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ABSTRACT The heterogeneity in severity and outcome of COVID-19 cases points out
the urgent need for early molecular characterization of patients followed by risk-strati-
fied care. The main objective of this study was to evaluate the fluctuations of serum
metabolomic profiles of COVID-19 patients with severe illness during the different dis-
ease stages in a longitudinal manner. We demonstrate a distinct metabolomic signa-
ture in serum samples of 32 hospitalized patients at the acute phase compared to the
recovery period, suggesting the tryptophan (tryptophan, kynurenine, and 3-hydroxy-
DL-kynurenine) and arginine (citrulline and ornithine) metabolism as contributing
pathways in the immune response to SARS-CoV-2 with a potential link to the clinical
severity of the disease. In addition, we suggest that glutamine deprivation may further
result in inhibited M2 macrophage polarization as a complementary process, and high-
light the contribution of phenylalanine and tyrosine in the molecular mechanisms
underlying the severe course of the infection. In conclusion, our results provide several
functional metabolic markers for disease progression and severe outcome with poten-
tial clinical application.

IMPORTANCE Although the host defense mechanisms against SARS-CoV-2 infection are
still poorly described, they are of central importance in shaping the course of the dis-
ease and the possible outcome. Metabolomic profiling may complement the lacking
knowledge of the molecular mechanisms underlying clinical manifestations and patho-
genesis of COVID-19. Moreover, early identification of metabolomics-based biomarker
signatures is proved to serve as an effective approach for the prediction of disease
outcome. Here we provide the list of metabolites describing the severe, acute phase
of the infection and bring the evidence of crucial metabolic pathways linked to
aggressive immune responses. Finally, we suggest metabolomic phenotyping as a
promising method for developing personalized care strategies in COVID-19 patients.

KEYWORDS COVID-19, SARS-CoV-2, longitudinal study, metabolomics, virus-host
interactions

More than a year has passed since the World Health Organization (WHO) announced
the COVID-19 outbreak as a pandemic in March 2020, following the rapid spread of

the SARS-CoV-2 virus (1). The clinical course of COVID-19 is versatile; the infection of the
SARS-CoV-2 virus not only varies in its severity from asymptomatic or mild and moderate
respiratory disease (80%) to clinically severe or critical life-threatening disease (20%) but
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also varies in a range of organs the disease can affect (2, 3). Diverse clinical trajectories
seem to be the result of the immune response differences between individuals (4).
Multiple innate and adaptive immune system pathways that produce inflammatory mole-
cules against the virus and virus-infected human cells are triggered after the SARS-CoV-2
entry in the cell, with characteristic overexpression of proinflammatory cytokines (e.g., IL-6,
TNF-a, IFN-g) known as cytokine storm in the most severe cases (4–6). The host's immune
responses typically involve changes in metabolic processes at the cellular level, reflecting
the host-defense mediators and underlying mechanisms (7).

Detailed understanding of the molecular mechanisms behind COVID-19 pathogene-
sis and inflammatory response is needed to predict and reduce individual risks, de-
velop therapeutic strategies, and reduce the overall mortality rate (around 2% globally
according to WHO data) (8). The human blood sera metabolome (defined as small mol-
ecules ,1500–2000 Da) reflects the organism's metabolic state and is widely used to
gain a deeper understanding of the pathogenesis of diseases. Recent reports of metab-
olomics studies highlight the pivotal role of cellular metabolites in programming
immune response to SARS-CoV-2 infection, but nevertheless, none of the studies so far
have addressed the metabolomic changes during the recovery of infection in a longi-
tudinal manner (9–13). Considering the extremely high heterogeneity of the COVID-19
disease and lack of promising predictive biomarkers, we believe that implications of
longitudinal metabolite profiling may be beneficial in understanding the underlying
mechanisms of the diverse course of the disease and promote the early identification
of people at increased risk of severe illness from COVID-19 and related complications.

We performed quantitative targeted metabolome analysis with liquid chromatogra-
phy-mass spectrometry (LC-MS) in blood sera of 32 hospitalized COVID-19 patients at the
acute phase (time of admission at the hospital) and the recovery phase (40 6 14.92 days)
of the disease (see Text S1 in the supplemental material for a detailed description of meth-
ods). We also included a group of 39 subjects without any acute infection or state from
the general population as controls. Written informed consent was obtained from every
participant before their inclusion in the study, and the study protocol was approved by
the Central Medical Ethics Committee of Latvia (No. 01-29.1.2/928).

As expected, the clinical blood tests revealed abnormal hematological parameters
for the majority of study participants at the time of hospitalization, with a high varia-
tion in platelet (202.94 6 65.26 mL) levels and low lymphocyte measurements
(0.64 6 0.56 mL), which coincides with previously reported lymphopenia as the hall-
mark of severe COVID-19 cases. We also observed a high variation of several markers
(e.g., alanine aminotransferase, bilirubin, lactate dehydrogenase, C-reactive protein)
indicating renal and hepatic dysfunction, myocarditis, inflammation, and coagulation,
which confirms the systemic response to the infection in our study cohort (2, 14) (see
Table S1 in the supplemental material).

Out of 51 metabolites analyzed by LC-MS, 22 metabolites showed significantly altered
levels (paired t test, FDR, 0.05) in the serum samples during the acute phase in compari-
son to the recovery phase (Table 1), where concentrations for 16 compounds were signifi-
cantly elevated, whereas 8 metabolites were decreased. The hierarchical clustering and
principal-component analysis of the obtained metabolomic profiles showed clear metabo-
lomics-based discrimination of samples collected in different phases of the disease and in-
dependent controls (Fig. 1A and B), indicating an altered metabolic activity during infec-
tion. Pathway analysis of longitudinally obtained COVID-19 patients’ metabolite profiles
revealed 13 significantly enriched pathways (FDR , 0.05), including phenylalanine, tyro-
sine, and tryptophan biosynthesis, d-glutamine and d-glutamate metabolism, and arginine
biosynthesis (Fig. 1C, Table S3). Statistical analysis was done with Metaboanalyst version
5.0 (15).

We found L-glutamine (Fig. 1D) as the most significantly changed amino acid
between the paired patients’ serum samples with reduced acute phase concentrations.
L-glutamine levels were also significantly lower in population controls. It is known that
glutamine deprivation and decreased glutaminolysis inhibits M2 macrophage
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polarization, which may partly explain the hyperinflammatory state in severe COVID-19
cases (16, 17). Moreover, the beneficial effect of glutamine has been proposed in multi-
ple studies, where adding enteral L-glutamine to the regular nutrition shortened the
duration of hospitalization and improved the outcome in moderate to severe COVID-
19 cases (18, 19).

Two other amino acids involved in arginine catabolism through the Urea cycle, cit-
rulline (Fig. 1D) and ornithine (Table 1), were found to significantly change between
the acute and recovery phases. However, alterations in the levels of L-arginine itself
were not detected. Low blood plasma citrulline levels have already been reported in
COVID-19 patients, whereas in patients with severe sepsis, the decreased citrulline lev-
els are associated with acute respiratory distress syndrome (11, 13, 20). Since arginine
can be metabolized to creatine and then to creatinine, both varying highly in our study
cohort according to regular blood tests performed during hospitalization, arginine ca-
tabolism may be implicated in disturbed kidney function of COVID-19 patients (21).

Three out of 22 metabolites showing significantly changed levels between acute
infection and recovery phase are involved in the tryptophan-kynurenine pathway:
L-tryptophan, kynurenine, and 3-hydroxy-DL-kynurenine (Fig. 1D, Table 1). 3-hydroxy-
DL-kynurenine was the marker with the most pronounced fold change between the
acute and recovery phases and remarkably was below the detection limit in any of the
control samples. The reduction of tryptophan levels and increase of kynurenine and 3-
hydroxy-DL-kynurenine in the acute phase supports the conclusions of previous
reports and confirms this pathway's key role in severe COVID-19 cases (10, 11). In vitro
experiments have shown that tryptophan deprivation sensitizes T cells to apoptosis,
inhibits proliferation of T cells, and plays a role in CD8 T-cell suppression in cancer (22,
23). Notably, the tryptophan-kynurenine pathway shows a modulatory effect on the
macrophage-mediated responses by targeting the synthesis of the metabolic coen-
zyme NAD1 (24, 25). According to Thomas et al., dysregulated tryptophan metabolism,
an essential regulator of inflammation and immunity, may be a potential explanation
for severity in older COVID-19 patients (11).

TABLE 1 Serummetabolites showing significantly altered levels between the acute phase and recovery phase of the diseasea

Compound Fold change False discovery rate
Avg level in acute
COVID-19 mM (±SD)

Avg level in COVID-19
recovery phase mM
(±SD)

Avg level in non-COVID
controls mM (±SD)

3-Hydroxy-DL-Kynurenine 10.51 6.79E-07 4.77 (6 2.63)* 1.76 (6 2.59) ,LOD
4-Hydroxyproline 0.42 1.99E-06 6.4 (6 3.51)* 15.08 (6 9.34) 11.24 (6 5.29)
Carnitine 1.25 8.90E-05 52.74 (6 19.33) 42.52 (6 11.56) 74.52 (6 24.65)
Citrulline 0.48 9.16E-08 16.81 (6 8.48)* 34.54 (6 17.31) 32.43 (6 9.66)
Isovalerylcarnitine 2.01 1.78E-06 0.13 (6 0.08) 0.07 (6 0.03) 0.18 (6 0.09)
Kynurenine 1.71 2.67E-06 3.57 (6 1.40)* 2.22 (6 1.32) 2.84 (6 0.69)
L-Acetylcarnitine 1.21 2.34E-02 4.53 (6 2.40)* 3.61 (6 1.26) 4.19 (6 2.75)
L-Asparagine 1.51 3.88E-05 42.56 (6 14.92) 30.19 (6 11.12) 44.63 (6 14.64)
L-Glutamic acid 1.65 4.61E-05 174.32 (6 81.10)* 122.38 (6 83.16) 144.62 (6 75.42)
L-Glutamine 0.72 5.71E-08 608.72 (6223.93)* 820.83 (6268.53) 732.84 (6131.12)
L-Isoleucine 1.21 1.25E-02 75.72 (6 18.49) 71.38 (6 33.53) 185.44 (6 71.27)
L-Lysine 1.08 1.15E-02 174.3 (6 54.09) 165.07 (6 32.74) 225.46 (6 63.36)
L-Methionine 1.47 1.62E-06 25.99 (6 10.49) 17.42 (6 5.79) 29.69 (6 12.20)
L-Octanoylcarnitine 0.75 3.85E-02 0.32 (6 0.19) 0.42 (6 0.17) 0.06 (6 0.06)
L-Phenylalanine 1.33 6.79E-07 113.06 (6 38.07)* 88.98 (6 28.46) 95.81 (6 20.50)
L-Proline 0.86 3.23E-03 185.87 (6 81.55)* 219.66 (6 66.13) 236.84 (6 70.70)
L-Threonine 1.45 2.15E-03 119.92 (6 45.29) 85.33 (6 37.11) 149.53 (6 40.05)
L-Tryptophan 0.83 2.87E-04 63.23 (6 20.67) 77.02 (6 16.74) 93.21 (6 21.87)
L-Tyrosine 1.14 2.87E-04 76.46 (6 21.50) 70.2 (6 17.15) 82.52 (6 23.17)
L-Valine 1.26 7.73E-05 254.27 (6 73.92) 210.84 (6 56.92) 285.98 (6 83.58)
Ornithine 1.37 9.45E-03 93.43 (6 30.49) 74.36 (6 36.16) 131.28 (6 72.24)
Taurine 1.36 6.01E-03 108.82 (6 51.77)* 85.87 (6 54.56) 66.89 (6 21.32)
aOnly serum metabolites exhibiting significantly altered levels comparing measures obtained during the acute phase and recovery phase of the disease are shown with the
corresponding fold change and false discovery rate values obtained from t test analysis. Average levels in the acute or recovery phase that differ significantly from the
control group are displayed in bold. Asterisk indicates significantly different levels comparing samples from the acute COVID-19 group versus the control group, for which
the direction of change is the same as the acute vs recovery group. LOD, level of detection; SD, standard deviation.
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Finally, we observed a significant difference in L-phenylalanine (Fig. 1D) and tyro-
sine levels in our cohort between the analyzed disease phases, both already suggested
as metabolic hot spots of COVID-19 before (26). In sepsis and HIV-1 infection, the
increased phenylalanine serum concentrations are linked to immune activation and

FIG 1 Targeted metabolomic analysis of longitudinal serum samples of hospitalized COVID-19 patients. (A) Heatmap and hierarchical clustering of top 22
significantly altered metabolites. Each column represents one sample: red, samples collected in the acute phase; green, samples collected during the
recovery phase; blue, samples collected from the population controls. Each row conforms to a specific metabolite expressed in normalized, log-transformed
concentration value. (B) Principal-component analysis showing clear discrimination of samples collected from COVID-19 patients in the acute (red) and
recovery (green) phases of infection as well as control subjects (blue) based on the obtained metabolite profiles. (C) Scatterplot representing the most
relevant metabolic pathways from KEGG library arranged by adjusted P values (obtained by Global Test pathway enrichment analysis) on the y-axis, and
pathway impact values (from pathway topology analysis) on the x-axis. The node color is based on its P value and the node radius is determined based on
their pathway impact values. (D) Boxplots showing the normalized levels of the most functionally relevant metabolites altered during the recovery of
COVID-19 (red, acute phase; green, recovery phase; blue, controls), described as the minimum value, the first quartile, the median, the third quartile, and
the maximum value, with the black dots representing outliers.
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increased cardiovascular event risk (27–29). Although the mechanisms behind this
association are not well studied, it is in line with microvascular endothelial damage
and higher coagulation risk characteristic to both: coronary heart disease and severe
COVID-19 (29). Phenylalanine and tyrosine are catabolized to dopamine and epineph-
rine, and the latter has been employed in cardiac arrest as a result of cytokine storm,
characteristic of severe COVID-19 patients (30).

We also performed a correlation analysis between the significant metabolites (Table 1)
and available biochemical parameters (Table S1); however, none of the identified correla-
tions reached statistical significance either in the acute or recovery stage.

The main limitation of our study is the relatively small sample size, which is mainly
caused by the limited attainability of hospitalized COVID-19 patients during the pan-
demic. Nevertheless, we believe that this limitation is overcome by applying the longitu-
dinal study design, which provides higher statistical power and minimizes the potential
interference of individual-level confounding variables such as age and sex, meanwhile
assuring the possibility to detect subject-specific effects. For technical reasons, we did
not include lipidomics and untargeted metabolomics that could lead to a more compre-
hensive set of altered metabolites. Another aspect one may consider as the limitation is
the consideration of serum samples obtained from independent subjects without any
acute infection as control measures instead of measures of the same COVID-19 patients
made before the onset of the infection, which would reflect the true serum metabolome
modifying effects of the virus. During the particular study, the pre-infection serum sam-
ples were not collected, though they should be considered for similar future studies.

In conclusion, our study shows that metabolomic profiling provides novel insights
into the pathogenesis of host-defense mechanisms and may be further applied for
rapid biomarker discoveries in infectious diseases. These discoveries could show novel
therapeutic strategies as indirect targets to fasten the recovery process after severe
COVID-19. In addition, we believe that our data may contribute to the development of
metabolomics-based personalized care strategies in COVID-19 patients comparable to
already existing clinical approaches applied in health services such as newborn screen-
ing of inborn errors. To the best of our knowledge, this is the first longitudinal study
covering metabolomic profiling during the recovery of severe COVID-19.

Data availability. Metabolomics data have been deposited to the EMBL-EBI
MetaboLights database (DOI: https://doi.org/10.1093/nar/gkz1019, PMID:31691833) with
the identifier MTBLS3852.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.1 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.2 MB.
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