as deranged
blood tests on admission and AKI in burn patients,
ML vyielded highly accurate predictive algorithms.”*
However, attempts to include weakly related risk markers
resulted in algorithms that had an overall lower predictive
accuracy, rendering them unsafe for clinical practice. This
review further identified that some plastic surgery subspe-
cialties, such as hand surgery, have yet to incorporate this
technology. This may be due to the challenging nature of
classifying potential outcomes (eg, classification of hand
function outcomes), or lack of data, yet future studies
should aim to harvest the potential of this technology.

From a technological standpoint, this review identified
three key areas to improve future algorithms, that is by tap-
ping into the potential of expanding the dataset size using
data augmentation, utilizing novel deep learning models,
and making proper use of algorithm validation in research.
Data augmentation can be invaluable in the creation of
future algorithms, solving the main obstacle of accessibility
to large amounts of data needed to train these models. It
is a process by which one can artificially enhance the diver-
sity of a patient database without actually collecting new
data. (See figure, Supplemental Digital Content 1, which
displays data augmentation utilizing random cropping,
random rotation, and mirroring (horizontal flipping). A
single datapoint has now been augmented to seven novel
datapoints. http://links.lww.com/PRSGO /B676.)

This was utilized in only five studies in this review.
O’Neil et al utilized data augmentation to enhance a data-
base of 11 patients to 269, allowing the creation of an algo-
rithm to predict the probability of total free flap failure
in microvascular breast reconstruction.”* Until large-scale
anonymized medical datasets become more readily avail-
able, such as the OpenSAFELY platform, by tapping to this
potential of data augmentation, clinicians can overcome
the challenges of limited patient datasets. Secondly, future
research could substantially benefit from utilizing more
recent advances in the field of NNs and deep learning.
Compared with traditional ML, deep NNs can process vast
amounts of data efficiently and discover complex underly-
ing patterns in the data at scale. A limitation here is the
large volume of appropriately structured data needed to
train these models. Lastly, future research should ensure
that all algorithms created are validated before testing.
Separating the validation and test sets is crucial because it
prevents overfitting of an algorithm to a set of given data
and reports a misleading higher performance. Our review
identified that only 10 of the 51 studies utilized validation,
indicating that there is a high risk of bias in the remaining
studies, as the high accuracies of the algorithms could be
the result of overfitting.

The evidence in this study is limited by the lack of high-
quality level I evidence. The existing studies are mostly
small retrospective case series that are inherently at the risk
of bias. There are no prospective, randomized controlled
trials evaluating these technologies in the clinical setting
comparing them with clinician acumen, which limits our
comparison on the safety and utility of the technologies.

Machine Learning in Plastic Surgery

Further, the mean accuracy, sensitivity, and specificity of
included algorithms were reported collectively for all algo-
rithms, rather than performing subgroup analysis based
on the condition examined because of insufficient studies
in the specialty. This pooling of results is not an indication
of the accuracy of any individual model, where each algo-
rithm should be examined in isolation. However, this still
provided an invaluable insight into the accuracy of these
algorithms in plastic surgery. Lastly, because of the limited
MeSH terms currently utilized in ML and medicine, poten-
tially important studies on the topic may have been missed.
These are expected to be minimal, as we performed a wide
library search, which was also completed by extensive refer-
ence checking to provide an accurate, up-to-date review.

CONCLUSIONS

ML has the potential to enhance clinical decision-
making in plastic surgery by making highly accurate diag-
nostic and outcome predictions; however, the technology
is still in its infancy. There is vast heterogeneity between
published studies in regard to the clinical task the algo-
rithms are designed on and the model utilized, thus not
allowing for data synthesis and meta-analysis. There is a
pressing need for larger prospective, randomized control
trials for level I and II data, where these algorithms are
utilized in the clinical setting. Future research could ben-
efit from larger datasets, data augmentation, state-of-the-
art deep learning models, and more rigorous validation
during design.
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