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Abstract
Natural killer (NK) cells are potent innate cytotoxic lymphocytes for the
destruction of infected and transformed cells. Although they were originally
considered to be ready-made assassins after their hematopoietic development,
it has recently become clear that their activity is regulated by mechanisms such
as repertoire composition, licensing, priming, and adaptive memory-like
differentiation. Some of these mechanisms are influenced by infectious disease
agents, including herpesviruses. In this review, we will compare expansion,
stimulation, and effector functions of NK cell populations after infections with β-
and γ -herpesviruses because, though closely related, these pathogens seem
to drive completely opposite NK cell responses. The discussed findings
suggest that different NK cell subsets expand and perform protective functions
during infectious diseases and might be used diagnostically to predict
resistance to the causative pathogens as well as treat them by adoptive
transfer of the respective populations.
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Introduction
Natural killer (NK) cells are innate lymphocytes that have been  
initially identified by their ability to kill tumor or infected cells 
without prior activation1–3. Their target cell recognition is composed 
of signals that they receive from germ-line encoded activating and 
inhibitory receptors, and the net outcome of these interactions leads 
to recognizing or passing over respective cellular targets4. A surplus 
of activating signals can be achieved either by loss of inhibition, 
named “missing-self” recognition, or by upregulation of stimulation, 
named “altered-self” recognition5. Inhibitory NK cell receptors rec-
ognize primarily classical and non-classical major histocompatibil-
ity complex (MHC) class I molecules, and thereby “missing-self” 
recognition counterbalances cytotoxic CD8+ T-cell recognition 
restricted by pathogen- or tumor-induced loss of MHC class I6. 
While CD94/NKG2A recognizes signal peptides of other MHC 
class I molecules on non-classical human HLA-E or mouse  
H2-Qa1 molecules for its inhibition, killer immunoglobulin-like 
receptors (KIRs) in humans and Ly49 molecules in mice can  
distinguish polymorphic classical MHC class I molecules. In 
contrast, activating signal recognition is less well understood and 
more diverse but requires—with the exception of dominant trig-
gering by opsonizing antibody binding to CD16 on NK cells—the 
stimulation of at least two activating receptors to unleash NK cell 
responses4. These are often referred to as main activating receptors, 
like NKG2D, or the natural cytotoxicity receptors (NCRs) NKp30, 
NKp46, and NKp44 plus co-receptors that need to be engaged, 
including signaling lymphocyte-activating molecules (SLAMs) 
2B4 and NTB-A, as well as DNAX accessory molecule-1 (DNAM-
1). Their ligands are diverse, including MHC class I-like molecules 
for NKG2D, B7 family members like B7-H6 for NKp30, CD48 
for 2B4, and poliovirus receptor (PVR) or Nectin-2 for DNAM-
1. Some of these ligands are upregulated upon cellular stress, like 
uncontrolled proliferation and associated DNA damage responses7. 
Thus, NK cells can integrate a diversity of clues from the surface of 
transformed and infected cells for their recognition.

Apart from this multitude of receptors, NK cell activity is regu-
lated by at least four additional mechanisms, namely the NK cell 
repertoire, NK cell activation by cytokines or priming, adaptive or 
memory-like NK cell differentiation, and NK cell licensing. The 
NK cell repertoire is composed of up to 30,000 subpopulations8. 
These subpopulations differ among each other with respect to 
inhibitory and activating receptor expression. Inhibitory receptor 
distribution is determined mainly by the respective genotype of the 
individual8–11. For example, KIRs are highly polymorphic and NK 
cell subsets with no, one, or multiple KIRs exist in any given indi-
vidual. In contrast, activating NK cell receptor expression differs 
between monozygotic twins and therefore seems to be regulated by 
environmental factors8. This variability amounts to up to 30,000 dif-
ferent NK cell subsets in the NK cell repertoire of any given human 
individual8. Furthermore, cytokines—mainly interleukin-2 (IL-2), 
IL-12, IL-15, IL-18, and type I interferon—augment NK cell func-
tion and activate NK cells in secondary lymphoid tissues12–14. This 
activation is often mediated by dendritic cells (DCs). Furthermore, 
the NK cell compartment contains, to a variable degree, adaptive 
or memory-like NK cells. These hyper-reactive and long-lived NK 
cells have been described after certain, mostly viral antigen encoun-
ters and are able to mount stronger protective responses upon 

re-encounter of the same pathogen and sometimes even antigen15,16. 
These adaptive NK cells will be discussed in more detail in the 
context of persistent infections with β-herpesviruses below. Finally, 
NK cell reactivity is also adjusted to its environment by a process 
called licensing9,17,18. Licensing describes a process by which NK 
cells, which carry inhibitory receptors that are engaged by healthy 
cells, are more reactive during “missing-self” recognition. It has 
been suggested that in the absence of an inhibitory signal the con-
tinuous stimulation of activating receptors leads to disarming of NK 
cells, attenuating their activity. Thus, multiple NK cell receptors as 
well as the composition of the NK cell compartment with licensed, 
cytokine-activated, adaptive, and different receptor-expressing cells 
contribute to the reactivity of these innate cytotoxic lymphocytes. 
All of these regulatory mechanisms contribute to their role during 
herpesvirus infections.

Protection from herpesvirus infections by natural 
killer cells
Herpesviruses are double-stranded enveloped DNA viruses that 
establish persistent infections19. They are exquisitely adapted to 
their host species and its immune control. Indeed, the first descrip-
tion of a primary immunodeficiency in NK cells characterized a 
patient who had uncontrolled herpesvirus infections20,21. Herpes-
viruses fall into the groups of neurotrophic α-herpesviruses, at 
least in part myelotrophic β-herpesviruses, and lymphotrophic 
γ-herpesviruses. The paradigmatic representatives of these three 
subclasses in humans are the herpes simplex virus (HSV), the 
human cytomegalovirus (HCMV), and the Epstein-Barr virus 
(EBV), respectively. Although the basic composition of these 
viruses is very similar, the influence on the NK cell compartment 
and their restriction by it during infection are very different. With 
respect to phenotype, recurrent HSV2 infection does not change 
the NK cell composition22. In contrast, β-herpesvirus infection 
with HCMV has become the paradigm of human adaptive NK cell 
differentiation with an accumulation of terminally differentiated  
NK cells23. Finally, the γ-herpesvirus EBV expands early differ-
entiated NK cells during primary infection24. In addition to the  
phenotypic differences in the NK cell responses to different her-
pesviruses, their dependency on NK cell-mediated immune control  
differs significantly. Even though in the above-mentioned GATA2-
deficient patient20,21 recurrent α-herpesvirus infections were 
observed, the protection from HSV infection by NK cells in mouse 
models is still controversial and might depend on the site of infec-
tion as well as the investigated mouse strain25–27. In contrast, immune 
control of β-herpesvirus infection (HCMV) was also compromised 
in the original NK cell-deficient indicator patient and HCMV is 
used as the paradigmatic viral infection to investigate protective 
NK cell responses in mice28. Finally, NK cells control lytic rep-
lication by the human γ-herpesvirus EBV and protect mice with  
human immune system components from enhanced tumor forma-
tion by this virus29. Along these lines, individuals with MCM4 
mutations and diminished NK cell compartments suffer from 
uncontrolled EBV infection30. In contrast, the mouse γ

2
-herpesvirus  

MHV-68 is not affected by NK cell depletion during its  
infection in mice31. Therefore, in the following sections, we will 
discuss cytomegalovirus and EBV as the two extremes for the 
remodeling of the NK cell compartments, although both of these 
viruses are controlled by NK cells.

Page 3 of 8

F1000Research 2017, 6(F1000 Faculty Rev):1231 Last updated: 26 JUL 2017



Natural killer cell phenotypes during herpesvirus 
infections
The remodeling of the NK cell phenotype by herpesvirus infections 
has been best described for human NK cells23,24. Human NK cells 
are thought to originate from the bone marrow as CD56brightCD16− 
cells with homing markers (CCR7 and CD62L) for secondary lym-
phoid tissues32,33. There, they can acquire cytotoxic function and 
KIRs upon activation by DC-derived cytokines14. It is thought 
that during this differentiation (Figure 1), they acquire more and 
more KIRs and eventually lose expression of the inhibitory CD94/
NKG2A receptor34. CD94/NKG2A expression can be reacquired in 
inflammatory environments through IL-12-dependent induction35. 
However, all of these intermediate NK cell populations can differ-
entiate from proliferating to CD57-positive senescent NK cells and 
thereby arrest in their differentiation34.

During persistent HCMV infection of healthy virus carriers, 
after HCMV reactivation in bone marrow transplant patients, in 
HCMV-infected children, and in HCMV-infected individuals with 
asymptomatic co-infections23,36–38, terminally differentiated NK 
cells (phenotypically CD56dimCD16+KIR+LIR1+NKG2C+CD57+

Bcl-2+NKG2A-NKp46lowNKp30lowCD161lowCD7lowTim-3lowPZL-
FlowSyklowEat-2lowDAB2lowHelioslowFcεR1γlowCD2high) with many 
epigenetically silenced gene loci accumulate (Figure 1)39–42. These 
terminally differentiated NK cells might be generated by two syn-
ergistic mechanisms. The activating CD94/NKG2C receptor on this 
NK cell subset can engage HCMV peptide-presenting HLA-E mol-
ecules on infected fibroblasts (Figure 1)43–46. However, these expand 
the above-characterized NKG2C+ NK cell subset usually only in 
the presence of monokines like IL-15 and IL-12, which have been 
shown to be provided by bystander monocytes43,44. In fact, NKG2C-
dependent HLA-E recognition might not be strictly required for 

the expansion of terminally differentiated NK cells during HCMV 
infection because the 4% of the human population that lack NKG2C 
expand NK cells of similar phenotype during chronic HCMV  
infection41,47. Instead, cytokines might be sufficient for the expan-
sion of the respective NK cells, and the accumulation of this NK 
cell subset seems to be further augmented by co-infections with 
hantavirus, chikungunya virus, HIV, and hepatitis virus36,48–52, 
which might enhance NK cell-differentiating cytokine expression. 
It is tempting to speculate that HCMV infection of the myeloid  
lineage favors the production of NK cell-differentiating cytokines 
that lead to the accumulation of NKG2C+ NK cells.

B lymphotropic EBV also causes NK cell expansion during primary 
infection53–56. In particular, CD56dimCD16+/−KIR−CD57- NK cells 
proliferated during acute infectious mononucleosis (IM) (Figure 1), 
and the frequency of this proliferating NK cell subset correlated 
with viral loads24. The expansion of these early differentiated NK 
cells persists for at least 6 months24,57,58, but they stop proliferating 
during this time period and acquire the senescence marker CD5724,58. 
Interestingly, newborns carry a high frequency of these early dif-
ferentiated KIR- NK cells, which are progressively lost during the 
first decade of life24. This differentiation might be induced by other 
pathogens and HCMV could contribute significantly to this loss of 
early differentiated NK cells. Thus, the β-herpesvirus HCMV and 
the γ-herpesvirus EBV drive the expansion of completely different 
NK cell phenotypes, and it remains to be seen whether one virus 
thereby influences the immune control of the other.

Effector functions of natural killer cells during 
herpesvirus infections
Indeed, this early differentiated NK cell phenotype in children 
correlates with a higher frequency of asymptomatic primary EBV 

Figure 1. Differentiation and stimulation of human natural killer (NK) cells during Epstein-Barr virus (EBV) and human cytomegalovirus 
(HCMV) infection. Human NK cells differentiate with acquisition of killer immunoglobulin-like receptor (KIR) expression and lose NKG2A 
expression upon terminal differentiation. Expression of the senescence marker CD57 removes NK cell subpopulations from this differentiation. 
Lytically EBV-replicating plasma cells are preferentially recognized by early differentiated NK cells via their NKG2D and DNAX accessory 
molecule-1 (DNAM-1) receptors, while HCMV-infected cells expand terminally differentiated NK cells via CD94/NKG2C stimulation by HCMV 
peptide-presenting human leukocyte antigen (HLA)-E molecules. HCMV-infected cells are targeted by these terminally differentiated NK cells 
after antibody opsonization.
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infection, whereas delay of initial infection with this γ-herpesvirus 
leads, increasingly with age, to a higher likelihood of having  
immunopathologic symptoms of lymphadenopathy, fever and 
fatigue, which are caused by massive CD8+ T-cell expansion and 
are collectively called IM59. Indeed, African children often suffer  
from the same high viral loads as patients with IM, but the CD8+ 
T-cell expansion of the former is less pronounced and thus no  
disease is experienced60. It is tempting to speculate that despite 
high viral loads early differentiated innate lymphocytes, including  
NK cells, primarily deal with the infection, curbing CD8+ T-cell 
lymphocytosis. Indeed, such a protective function of NK cells  
during primary EBV infection was recently documented29. In 
mice with reconstituted human immune system components, early  
differentiated NK cells predominate61. Infection with EBV led to the 
expansion of these NK cells, starting 3 weeks after infection29. This 
time point coincides with the time point at which lytic replication of 
EBV can be detected in this in vivo model, as judged by comparing 
wild-type with lytic replication-deficient BZLF1- EBV62. Deple-
tion of NK cells with an antibody directed against NKp46 leads to 
elevated viral loads, starting at 3 weeks after infection29. Viral load 
is elevated 10-fold in total blood and 100-fold in the serum29. Only 
lytic EBV infection is affected because viral load of BZLF1- EBV 
did not increase upon NK cell depletion29. In good agreement with 
these findings, NK cells primarily recognize lytically EBV-infected 
targets24,63 and preferentially the early differentiated KIR- NK cells 
degranulate24. This recognition has been suggested to be medi-
ated by NKG2D and DNAM-1 (Figure 1)63. Interestingly, patients 
with deficiency in a magnesium transporter (MAGT1), resulting 
in diminished surface expression of NKG2D on NK and T cells,  
suffer from EBV-associated lymphoproliferations64. In the absence 
of NK cells, EBV-infected mice with reconstituted human immune 
system components develop mostly monoclonal lymphoprolif-
erations as well as CD8+ T-cell lymphocytosis, splenomegaly, 
and cytokinemia, which are hallmarks of IM29. These studies 
suggest that NK cells—in particular, early differentiated KIR-  
NK cells—restrict lytic EBV replication and could explain the risk 
of adolescents for IM.

In contrast, the function of the terminally differentiated NKG2C+  
NK cells during HCMV infection is less clear. During mouse  
cytomegalovirus (MCMV) infection of C57BL/6 mice, Ly49H+  
NK cells preferentially expand and directly bind with their Ly49H 
receptor to the MCMV m157 protein on the surface of infected 
cells65,66. NK cells are indeed required for efficient immune  
control of MCMV infection67,68, and Ly49H+ antigen- 
experienced NK cells control MCMV infection better than 
other subsets15. Even though NKG2C+ and NKG2C- human NK 
cells might represent the counterparts of the recently described 
Ly49H+ and Ly49H- mouse NK cells, which acquire their adap-
tive functional superiority by either receptor- or cytokine- 
mediated stimulation, respectively69, it has remained difficult to 
demonstrate a protective function for the NK cell expansions  
during HCMV infection. Although these terminally differentiated 
NKG2C+ NK cells more readily produce cytokines in response 
to HCMV-infected cells70,71 and their frequency correlates with 
protection from HCMV disease after kidney transplantation72,  

they seem to clear infected targets only after antibody-mediated  
opsonization by antibody-dependent cellular cytotoxicity  
(Figure 1)73,74. This would argue for a protective role of these  
accumulating NK cells rather late during the infection, when 
HCMV-specific antibodies have already formed. Indeed, during  
hantavirus co-infection, the enhanced functionality of these 
NKG2C+ NK cells was suggested to cause immunopathology 
by promoting vascular leakage via uninfected endothelial cell  
killing75. Thus, KIR-, NKG2C+, and Ly49H+ NK cell subpopula-
tions expand and persist for several months during EBV, HCMV, 
and MCMV infection, but although protection of the respective  
NK cell subset during EBV and MCMV infection has been  
demonstrated, this remains less clear for HCMV infection.

Conclusions
The extent of the complexity of the human NK cell compartment 
with up to 30,000 distinct subpopulations has only recently been 
appreciated8. As discussed above, certain pathogens, exemplified 
in this review by the human herpesviruses HCMV and EBV, seem 
to drive expansions of distinct NK cell subsets, which then persist 
at elevated frequencies for months23,24. The protective features of  
these expanded NK cell populations are beginning to emerge29,74, 
as are how their expansion can be stimulated44. Thus, it might be 
possible not only to use the NK cell phenotype as a predictor of 
immune control against these specific pathogens but also to adop-
tively transfer or stimulate these NK cell subsets in patients with 
diminished immune control of the respective viruses, starting 
with HCMV and EBV. However, in order to narrow the NK cell  
phenotype that might be required for clinical benefit, the receptor 
interactions and effector functions that mediate protection need to 
be better defined in the future.
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