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Simulating a chemically fueled molecular motor
with nonequilibrium molecular dynamics
Alex Albaugh 1 & Todd R. Gingrich 1✉

Most computer simulations of molecular dynamics take place under equilibrium conditions—

in a closed, isolated system, or perhaps one held at constant temperature or pressure.

Sometimes, extra tensions, shears, or temperature gradients are introduced to those simu-

lations to probe one type of nonequilibrium response to external forces. Catalysts and

molecular motors, however, function based on the nonequilibrium dynamics induced by a

chemical reaction’s thermodynamic driving force. In this scenario, simulations require che-

mostats capable of preserving the chemical concentrations of the nonequilibrium steady

state. We develop such a dynamic scheme and use it to observe cycles of a particle-based

classical model of a catenane-like molecular motor. Molecular motors are frequently modeled

with detailed-balance-breaking Markov models, and we explicitly construct such a picture by

coarse graining the microscopic dynamics of our simulations in order to extract rates. This

work identifies inter-particle interactions that tune those rates to create a functional motor,

thereby yielding a computational playground to investigate the interplay between directional

bias, current generation, and coupling strength in molecular information ratchets.
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Molecular motors are ubiquitous in biology. Proteins like
kinesin1 and myosin2 transduce free energy, hydrolyz-
ing adenosine triphosphate (ATP) to power mechanical

work3–6. These motors operate by coupling ATP hydrolysis to
linear motion, carrying cellular cargoes along microtubule and
actin tracks, respectively. Those natural motors have also been
engineered to modify their performance. Mutated kinesin can
process further along microtubule tracks than wild type7,8 or
rapidly cease activity in response to small molecules9. Myosin can
be engineered to move along an actin track in the opposite
direction of the wild type motor10,11. Despite those successes
modifying existing motors, it remains challenging to design
molecular interactions to build similar machines from the
ground up.

Chemists have sought to build those machines using the
principles of the biological motors but with different synthetic
building blocks12–14. Like the biological inspiration, the synthetic
machines should rectify thermal fluctuations into directed motion
by harvesting free energy from chemical fuel, a goal first realized
by the artificial motor of Wilson et al.15. One challenge in
designing these machines is that the mechanism is typically
considered in terms of the kinetics of elementary steps while the
design is more naturally thought of in terms of the strength of
interactions between molecular components. Connecting those
interactions to the ultimate dynamical function is particularly
challenging because microscopic motors operate in a noisy
regime characterized by stochastic fluctuations16,17.

In equilibrium situations, computer simulations have proven to
be particularly useful at bridging that connection between
molecular design and dynamics, particularly in the presence of
noise18. The nonequilibrium dynamics of molecular motors,
however, preclude straightforward application of equilibrium
simulation methods. Equilibrium dynamics moves in forward and
reverse directions with equal probability, so a directional motor
requires nonequilibrium conditions powered by a chemical
fuel3,6,19,20. To capture the nonequilibrium behavior in simula-
tions, a number of different strategies have been employed. One
approach aims to describe different equilibria of a motor, e.g., one
with a fuel bound and one with the fuel unbound. The none-
quilibrium dynamics is induced by externally imposing time-
dependent swaps between these energy surfaces21–27. A com-
plementary body of work breaks the time-reversal symmetry of
equilibrium dynamics by imposing forces or torques on the
motor28–33. Both approaches can obscure how the chemistry
couples to the mechanical motion, and that mechanochemical
coupling is central to a motor’s function6,34. To explicitly capture
that coupling, it is necessary to continually resupply fuel and
extract waste from a simulation so as to sustain a nonequilibrium
steady state (NESS), a strategy implemented with a minimal
kinesin-like walker model35 and with Janus particles and sphere-
dimers motor models that move along self-induced concentration
gradients (diffusiophoresis)36–39.

Here we present a model motor and fuel with sufficiently
simple pair potentials that the steady-state dynamics can be
directly simulated, with a nonequilibrium environment main-
tained by external baths. Our motor is essentially that of Wilson
et al.15, where a reaction biases the relative motion of two
interlocked rings in a preferred direction. We show how simu-
lations can be used to quantify motor performance and tradeoffs.
Armed with the explicit particle-based model, we analyze the
resulting currents using a nonequilibrium Markov state frame-
work, with which we aim to more directly connect the stochastic
thermodynamic analysis of motors40–42 with particle-based
simulations. The model and methods we report serve as a test-
bed for exploring how inter-particle interactions affect the
operation of a molecular motor.

Results
Fueling a nonequilibrium steady state with a classical fuel
model. Consider the dynamics of a motor protein in the presence
of ATP, adenosine diphosphate (ADP), and inorganic phosphate
(P). In an ideal solution, the reversible chemical reaction ATP ⇌
ADP + P will relax into an equilibrium with equilibrium constant

K ¼ ½ADP�½P�
½ATP� ¼ e�βðμ0ADPþμ0P�μ0ATPÞ; ð1Þ

where μ0ADP, μ
0
P, and μ0ATP are standard-state chemical potentials

and β is the inverse temperature in units of Boltzmann’s constant
kB. At chemical equilibrium, the motion of the motor must obey
detailed balance, precluding the protein from exhibiting net
motion. The situation is altered if external means prevent the
chemical reaction from reaching equilibrium, for example, if ATP
is fed into the system while ADP and P are extracted. Provided
the reaction of ATP is suitably coupled to the protein’s motion,
the fuel’s free energy gradient pushes the motor into a NESS with
net directed motion, giving rise to currents. In so-called tightly
coupled motors, each reaction event correlates with a configura-
tional change of the motor. For example, when F1-ATP synthase
generates work from ATP43, each catalyzed ATP hydrolysis
corresponds almost one-to-one with a 120° rotation of a rotor44.
Other motors are loosely coupled, with motor motion only
weakly correlated with fuel consumption45.

That mechanochemical coupling can be realized in a strictly
classical model, provided the model exhibits a reversible
transformation between fuel and waste and that a continuous
influx of fuel and outflow of waste prevents relaxation to
equilibrium. It is furthermore necessary that the model fuel
exhibit metastability, so that interconversion between fuel and
waste is slower than fuel injection and waste removal. We
constructed the classical fuel out of tetrahedral clusters of
volume-excluding particles, as shown in Fig. 1. Four such
particles, colored blue, are bonded together to form a tetrahedral
shell. A single unbound volume-excluding particle, colored red,
can be kinetically trapped inside the tetrahedron. A filled
tetrahedral cluster (FTC) does not retain its red central particle
(C) indefinitely. Rather, a rare thermal fluctuation inevitably
allows the tetrahedral cluster to contort enough for the kinetically
trapped C to escape, leaving behind an empty tetrahedral cluster
(ETC). Consistent with microscopic reversibility, the reverse
process is also possible. At equilibrium, the flux from FTC→
ETC + C would balance the reverse flux of ETC + C→ FTC.
Since the ETC + C state is both entropically and energetically
favorable, equilibrium would strongly favor the empty tetrahedra.
An initial concentration of FTC fuel would quickly deplete to its
near-zero equilibrium concentration if not for grand canonical
Monte Carlo (GCMC) chemostats, which provide a mechanism
to hold the chemical potentials for the three different species at
unequilibrated values. Consequently, within a simulation cell, the
FTC, ETC, and C species are stochastically injected and removed
so as to maintain a NESS in which the FTC→ ETC + C reaction
is typical. The reverse reaction, though possible, is practically
unobserved. Because the statistical consequences of nonequili-
brium driving forces are present even in strictly classical
dynamics, it is not necessary to confront the quantum-
mechanical complexities presented by chemical bond breaking.
Rather, the classical model suffices as a practical way to address
fundamental questions about the impact of pairwise interactions
on dynamical function.

A classical motor model. We aimed to engineer a model motor
capable of harvesting the free energy of a NESS with a high
concentration of FTC and low concentrations of ETC and C,
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motivated by the first synthetic, autonomous, chemically fueled
molecular motor of Wilson et al.15. Their motor is a catenane
consisting of two interlocked rings. The smaller of the two rings, a
benzylic amide, shuttles around a track formed by the larger ring.
On that track, Wilson et al. engineered two fumaramide binding
sites as well as two adjacent hydroxyl groups that catalyze the
decomposition of a bulky fuel (9-fluorenylmethoxycarbonyl
chloride) into waste products (CO2 and dibenzofulvene). The
relative positioning of binding and catalytic sites breaks symmetry
such that fuel reaction induces directed motion, the kinetics of
which have been expressed elegantly in terms of an information
ratchet46,47, where directed motion arises from the gating of
natural thermal diffusion in a preferred direction3,48–50. That
mechanism relies on steric considerations; the fuel reacts more
slowly at a catalytic site when the shuttling ring is near enough to
block access to the catalytic site. The same sort of mechanism
underlies our coarse-grained, classical design. The kinetics of

catalyzed fuel reactions must be sensitive to the proximity of the
shuttling ring.

In our model, that need is satisfied by introducing inter-
molecular interactions between the shuttling ring and the
components of the model fuel. As described briefly in Fig. 1
and more thoroughly in Methods, we construct a motor from two
interlocking rings of particles. The smaller green ring has
attractive interactions with orange binding sites on the larger
ring. The particles of FTC, ETC, and C molecules have
interactions that encourage the FTC→ ETC + C reaction at
the white catalytic sites. Following the reaction, the C particle
remains at the catalytic site as a blocking group, which the
shuttling ring cannot diffuse past. Proximity of the shuttling ring
to a catalytic site decreases the rate of catalysis relative to the
distal catalytic site. This imbalance of rates, along with the
nonequilibrium replenishment of FTC and removal of ETC and
C, yields net directed motion when the pair potentials are suitably
tuned, a point we return to in a more detailed discussion of the
mechanism.

Dynamics. The dynamics of the fueled motor were evolved in
time by mixing the Langevin dynamics of the particles with
GCMC chemostats that maintained the NESS. The Langevin
equations of motion for each particle i are

_ri ¼
pi
mi

_piðtÞ ¼ �∇UðriðtÞÞ �
γ

mi
piðtÞ þ ξiðtÞ;

ð2Þ

where γ is the friction coefficient, pi is the momentum of particle
i, ri is the position of particle i, mi is the mass of that particle, U is
the potential energy, and ξi is white noise with hξii ¼ 0 and
hξiðtÞξiðt0Þi ¼ 2γkBTδðt � t0Þ at temperature T. All model para-
meters are reported in non-dimensional units as described in
Methods.

The simulation box consists of two concentric cubes with an
inner cube and an outer cube, shown in Fig. 1. GCMC moves
occur between the inner and outer boxes and serve to insert and
remove FTC, ETC, and C from the system. The motor itself (the
two interlocked rings) is confined to the inner box with a wall
potential, but the wall potential is not applied to the FTC, ETC, or
C molecules, which freely diffuse between the two boxes and can
cross the periodic boundaries of the outer box. Since GCMC
insertions and deletions occur in the space between the inner and
outer box and the motor is confined to the inner box, the motor
will not be directly affected by the GCMC moves. However, the
motor does feel the indirect effect of the nonequilibrium
concentrations since the timescale for diffusion is fast compared
to the lifetime of the FTC. After every 100 time steps of Langevin
dynamics, a GCMC trial move is chosen uniformly from six
options—an insertion or deletion of the three species: FTC, ETC,
or C. These moves are conditionally accepted with a Metropolis
factor that depends on the set chemical potentials of the three
species and their instantaneous concentrations. As described in
Methods and the Supplementary Information (SI), the GCMC
procedure must account for the internal degrees of freedom of the
FTC and ETC clusters51,52. Due to those internal degrees of
freedom, the GCMC acceptance probabilities directly depend on
μ0 � μ� A0, the applied external chemical potential less the
standard-state Helmholtz free energy. The strongly driven regime
corresponds to having a high μ0FTC but a low μ0ETC and μ0C. Under
those conditions, the typical process starts by inserting FTC into
the outer box. This FTC diffuses into the inner box where it
interacts with the motor and gets converted into ETC and C.

Fig. 1 Molecular motor model with nonequilibrium simulation setup. Top:
a tetrahedral cluster formed from two types of particles can transition
between filled tetrahedral cluster (FTC) and empty tetrahedral cluster
(ETC) plus central particle (C) states while executing Langevin dynamics at
a fixed temperature. Chemical potentials for each species (μFTC, μETC, and
μC) are regulated with grand canonical Monte Carlo chemostats to drive
the reaction away from equilibrium. Bottom: a simulation cell containing a
model motor driven at the nonequilibrium steady state fuel concentrations.
The motor is constrained to occupy the inner box (shaded yellow) through
a Lennard–Jones wall potential while the GCMC chemostats insert and
remove FTC, ETC, and C only from the space between the inner and outer
boxes (white background). FTC, ETC, and C do not experience the
Lennard–Jones wall potential and freely diffuse between the inner and outer
boxes. The motor consists of a small shuttling ring (green particles) that
diffuses around a larger ring composed of two shuttling-ring–binding sites
(orange particles), each adjacent to a three-particle catalytic site (white
particles). The remainder of the larger ring is made of inert particles (black)
that only have mildly repulsive interactions with other particles. The
catalytic sites speed up the FTC→ ETC + C decomposition due to
attractions between white catalytic particles and the blue and red particles
of FTC. Upon their escape, the red C particles can linger around the
catalytic sites, blocking the shuttling ring and ultimately gating diffusion to
generate net directed current.
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These waste products then diffuse back into the outer box where
they are removed by the GCMC chemostats.

Bias, current, and coupling efficiency. The motor and fuel
models are characterized by numerous parameters controlling the
form and strength of pairwise interactions. We first discovered
parameters for the fuel that resulted in the desired metastability of
the FTC state. Subsequently, we scanned parameter spaces to
identify the interactions between motor and fuel that would
reliably generate current, landing upon two sets of interactions,
herein referred to as Motor I and Motor II. These two motors
differ only subtly; Motor I features slightly stronger attractions
between the shuttling ring and binding and also between the C
particles and the catalytic site. The full parameterization of both
motors can be found in Appendix D of the SI.

The behavior of Motor II in an underdamped regime (γ= 0.5)
with a moderate driving force is shown in Fig. 2 (see also
Supplementary Movie 1). The NESS fuel concentration only
slightly alters the distribution of the motor configurations relative
to equilibrium with no FTC, ETC, or C present. In both cases, the
steady-state location of the shuttling ring concentrates around the
binding sites. Despite that similarity between the equilibrium and
NESS stationary distributions, the NESS dynamical behavior
deviates markedly from equilibrium. In the presence of the NESS
driving, the total number of clockwise (CW) and counter-
clockwise (CCW) cycles do not balance, corresponding to net
current. Figure 2 also reflects two important manners in which
the present model motor differs from biological machines like
ATP synthase. Firstly, our motor is fairly loosely coupled—
Fig. 2b, c shows that a single net cycle requires approximately 35
catalyzed FTC→ ETC + C reactions. Secondly, the model fuel is
less deeply metastable than ATP. Even in the absence of a motor’s
catalytic site, FTC can degrade on simulation timescales. As such,
Fig. 2c distinguishes between catalyzed decompositions that occur
in proximity to the catalytic sites and the total decompositions
that could occur elsewhere.

In Fig. 3, we report how adding more fuel increases the CW
bias, increases the current, and decreases the coupling. Those
three measures of motor performance were calculated by
monitoring the number of CW and CCW shuttling ring cycles,
nCW and nCCW, respectively. If the motor’s goal is to generate CW
cycles then one measure of accuracy is the CW bias, the fraction

of cycles in the CW direction:
nCW

nCW þ nCCW
: ð3Þ

The current, the net cycles per time, is similarly computed from
nCW and nCCW as

nCW � nCCW
tobs

; ð4Þ

where tobs=Nsteps Δt is the observed simulation time and Nsteps is
the number of simulation time steps of size Δt. Finally, the
coupling between catalyzed reaction and net CW cycles is

nCW � nCCW
ncat

; ð5Þ

where ncat counts the number of FTC decompositions occurring
with center of mass within 2 units of a catalytic particle.

Both motors exhibit similar responses to changes in FTC
concentration, illustrating a tradeoff: greater bias comes at the
expense of lower current and lower coupling. We anticipated a
maximum coupling of 0.5, corresponding to a tightly coupled
cycle with one catalyzed reaction at each catalytic site. Neither
motor achieves that limit. Rather, they are loosely coupled, with
catalyzed reactions probabilistically gating diffusion and inducing
no major conformational changes in the motor itself. Though the
coupling efficiency of these motors is about one order of
magnitude below the maximum, we find it encouraging that
such a crudely designed toy model can nevertheless convert
roughly 1/10 of the catalyzed reactions into directed current.

Since we have described simulations in the underdamped
regime (γ= 0.5), it is natural to wonder if the motor’s current is
dependent on inertia. Figure 4 shows that the current generation
indeed persists in an overdamped regime (γ= 10) more reflective
of the viscous low Reynolds number environment experienced by
in vivo biological motors. While increased damping reduces the
current by an order of magnitude, it also causes the CW bias of
both motors to increase, with Motor I approaching 100%.

An eight-state rate model. To rationalize the dynamics of the
explicit NESS simulations, it is productive to analyze the rates for
transitioning between discrete coarse-grained states. Inspired by a
simple six-state Markov model46,47 that captures the mechanism
of the Wilson et al. motor15, we harvested our simulation data to

Fig. 2 Behavior of a motor away from equilibrium. Motor II was simulated with μ0FTC ¼ 0:5, μ0ETC ¼ �10, and μ0C ¼ �10 corresponding to an average of
about 8.5 FTC molecules, 0.1 ETC molecules, and 0.9 C particles in the simulation box. a The distribution for the shuttling ring position, measured as the
index of large ring particle nearest to the shuttling ring center of mass, for NESS and equilibrium (Eq.) conditions in the absence of FTC, ETC, and C. An
unfolded schematic of the large ring is superimposed over the particle indices to visualize the particle types at each location around the large ring. Orange
particles are binding sites, white particles are catalytic sites, and black particles are inert. b In the NESS conditions, the shuttling ring executes more
clockwise (CW, orange) than counterclockwise (CCW, blue) cycles around the large ring when measured in the frame of the large ring. c Decomposition
reactions FTC→ ETC + C include those catalyzed by the motor (green) and spontaneous reactions in the bulk, which combine to give the total (pink).
Decompositions occurring within 2 distance units of a white catalytic particle are classified as having been catalyzed by the motor. Means and standard
deviations are generated from 50 independent simulations for each motor.
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collect statistics of the transition times between the eight coarse-
grained states depicted in Fig. 5. Those states are determined by
three bits of information: (1) which half of the large ring is
nearest the shuttling ring center of mass, (2) whether the first
catalytic site is blocked, and (3) whether the second catalytic site
is blocked, with blockage defined as having at least one free C
within 1.2 distance units of a catalytic site’s middle particle.

Due to the symmetry of the problem, we focus on seven rates
for transitions between these eight states: kattach,close and
kcleave,close for addition and removal of a blocking group at the
catalytic site nearest the shuttling ring, kattach,far and kcleave,far for
the addition and removal rates from the catalytic site farthest
from the shuttling ring, kCW and kCCW for CW and CCW
rotations of the shuttling ring when one catalytic site has a
blocking group, and ksym for rotations of the shuttling ring when
no blocking groups are present. The rates kCW and kCCW
unambiguously imply a direction of shuttling ring motion, while
ksym results in an even split between CW and CCW. At each
NESS simulation time step, the motor’s configuration is classified
as one of the eight states. If one makes a Markovian assumption,
the rate for the transition from coarse-grained state A to state B is

kAB ¼ 1
pssðAÞ

NAB

tobs
: ð6Þ

Here pss(A) is the steady state probability of being in state A and
NAB is the number of transitions from A to B observed in time
tobs. To extract the best rate estimate, transitions that are

statistically equivalent by symmetry were combined, e.g.,
kcleave;far ¼ 1

ttobs

N21þN34þN56þN87
pssð2Þþpssð3Þþpssð5Þþpssð8Þ. Because we simulated a soft

system with finite time steps, a transition between two
disconnected states of Fig. 5 was very occasionally observed,
but we neglected these transitions when constructing the
rate model.

To analyze how the interplay between rates generates current,
it is productive to decompose the eight-state rate model into four
fundamental cycles (FC1–FC4), shown in Fig. 5. Any possible
cycle on the graph can be formed by a linear combination of this
(non-unique) set of fundamental cycles. Only FC1 gates shuttling
ring diffusion into directed motion at both catalytic sites.
Traversing FC1 in the CW direction implies that the shuttling
ring completes one CW cycle. A CW traversal around FC2 or
FC3 similarly corresponds to CW shuttling ring cycling.
However, the CW bias is only half that of FC1 because the
shuttling ring direction is ambiguous when FC2 and FC3 pass
through the unblocked states 4 and 6. The final cycle, FC4, is a
futile cycle. Despite burning fuel to traverse FC4, no net cycles of
the shuttling ring are generated.

An advantage of the fundamental cycle perspective is that the
direction of the steady state currents follows from the ratio of
rates around the closed fundamental cycles. For example,
fundamental cycles FC2 and FC3 share the ratio

R ¼ kattach;far
kattach;close

kcleave;close
kcleave;far

kCW
kCCW

: ð7Þ

Fig. 3 Response of the motors to fuel concentration. By adjusting μ0FTC from –1 to 1 in increments of 0.25 and holding fixed μ0ETC ¼ μ0C ¼ �10, the typical
number of fuel molecules 〈NFTC〉 was tuned in accordance with Eq. (B10). The clockwise bias (a, Eq. (3)), current (b, Eq. (4)), and coupling (c, Eq. (5)) of
the two motors were computed from 50 independent simulations of tobs= 1 × 106 units of time each. Error bars represent the standard error across the
50 simulations.

Fig. 4 Response of the motors to increased damping. For a fixed NESS with μ0FTC ¼ 0:5, μ0ETC ¼ μ0C ¼ �10 (corresponding to 〈NFTC〉= 8.6, 〈NETC〉= 0.1,
and 〈NC〉= 0.9), clockwise bias (a), current (b), and coupling (c) were analyzed from simulations with variable friction coefficient γ. Reported data are the
means and standard errors of 50 independent simulations of tobs= 1 × 106 units of time each. As the friction increases, the overall rates all decrease,
causing some high-friction simulations to have no cycles in either direction. Those trials were excluded from the clockwise bias statistics, but were still
included in the calculation of the current and the net cycles per catalyzed reaction.
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We call the logarithm of this ratio the cycle affinity A ¼ logR,
and note that the steady state current around a FC must share the
same sign as A53. Because all four FCs have a cycle affinity that is
a non-negative multiple of A, the steady state current’s sign is
inherited from the sign of A. Put more succinctly in terms of R, if
R > 1 the shuttling ring will move CW and if R < 1 the shuttling
ring will move CCW.

Clockwise directionality. We develop our understanding of the
motor’s CW motion by building off an equilibrium reference, for
which R= 1 is required by time-reversal symmetry. There are
multiple ways to construct an equilibrium reference. For example,
we could simulate the motor’s equilibrium behavior when
〈NFTC〉= 〈NETC〉= 〈NC〉= 0. With no C particles that equili-
brium would confine the motor to states 4 and 6. Instead, we
constructed a reference state with non-vanishing 〈NC〉 and with
〈NFTC〉 ≈ 〈NETC〉 ≈ 0 by setting μ0C ¼ �3 and μ0FTC ¼ μ0ETC ¼ �10.
In this way all eight coarse-grained states and all transitions are
observed in the reference (which is essentially equivalent to an
equilibrium simulation with a single μ0C ¼ �3 chemostat). We
bias away from this equilibrium by increasing μ0FTC.

Figure 6a shows that only the two rate constants regulating the
blocking group attachment (kattach,close and kattach,far) respond
strongly to the fuel injection. Those attachment rates are
functions of the fuel concentration, as one might expect from
mass action kinetics when FTC reacts at the catalytic sites to leave
behind C as a blocking group. Across the range of FTC
concentration, the other five rates behave effectively the same
as in the 〈NFTC〉= 0 equilibrium reference state. To emphasize
that the attachment rates are functions of fuel concentration, we
adopt the notation kattach,*(〈NFTC〉). No argument is needed for

the other rates because those rates are effectively independent of
FTC concentration.

Since R= 1 at equilibrium,

kattach;closeð0Þ
kattach;farð0Þ

¼ kcleave;closekCW
kcleave;farkCCW

; ð8Þ

allowing the NESS R to be well approximated in terms of
attachment rates alone:

R � Rapprox ¼
kattach;farðhNFTCiÞ

kattach;farð0Þ
kattach;closeð0Þ

kattach;closeðhNFTCiÞ
: ð9Þ

Figure 6a shows that adding fuel increases attachment rates, both
attachment near and far from the shuttling ring, but the speed-
ups are not equal. Because kattach,far increases more steeply than
kattach,close, R > 1 and current is CW. Our analysis of R shows that
FC1, FC2, and FC3 all contribute to CW current, but FC1
contributes more strongly. By also monitoring the NESS
population of the eight states (Fig. 6b), we show that increasing
fuel takes population away from states 4 and 6, which lie on FC2
and FC3, but not FC1. The increase in CW bias with 〈NFTC〉 in
Fig. 3a can be viewed as a consequence of the fully ratcheted FC1
cycle becoming dominant.

We note that even with our analysis, it is not obvious how the
geometry of the design in Fig. 1 translates into the CW currents.
The fuel-dependent attachment rates both increase with FTC
concentration, and directionality is determined by which of those
rates rises up more rapidly with added NFTC. We anticipate it will
be possible to preserve the motor geometry and design changes to
the motor’s pairwise potential to yield R < 1 and CCW cycles.

Fig. 5 A coarse-grained model for understanding motor mechanism. Motor dynamics can be coarse grained onto an eight-state kinetic model based on
the position of the shuttling ring relative to the two binding sites and the presence or absence of at least one C particle blocking group at each catalytic site.
Due to symmetries there are seven macroscopic rates in the system, labeled as transitions between certain states. The kinetic model decomposes into four
fundamental cycles, shown in purple, with mean steady-state currents oriented in the same direction as the cycle affinities.
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Thermodynamics. We have described an entirely kinetic analysis,
a discussion that sufficies to explain the motor’s directionality. If
one wants to understand the thermodynamic cost of fueling the
motor, however, care must be taken in connecting the kinetics
with thermodynamics. At the fine-grained level of the NESS
simulations, each step is microscopically reversible—both the
chemostat GCMC moves and the Langevin time steps may be
executed in reverse, backtracking and undoing the forward
dynamics. At this microscopic level, the ratio of probabilities of
forward and reverse steps measures the increasing entropy of the
ideal particle reservoirs. We caution, however, that the link
connecting forward and reversed rates to thermodynamics is
more complicated upon coarse graining the configuration space
(e.g., into the 8-state kinetic model). In that picture, it becomes
important that the forward and reversed transitions between
course-grained states often proceed via distinct pathways.

To make this point more explicit, we elaborate upon the
transitions between states 1 and 4, characterized simply by
kcleave,close and kattach,close in Fig. 5. In equilibrium simulations
with only C and no tetrahedral clusters, the pathways for cleavage
and attachment are identical, but simulations with FTC reveal
differing pathways for cleavage and attachment (see Supplemen-
tary Movies 2 and 3). A minimal model to address the motor’s
thermodynamics must separate the pathways into the
equilibrium-like process mediated by the C reservoir and an
additional pathway mediated by the FTC and ETC reservoirs.

In light of these distinct mechanisms, we note that the
previously described affinities A are cycle affinities of the Markov
model and not thermodynamic affinities, which relate to the
entropy produced by the motors. That physical entropy
production can dramatically exceed the Markov model’s entropy
production when the rates of distinct pathways are clumped
together as in Fig. 5. Consider, for example, Fig. 7, which
illustrates a refinement to the kinetic model that resolves whether
cleavage and attachment events were mediated by C alone (kCattach
and kCcleave) or by a tetrahedral cluster reaction (kTCattach and kTCcleave).
The refinement does not alter the rate of shuttling ring current
provided kattach ¼ kCattach þ kTCattach and kcleave ¼ kCcleave þ kTCcleave.
Though the current is insensitive to the refined model, the two
Markov models produce entropy at different rates. Figure 7
Markov model includes additional cycles from state 1 to 4 and
back via the other pathway, and the entropy production
associated with those cycles is undetected by Fig. 5 model. In
other words, coarse graining yields a model that produces less

entropy than the fine-grained model, a well-known effect of the
data processing inequality that applies whether the coarse
graining combines together microstates or pathways54,55. It is
therefore notable that our simulations give access to the
reversibility of the trajectories in the full state space, not just
the reversibility of some reduced Markov models. We anticipate
that capability will be particularly beneficial for future studies of
the thermodynamic performance.

Discussion
The models and methods presented here demonstrate a compu-
tational strategy to study how pairwise interactions give rise to
dynamical function by simulating Langevin dynamics of a motor
model simultaneously with GCMC chemostats. One can imagine
carrying out similar, albeit vastly more expensive, simulations
using more detailed, realistic models of chemical motors, but we
highlight that our minimal toy model offers a tractable play-
ground for exploring principles. It provides practical access to
calculations of efficiency, accuracy, speed, and entropy produc-
tion in a nontrivial particle-based model, opening the door to
further explorations of thermodynamic and kinetic bounds56,57

that limit what sort of autonomous, steady-state motors can be
designed. Those studies of the interplay between fluctuations and
dissipation are commonly applied to abstract nonequilibrium
Markov jump models without explicitly specifying the micro-
scopic origin of the rates. We anticipate that the stochastic
thermodynamics community will benefit from this toy model that
enables an explicit connection between pair potentials and the
mesoscopic transition rates. We also anticipate that our approach
will be useful in testing proposed improvements to the motor’s
design58.

More concretely, our work should aid in the design and
implementation of autonomous mesoscale machines. While this
work was inspired by a molecular-scale motor15, the pairwise
potentials we use could more easily be built from mesoscale
colloid constructions, where interactions between subunits can be
tuned59. Significantly, we demonstrated that the motor maintains
directional current in the overdamped regime, which is relevant
to such colloidal diffusion. Although we do not expect our par-
ticular tetrahedral cluster fuel to be the most reasonable design on
which to build an experimentally accessible mesoscale machine,
we do hope the illustration and the methods will encourage more
designs that will soon be experimentally realized.

Fig. 6 Parameterization of the kinetic model from simulation. a The transition rates of the eight-state model from Fig. 5 and b populations for each of the
eight states for Motor II as a function of the average number of FTC present in the simulation 〈NFTC〉. c The ratio of rates Rð¼ eAÞ and the approximate ratio
from Eq. (9) as a function of FTC present. Data points show the average over 50 independent simulations of tobs= 1 × 106 units of time each. FTC number
is varied by changing μ0FTC from –10 and –1 to 1 in increments of 0.25. Data shown represent the mean and standard error from 50 independent simulations
at each data point.
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Methods
Model details. We used a modified Lennard–Jones (LJ) potential for all non-
bonded interactions between particles in the system. Unlike the standard WCA
potential60, which includes both r−12 and r−6 contributions in the repulsive
regime, we modified pairwise LJ potentials by introducing separate control over the
strength of the r−12 repulsive and r−6 attractive terms:

ULJðrijÞ ¼ 4ϵR;ij
σij
jrijj

 !12

� 4ϵA;ij
σ ij
jrijj

 !6

; ð10Þ

where σij is the average of the radii of particles i and j. The strength of the short-
ranged repulsive interaction between particles i and j is tuned by ϵR,ij, while that of
the long-range attractive interaction is tuned by ϵA,ij, as in61. All particles in the
system are volume-excluding (ϵR,ij > 0), but only some pairwise interactions are
attractive (ϵA,ij ≥ 0). The full set of interaction parameters for each type of particle
in the system is given in Supplementary Table 2.

The FTC fuel molecules are comprised of a four-particle tetrahedron bound
along the edges (blue) and a free central particle (red), depicted in Fig. 1. The edges
of the tetrahedron are held together with harmonic interactions that seek to
minimize the distance rij between particles i and j:

UharmonicðrijÞ ¼
1
2
kijr

2
ij: ð11Þ

The values of the spring constants kij are found in Supplementary Table 2. The
particle types of the tetrahedron are labeled as TET1, TET2, TET3, and TET4,
while the central particle is called CENT. Pairwise interactions between all of these
particle types are purely repulsive (ϵA,ij= 0). This ensures that FTC is a metastable,
kinetically trapped state and it also ensures that FTC, ETC, and C do not aggregate
in the simulation cell. Progress along the FTC→ ETC + C reaction pathway is
tracked by measuring r, the distance between the C particle and the center of mass
of the four tetrahedron particles. In non-dimensional units, the cluster is in the
FTC state when r ≤ 0.25, it is in the ETC + C state when r ≥ 0.8, and it is in an
intermediate transition regime, visited fleetingly, when 0.25 < r < 0.8.

The motor model is composed of two interlocked rings. A large ring consisting
of Nlarge= 30 connected beads functions as a track for a smaller shuttling ring
(green) with Nshuttle= 12 beads to diffuse or shuttle around, as depicted in Fig. 1.
The shuttling ring is made up of a single-particle type, labeled SHUTTLE. The large
ring is made up of three particle types: INERT particles that are purely volume-
excluding (black), BIND particles that have attractive interactions with the
shuttling ring (orange), and catalytic particles, labeled CAT1, CAT2, CAT3 (white),
that have attractive interactions with TET1, TET2, TET3, TET4, and CENT
particles to facilitate the decomposition of FTC to ETC + C. The ring is arranged
so that a three-particle catalytic site (CAT2-CAT1-CAT3 in CW order) is on the
CW side of a single-particle binding site, followed by a set of 11 inert particles
before the binding/catalytic motif repeats on the opposite side of the large ring. The
binding sites, located at large ring indices 0 and 15, are analogous to the
fumaramide residues of the Wilson et al. motor15. The catalytic sites, located at
large ring indices 1–3 and 16–18, are analogous to the hydroxy groups of the
Wilson et al. motor. The attractive interaction between C (CENT) particles and the
middle catalytic particle (CAT1) is particularly strong so as to hold the C particle
near the catalytic site as a blocking group for the shuttling ring after a catalyzed

reaction has occurred. Those blocking groups are especially effective at preventing
the diffusion of the shuttling ring because C particles also have particularly strong
repulsions with the shuttling ring particles (SHUTTLE).

The rings have intramolecular interactions similar to those used for coarse-
grained polymer models where bond and angle potentials maintain geometry and
the modified LJ potential of Eq. (10) serves to include volume exclusion. The
bonded interactions between adjacent beads in the motor rings is given by a finitely
extensible nonlinear spring (FENE) potential:

UFENEðrijÞ ¼ � 1
2
kF;ijr

2
ij log 1� jrijj

rmax;ij

 !2" #
: ð12Þ

Here rij is the displacement vector between particles i and j, kF,ij is the FENE force
constant, and rmax;ij is the maximum extension between the particle pair. Groups of
three adjacent ring particles also have angular interactions to maintain the overall
circular geometry of the ring:

UangleðθijkÞ ¼
1
2
kA;ijk θijk � θ0;ijk

� �2
; ð13Þ

where i is the index of the middle particle of the three adjacent i, j, and k particles,
kA,ijk is the angular force constant, θijk is the angle formed by the three particles,

and θ0,ijk is the equilibrium angle. For the shuttling ring θ0;ijk ¼ π 1� 2
Nshuttle

� �
and

for the large ring θ0;ijk ¼ π 1� 2
N large

� �
. The bond and angle parameters as well as

the modified LJ parameters for all of the motor particles are found in
Supplementary Tables 2 and 3. The shuttling ring and large ring are placed in an
interlocked configuration. No bonded (FENE or angular) interactions connect the
two rings as they can be held in an interlocked state through the volume exclusion
of the LJ interaction alone. The shuttling ring is therefore free to diffuse around the
large ring.

Method details. To propagate the system dynamics forward in time we solve Eq.
(2) numerically with a time step of Δt= 5 × 10−3 for some number of time steps
Nsteps using the integrator of Athènes and Adjanor62:

p
jþ1

2
i ¼ pjie

�γΔt
2mi þ f ji

Δt
2 þ η

jþ1
2

i

rjþ1
i ¼ rji þ p

jþ1
2

i
Δt
mi

pjþ1
i ¼ p

jþ1
2

i þ f jþ1
i

Δt
2

h i
e�

γΔt
2mi þ ηjþ1

i ;

ð14Þ

where fi=−∇U(ri) is the force on particle i, rji � riðjΔtÞ is the position of particle i

at time jΔt, pji � piðjΔtÞ is the momentum of particle i at time jΔt, and each ηi is a
random vector with components drawn from a zero-mean Gaussian with variance
mið1� expð�γΔt=miÞÞkBT . Other choices of numerical integrator are possible63.
We performed all simulations in non-dimensional form with characteristic length
given by the LJ radius of an INERT particle, characteristic energy given by the
repulsive strength of the INERT–INERT interaction, and characteristic mass given
by the mass of an INERT particle. All of these values were then set to unity, i.e.
(σINERT= 1,mINERT= 1, ϵR,INERT–INERT= 1), respectively. All other particle masses
were also set to unity, and the only particles with non-unit radii were CENT

Fig. 7 Examining distinct pathways in the kinetic model. Thermodynamic interpretation requires separation into pathways, distinguished by their interplay
with the reservoirs. a The attachment rate kattach,close to pass from state 1 to 4 in Fig. 5 is a superposition of two rates: kCattach;close, the rate for a free C to
bind, and kTCattach;close, the rate for a C to be extracted from an FTC to create a blocking group. Even though each pathway is microscopically reversible, typical
transformations from 1 to 4 are not time-reversals of the typical transformations from 4 to 1. The former prefers the C pathway while the latter prefers TC.
b The distinction between forward and reversed pathways is detected by recording the distance between the C blocking group and the nearest tetrahedral
structure at the time of the attachment and cleavage transitions. Combining data from both close and far events with μ0FTC ¼ 1, μ0C ¼ �3, and μ0ETC ¼ �10,
the distribution of distances Pðrtet;minÞ shows attachment events have a high probability of being mediated by a tetrahedral cluster evidenced by the large
peak around the reaction distance of 0.8. By contrast, cleavage events have essentially no probability of happening via tetrahedral mediation.
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particles with σCENT= 0.45. We report data for simulations with kBT= 0.5 and
with γ= 0.5, except where otherwise noted. For completeness, the full set of par-
ticle mass and size parameters are given in Supplementary Table 1.

We performed a GCMC move every 100 Langevin time steps in order to
maintain the system at a steady state concentration of FTC, ETC, and C. The
GCMC moves were conditionally accepted so the chemostatted region of space
would target the grand canonical distribution

Pðr; pÞ ¼ 1
Ξ

eβμFTCNFTCþβμETCNETCþβμCNC�βHðr;pÞ

NFTC!NETC!NC!
; ð15Þ

where r and p are vectors of fluctuating length containing the coordinates for each
copy of each species and Ξ is the grand canonical partition function. The number
of copies of each species (NFTC, NETC, and NC) can be viewed as functions of r and
p, as can the total energy H(r, p), the kinetic energy K(p), and the potential energy
U(r). Though we are ultimately interested in unlabeled particles, it is simplest to
utilize unphysical labels for accounting purposes. Marginalizing over all equally
probable permutations of labels gives the density for unlabeled particles, which
lacks the denominator of Eq. (14).

In practice, the GCMC method described here differs slightly from a standard
implementation18 since two of the species coupled to external chemical potentials
(FTC and ETC) have internal degrees of freedom. Each GCMC chemostat move
begins by randomly and uniformly selecting which of the three species to act on
and whether to add or remove that species. The chemostat only acts on the outer
volume of Fig. 1, and all copies of the chosen species occupying that outer volume
are equally likely to be removed in the generated trial move. In the usual
Metropolis manner, that trial removal of the copy of species i is conditionally
accepted with probability

Pacc
i;removalðr; p ! r0; p0Þ ¼ min 1;NiðrÞe�βðUðr0 Þ�UðrÞþU0

i Þe�βðμi�A0
i Þ

h i
; ð16Þ

where U0 is the internal potential energy of the removed species, Z0
i is the canonical

partition function for a single i cluster in a box of volume V0, and A0
i ¼

�kBT logZ0
i is the associated free energy. In this work, we have operated in terms

of the shifted chemical potential μ0i � μi � A0
i so the conditional acceptance

probability was computed without needing to explicitly compute A0
i for the

different cluster types. We tune these shifted chemical potentials from μ0 ¼ �10 on
the low end to μ0 ¼ 1 on the high end.

The moves that add a cluster are more complicated because we must first
generate a configuration of the cluster52. We used Monte Carlo to pre-generate an
equilibrium ensemble of 10,000 configurations each of a single FTC cluster and of a
single ETC cluster. An addition move first uniformly selects one of those
Boltzmann-distributed configurations (a step which is moot when adding C). This
configuration is randomly rotated in space then randomly inserted into the
chemostatted volume. Velocities for the new particles are sampled from the
Boltzmann distribution to complete the generation of trial coordinates r0 and p0 .
Analogous to the removal moves, the addition is conditionally accepted with
probability

Pacc
i;additionðr; p ! r0; p0Þ ¼ min 1;

1
Niðr0Þ

e�βðUðr0 Þ�UðrÞ�U0
i Þeβðμi�A0

i Þ
� �

: ð17Þ

One confirmation that all three chemostats simultaneously function as
desired is the demonstration of ideality in the dilute limit, discussed further in
the SI.

These GCMC moves only occur in the space between the inner and outer
simulation boxes, depicted in Fig. 1. Our simulation boxes were concentric cubes
with inner side length Linner= 30 and an outer cube of side length Louter= 34. The
motor itself is confined to the inner simulation box so that its dynamics are not
directly perturbed by abrupt GCMC insertions and deletions. The motor is
confined to the inner box with a LJ wall potential:

UwallðriÞ ¼ 4ϵwall ∑
α¼x;y;z

σwall
rα;i � 1

2 Linner

 !12

þ σwall
rα;i þ 1

2 Linner

 !12" #
; ð18Þ

where ri= (rx,i, ry,i, rz,i) is the position of the ith motor particle and both boxes are
centered at the origin. We set ϵwall= 1 and σwall= 1. Particles of the FTC, ETC, and
C molecules do not experience this wall potential and move freely between the
inner and outer boxes. These species are also free to pass through the periodic
boundaries of the outer box, which we implemented using the minimum image
convention18.

Data availability
The data generated in this study have been deposited in a Zenodo.com repository under
accession code https://doi.org/10.5281/zenodo.4481182. Data are available for Figs. 2, 3,
4, 6, and 7.
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