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Abstract

Human metapneumovirus (HMPV) is a leading cause of acute respiratory
infection, particularly in children, immunocompromised patients, and the
elderly. HMPV, which is closely related to avian metapneumovirus subtype C,
has circulated for at least 65 years, and nearly every child will be infected with
HMPV by the age of 5. However, immunity is incomplete, and re-infections
occur throughout adult life. Symptoms are similar to those of other respiratory
viral infections, ranging from mild (cough, rhinorrhea, and fever) to more severe
(bronchiolitis and pneumonia). The preferred method for diagnosis is reverse
transcription-polymerase chain reaction as HMPV is difficult to culture.
Although there have been many advances made in the past 16 years since its
discovery, there are still no US Food and Drug Administration-approved
antivirals or vaccines available to treat HMPV. Both small animal and
non-human primate models have been established for the study of HMPV. This
review will focus on the epidemiology, transmission, and clinical manifestations
in humans as well as the animal models of HMPV pathogenesis and host
immune response.
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Introduction

The start of the twenty-first century has seen the discovery of
several emerging or new respiratory pathogens causing human
disease, including severe acute respiratory syndrome coronavirus
and human metapneumovirus (HMPV). The metapneumoviruses
are enveloped, non-segmented, negative-sense, single-stranded
RNA viruses'. They comprise a genus of two species: avian
metapneumovirus and HMPV. The metapneumoviruses belong
to the order Mononegavirales and family Pneumoviridae, which
also includes respiratory syncytial virus (RSV)**.

Avian metapneumovirus

Avian metapneumovirus (previously known as turkey rhinotra-
cheitis virus) was discovered in 1978 in turkeys in South Africa’.
Since then, the virus has been recognized to infect turkeys,
chickens, and ducks worldwide with a significant economic
impact’. The virus has a low and variable mortality but high
morbidity rate (up to 100%) and causes severe upper respiratory
infections as well reproductive issues leading to decreased egg
production’. There are currently four subtypes of avian metap-
neumovirus based on the genetic diversity of the attachment (G)
protein®. Subtype A was first isolated in South Africa,
followed by subtype B in several European countries. Subtype C
was discovered in the US in 1996/, and subtype D was identified
in France in 2000°. It is thought that wild migratory birds play a
key role in the spread of avian metapneumovirus”.

Discovery of human metapneumovirus

In 2001, researchers in the Netherlands first identified HMPV
from stored nasopharyngeal samples from 28 children with
respiratory illness by using electron microscopy and random
reverse transcription-polymerase chain reaction (RT-PCR)
techniques. This novel virus exhibited cytopathic effect but not
hemadsorption in tertiary monkey kidney epithelial cells. The
genome was most closely related to avian metapneumovirus
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serotype C (up to 88% homology). However the newly
discovered virus replicated efficiently in monkeys but not in
birds’. Archived sera from the 1950s contained neutralizing
antibodies against HMPV”. Two retrospective Canadian studies
detected HMPV in specimens collected from patients with
respiratory illness between 1993 and 2001”', and a US study
detected HMPV in specimens from 1976 to 2001'". Collectively,
these studies show that HMPV has been circulating undetected
for many decades.

Genome organization and structure

HMPV is a negative-sense, non-segmented, single-stranded
RNA virus. The genome is about 13,000 nucleotides in length
and is composed of eight genes encoding for nine proteins:
nucleoprotein (N), phosphoprotein (P), matrix protein (M), fusion
protein (F), matrix-2 proteins (M2-1 and M2-2), small hydro-
phobic (SH) protein, glycoprotein (G), and large (L) polymerase
protein (Table 1)""?'. As in other paramyxoviruses, the N, L,
and P proteins form the viral replication complex. Though simi-
lar in genome to RSV, both avian metapneumovirus and HMPV
possess a gene order different from that of RSV and lack the
non-structural proteins NS1 and NS2'. HMPV exhibits a para-
myxovirus-like morphology, ranging from 150 to 600 nm in size,
enveloped with short protein spike projections”.

Several respiratory viruses form filamentous viral particles
in vitro. A recent study demonstrated that HMPV infection led
to the formation of branched viral filamentous networks and
intercellular extensions in human bronchial epithelial cells™.
HMPV P protein co-localized with actin and induced the forma-
tion of the intercellular extensions. Importantly, HMPV spread
directly from cell to cell even in the presence of neutralizing
antibodies and in the absence of the attachment factor heparan
sulfate. This direct viral spread was mediated by the actin
cytoskeleton, CDc42, and Rac1?.

Table 1. Summary of human metapneumovirus proteins and function.

Gene Protein Amino
acid length

N Nucleoprotein 394

P Phosphoprotein 294

M Matrix protein 254

F Fusion protein 539

M2 M2-1 protein 187
M2-2 protein 71

SH Small hydrophobic protein  177-183

G Attachment glycoprotein 229-236

L Large polymerase protein 2,005

Function

RNA genome encapsidation

Polymerase co-factor

Aids in viral assembly and budding
Virus-cell binding and membrane fusion

RNS transcription processivity factor
Regulates RNA transcription/replication
Possible viroporin or innate immune inhibition
Binds to cellular glycosaminoglycans

Catalytic activity for viral replication
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Viral replication

Replication of HMPV occurs in the nasal and lung tissues, and
airway epithelial cells are the primary target of HMPV. HMPV
is thought to attach to the target cell via G protein interactions
with heparan sulfate and other glycosaminoglycans’”. The
HMPV F protein encodes an RGD (Arg-Gly-Asp) motif that
engages RGD-binding integrins as cellular receptors'®*** and
then mediates fusion of the cell membrane and viral envelope in
a pH-independent fashion, likely within endosomes™****. Low pH-
dependent fusion is a rare occurrence in only certain lineage A F
proteins™. As with other negative-sense, single-stranded RNA
viruses, HMPV negative-sense genomic RNA is transcribed to
positive-sense mRNA by the RNA polymerase before transla-
tion. After translation, the viral glycoproteins are transported from
the endoplasmic reticulum through the Golgi apparatus to the
plasma membrane. As nascent viral proteins accumulate, the
polymerase switches from transcribing monocistronic mRNA
to replicating full-length positive-sense antigenome to serve as
a template for progeny negative-sense genomes. Newly syn-
thesized virions exit the host via budding from the plasma

membrane, which is facilitated by the M protein®*!.

Phylogenetic groups

There are two major genetic lineages, A and B, further divided into
the sublineages (or clades) Al, A2, B1, and B2*7. All HMPV
genes fall into these four clades, suggesting that genome recom-
bination is very rare”. Although both genotypes A and B can
co-circulate, the dominant lineage may vary year by year .
Phylogenetic analyses of HMPV suggest that the human virus
diverged from the avian type C 200-400 years ago*~>*'. HMPV
cannot productively infect birds; thus, if HMPV did arise in
humans as a zoonotic infection, the virus is now adapted fully to
humans’. Evidence suggests that the different genetic lineages
of metapneumovirus do not represent distinct serotypes; studies
in rodents and non-human primates show a high degree of
cross-neutralization and cross-protection between subgroups®~'.

Epidemiology

HMPV has a seasonal distribution that is similar to that of other
respiratory viruses and tends to peak in later months compared
with RSV and influenza''*'=*. Similar to other respiratory
pathogens, HMPV causes most severe disease in infants and
young children, the elderly, and persons with underlying chronic
conditions such as asthma, emphysema, and immune compro-
mise. Seroepidemiology studies have shown that most children
worldwide are infected with HMPV by the age of 57,

Children

Rates of hospitalization of children for HMPV infection are
highest in the first year of life but occur throughout early
childhood. Many studies report that the peak age of hospitaliza-
tion for HMPV is between 6 and 12 months of age, which is later
than the peak age of hospitalization for RSV (2-3 months)**'=.
Through the course of a year, multiple subgroups of HMPV will
often be in circulation. These subgroups are genetically distinct
and can vary across seasons, with one lineage being more preva-
lent in a given season™’. Despite genetic differences between
the subgroups, all remain capable of causing severe infection,
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and the differences have not been associated consistently with
the variation in severity of disease’*”. HMPV infection usually
causes overt disease; the virus is rarely detected in asymptomatic
children''**%-%? Studies of hospitalized and outpatient children
worldwide have found HMPV to be associated with 6 to 40% of
acute respiratory illness'!#!-#—0-31-53.64-07,

Adults

Although nearly all populations will experience primary HMPV
infection by age 5, HMPV re-infection occurs throughout adult
life. HMPV was identified in up to 13% of hospitalized adults in
Rochester, New York*. Whereas HMPV infection is typically
mild in otherwise healthy younger adults, infection with HMPV
leads to increased disease severity and high morbidity and mor-
tality rates in the elderly. A retrospective Canadian study showed
that 46% of HMPV* cases were from patients at least 65 years, and
60% of these elderly patients were hospitalized'’. A subsequent
study reported that at least 50% of the HMPV™ elderly patients
infected during an outbreak in a long-term care facility developed
bronchitis or pneumonia, leading to 50% mortality®®.

Underlying conditions

Pre-existing conditions, particularly asthma, play a role in
disease severity and hospitalization. HMPV was isolated from 7%
of adults hospitalized for an acute asthma exacerbation®. Like
infection with RSV, infection with HMPV within the first two
years of life is a risk factor for later asthma’. One study found
that 16% of HMPV* patients had asthma compared with none
of the RSV* patients™. Another study noted a previous asthma
diagnosis in 41% of HMPV* children between the ages of 5
and 13%.

Immunocompromised patients and those with underlying
medical conditions can be severely affected by HMPV. One study
found that many HMPV™ hospitalized patients over the age of 5
had other severe diseases, such as cystic fibrosis or lymphoma®.
Another retrospective study found that of 39 immunocompro-
mised children with HMPYV, 17 developed pneumonia and four
died from respiratory failure’'. In a group of patients between the
age of 15 and 65 years, 67% had underlying medical conditions,
such as lymphoma or lung tumors'’.

Co-infections with other viral or bacterial pathogens may
exacerbate symptoms and disease. Viral co-infection rates
in patients with HMPV range from 6 to 23%'*>*, but viral
co-infections do not seem to impact disease severity''. However,
secondary bacterial pneumonia can occur and is associated with
increased mortality’~"*.

Transmission and symptoms

HMPV is thought to spread through direct or close contact
with infected individuals or objects (fomites)*. Symptoms and
disease presentation of HMPV are similar to those of other
respiratory viruses causing both upper and lower respiratory tract
infections. Symptoms can include cough, rhinorrhea, sore throat,
and fever as well as lower respiratory tract symptoms such as
wheezing, difficulty breathing, and hypoxia™”. The clinical
diagnoses most commonly associated with HMPV are bronchiolitis
and pneumonia®.
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Animal models

Although early studies demonstrated that HMPV does not
replicate or cause disease in birds’, small animal models such as
mice, cotton rats, and hamsters as well as non-human primates
are semi-permissive’’. Several studies show that cotton rats are
the most permissive small animal model and that peak virus titers
occurred at day four post infection’*’®. Viral lung replication
and disease vary between different inbred mouse strains; most
work has been published in the BALB/c model, which exhibits
substantial disease symptoms”**. BALB/c and C57BL/6 mice
may exhibit clinical symptoms such as difficulty breathing,
weight loss, and ruffled fur, partly depending on the virus strain
and inoculum®***_  Histological scoring revealed that lung
pathology is most severe between days 5 and 7 but is significantly
decreased by day 14. Viral replication occurs for up to 10-14
days in mice, and peak viral load is at day 5****. Similar to older
humans, aged mice have increased disease severity, higher viral
titers, and diminished immune response compared with younger
mice”. However, unlike humans, in whom re-infection occurs
throughout life, immunocompetent mice cannot be productively
re-infected with HMPV. Of note, most work has been published
in the BALB/c inbred strain, based on the extensive body of RSV
research, but some investigators have focused on the C57BL/6
model.

In contrast, cotton rats, hamsters, and ferrets infected with HMPV
do not manifest observable clinical symptoms>****!. In hamsters
and ferrets, there is high viral replication in the respiratory tract
compared with mice”. Both African green monkeys and rhesus
macaques are permissive for HMPV infection, but neither
exhibits clinical symptoms. HMPV replication and neutraliz-
ing antibody production are higher in African green monkeys
compared with rhesus macaques™*”.

Pathogenesis and immunity

Humans and animals mount neutralizing antibody responses
to HMPV. In mice, neutralizing antibodies are first detected
five to seven days after infection, peaking between four and six
weeks after infection. In mouse models, initial infection with
HMPYV protects against re-infection*’, and antibodies alone can
protect in small animal models™. In contrast, when macaques
were challenged 12 weeks after primary HMPV infection,
virus replication was detectable despite the presence of serum
antibodies, and when challenged 8 months after primary infec-
tion, there was no protection’’. These data suggest that in pri-
mates and humans, antibody levels wane over time, facilitating
re-infection. A prospective study in humans noted that baseline
HMPV antibodies were lower in older adults who subsequently
became infected versus those who did not become infected”,
suggesting a protective effect of antibodies.

Cytotoxic T lymphocytes (CTLs) contribute to clearance of
HMPV infection in mice®****-'"!. As early as day 1 post infec-
tion, there is an infiltration of lymphocytes, monocytes, and other
mononuclear cells to perivascular and peribronchial areas of the
lung. There is an increase in the number of total bronchoalveo-
loar lavage cells that starts at day 1, peaks at day 7, and returns to
near normal numbers by day 21%. The number of neutrophils and
mononuclear cells increases by day 3 until day 14 post infection.
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CD4* T cells peak earlier at day 6 whereas CD8* T cells peak
between day 8 and 10°*%'%°. Furthermore, the depletion of T
cells leads to prolonged viral replication®”'""; and T-cell epitope
vaccination alone can reduce viral titers*'®. The role of natural
killer (NK) cells is unclear. One study depleted NK cells with
anti-CD49 antibody and reported prolonged viral replication”,
whereas another depleted NK cells with the more specific antibody

anti-NK1.1 and found no effect®,

Although T cells play a critical role in disease protection, they
also contribute to disease severity caused by HMPV. The deple-
tion of either CD4* or CD8" T cells led to significantly less
weight loss, decreased lung inflammation, and reduced airway
obstruction®. These results collectively show that T cells,
especially CD4* T cells, play a role in enhancing clinical disease
and lung pathology.

HMPV, like other respiratory viruses, dampens the immune
response after infection, but the specific mechanisms remain
unclear. Multiple studies demonstrate convincingly that HMPV can
interfere with the type I interferon (IFN) response, but different
studies have implicated various viral proteins, including G, M2-2,
P, or SH, and suggested diverse mechanisms'*'"~'% Type I
IFN receptor (IFNAR)-deficient mice infected with HMPV had
higher lung viral titers than wild-type (WT) mice but less lung
inflammation and airway dysfunction, highlighting the impor-
tance of the IFN pathway for HMPV clearance and disease®.
HMPV is capable of infecting human and murine dendritic
cells in vitro, leading to altered signaling, diminished cytokine
production, decreased migration, and reduced capacity to activate
CD4* T cells'''?, However, the contribution of these interactions
to disease and protection in vivo has not been defined.

One way that HMPV evades the adaptive immune response is
through the upregulation of programmed cell death-1 (PD-1), a
T-cell surface receptor that plays a critical role in downregulating
the immune response, leading to CD8* T-cell functional impair-
ment. This phenomenon is similar to CD8* T-cell exhaustion
described in chronic infections and cancer'”. During infection
with HPMV and other acute respiratory viruses, there is an
upregulation of both PD-1 and its ligand, PD-L1, in the lungs
but not splenic CD8* T cells. Blocking PD-1 ligation prevented
functional impairment of HMPV-specific CD8" T cells in the
lung, and mice lacking PD-1 had a greater percentage of func-
tional HMPV-specific CD8* T cells compared with WT mice®.
During secondary HMPV infection, lung CD8* T-cell effector
functions were severely impaired after re-infection and PD-1
expression was high; blockade of PD-1 ligation enhanced CD8*
T-cell function'”. These results collectively suggest that the
PD-1/PD-L1 pathway plays an important role in evading the
immune response during primary and secondary HMPYV infections
and may contribute to re-infection.

Diagnosis
The standard method for HMPV diagnosis has been nucleic acid
amplification tests, such as RT-PCR''“''°, Several commercial

multiplex molecular assays that include HMPV are available'".
Viral culture and serological testing are insensitive’. One reason
for the delayed discovery of HMPV is the difficulty of growing
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the virus in cell culture. The virus requires exogenous trypsin to
replicate in vitro and while capable of growth in other cell lines,
it produces robust cytopathic effects in tertiary monkey kidney
and LLC-MK2 (rhesus kidney) cells™''®. Furthermore, viral
propagation can take 14 days or longer.

Antiviral treatments

Treatment consists of supportive care as there are no licensed
antivirals against HMPV. Two potential treatments that have
been investigated are ribavirin and immunoglobulin. Ribavarin
is a nucleoside with activity against RNA viruses and exhibits
in vitro activity against HMPV'"” and exhibited some efficacy in
mice'”. Commercial intravenous immunoglobulin (IVIG) con-
tains neutralizing activity against HMPV'", and as noted above,
antibodies alone exhibit efficacy both prophylactically and
therapeutically in mice”. There are anecdotal reports of
human use of ribavirin and IVIG"' but no controlled trials and
no guidelines to recommend the use of these measures.

Vaccine development

There are currently no licensed vaccines for HMPV, but
numerous efforts have been made to develop a safe and effective
vaccine. Early cross-challenge studies with hamsters showed that
infection with subgroup A produced an immune response that
protected from a subsequent challenge with subgroup B and vice
versa®.

There have been several promising live-attenuated vaccines. A
cold-adapted, live-attenuated HMPV vaccine provided complete
protection in hamsters'”>. While antibody levels were increased
after immunization in cynomolgus macaques, immunization
did not provide complete protection from viral replication after
challenge'”’. Recombinant HMPV (tHMPV) viruses lacking the
G, M2-1, M2-2, or SH protein have exhibited an attenuated and
immunogenic phenotype in animal models'>'*'*. Mutations in
the methyl transferase domains of the polymerase or the integrin-
binding RGD motif of the F protein were attenuated, immuno-
genic, and protective in cotton rats'**'?’.

Vectored vaccine approaches that have been effective in animal
models include chimeric tHMPV containing the avian metap-
neumovirus P protein'”, alphavirus-vectored HMPV F'>150]
bovine PIV3 vectored F, or Sendai virus vectored F'"'. The
establishment of a human challenge model'* and a successful
test of a live-attenuated candidate in seropositive adults'*
provides a platform for future clinical trials.

Another method of vaccination is with heat-killed or formalin-
inactivated virus, but a major concern for non-replicating
HMPV vaccines is the experience in the 1960s with formalin-
inactivated RSV (FI-RSV) vaccines'**"*°, FI-RSV induced an
aberrant immune response that failed to protect and led to
enhanced respiratory disease in vaccinees upon natural RSV infec-
tion. Animal studies replicated the results of the FI-RSV clinical
trials'*>'%*, Similar to FI-RSV, FI-HMPV and heat-inactivated
HMPV vaccines in mice, cotton rats, and macaques led to
enhanced disease following viral infection and to high mortality
and increased levels of cytokines and lung inflammation'*-'"*'.
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These studies show that these kinds of vaccines not only do not
induce protective immunity but may lead to increased morbidity
and mortality.

In comparison with inactivated vaccines, subunit vaccines that
contain partial or full-length viral proteins, particularly the
HMPV F protein, have been more encouraging. Several studies
of recombinant F protein report protective immunity without
enhanced disease in cotton rats, hamsters, and non-human
primates’"'**. Another non-replicating vaccine approach is virus-
like particles using HMPV M and F proteins expressed in human
embryonic kidney epithelial cells'’-'**'** or generated using
retroviral vectors'*’. All of these approaches have induced
neutralizing antibodies and in some cases functional T-cell
responses'’1*2, leading to protection without signs of enhanced
disease. Unfortunately, although subunit vaccines do induce
immune responses when challenged with HMPYV, the immune
response may rapidly wane over time and may require multiple
immunizations.

CTL epitopes have been employed as peptide vaccines in mice.
CTL epitope vaccines protected mice from HMPV infection
by reducing viral load and lung immunopathology, generating
effector and memory T-cell response, enhancing T helper 1
(Th1)-type cytokine expression, and reducing Th2-type cytokine
expression'*. Other peptide vaccine approaches have induced
functional memory CD8* T cells that were associated with
reduced viral titers®'*!*. A recent study constructed a multi-
epitope peptide (MEP), consisting of six B-cell epitopes, four
CTL epitopes, and two T helper cell epitopes. MEP caused both
strong humoral immunity, as indicated by increased antibody
levels, and cell-mediated immunity, as indicated by increased
lymphocyte levels and activity'*.

Future directions

Although HMPV was only discovered in 2001, there have been
many advances in understanding mechanisms by which HMPV
causes disease. Serologic and evolutionary studies indicate
that HMPV has circulated for many years undetected. Robust
animal models have been established, and candidate vaccines and
antibodies have been developed. However, there is still much in
the field regarding pathogenesis, immunity, antivirals, and vaccines
that is yet to be discovered.
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