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Abstract

It is commonly, although not universally, accepted that most intra and interspecific genome sequence variations are
more or less neutral, whereas a large fraction of organism-level phenotypic variations are adaptive. Gene expression levels
are molecular phenotypes that bridge the gap between genotypes and corresponding organism-level phenotypes. Yet, it is
unknown whether natural variations in gene expression levels are mostly neutral or adaptive. Here we address this
fundamental question by genome-wide profiling and comparison of gene expression levels in nine yeast strains belonging
to three closely related Saccharomyces species and originating from five different ecological environments. We find that
the transcriptome-based clustering of the nine strains approximates the genome sequence-based phylogeny irrespective
of their ecological environments. Remarkably, only�0.5% of genes exhibit similar expression levels among strains from a
common ecological environment, no greater than that among strains with comparable phylogenetic relationships but
different environments. These and other observations strongly suggest that most intra and interspecific variations in
yeast gene expression levels result from the accumulation of random mutations rather than environmental adaptations.
This finding has profound implications for understanding the driving force of gene expression evolution, genetic basis of
phenotypic adaptation, and general role of stochasticity in evolution.
Key words: evolution, Saccharomyces, adaptation, genetic drift, transcriptome.

Introduction
Evolutionary biology began from studies of organism-level
phenotypes such as morphological, physiological, and be-
havioral traits. Darwin proposed that these variations, be
they intra or interspecific, can primarily be explained by
the adaptation of organisms to their respective environ-
ments (Darwin 1859), a view largely shared by modern bi-
ologists (Endler 1986; Mayr 2001; Futuyma 2013) (but see
Nei 2013). However, at the genotype level, molecular evolu-
tionists generally agree that most intra and interspecific var-
iations in DNA sequences are more or less neutral (Kimura
1968; Nei 1987; Lynch 2007). This contrast between geno-
typic and phenotypic evolution is not logically inconsistent,
because a genotypic change need not result in a phenotypic
change or one with an appreciable fitness effect, even
though a stably inherited phenotypic difference always re-
quires a genotypic change.

If a genotypic change has a potential phenotypic effect, the
realization of this potential usually requires gene expression,
regardless of whether the genotypic change occurs in a coding
region or a noncoding regulatory region. In other words, gene
expression is usually the necessary bridge between genotypes
and their corresponding organismal phenotypes. In this con-
text, one ponders whether gene expression level, a molecular
phenotype, is more like (organismal) phenotypes or

(molecular) genotypes in its evolutionary pattern and mech-
anism. Specifically, we ask whether variations in gene expres-
sion levels within and between species result largely from
neutral or adaptive evolution. Unfortunately, there is no un-
equivocal theoretical answer to this question, because an
expression-level change may or may not appreciably impact
the organismal phenotype and fitness. The available empirical
data in the literature do not provide a clear answer either. For
instance, although many presumably adaptive morphological
variations in nature have been found to be caused by gene
expression changes (Carroll 2008; Stern and Orgogozo 2008),
this fact at most suggests that a large fraction of morpholog-
ical adaptations are due to expression changes, but not that a
large fraction of expression differences are adaptive. A neutral
model of transcriptome evolution was previously proposed,
on the basis of, among other things, an approximately con-
stant rate of transcriptome evolution (Khaitovich et al. 2004).
This observation could, however, be an artifact of using a
human microarray to measure gene expression levels in other
primates (Gilad et al. 2005). Furthermore, due to the lack of
specific predictions of the adaptive hypothesis in the primate
study, adaptation and neutrality could not be unambiguously
distinguished.

To address whether variations in gene expression levels
within and between species are largely neutral or adaptive,
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we compared the transcriptomes of nine yeast strains isolated
from five different ecological environments. These strains be-
long to three closely related species separated from one an-
other �20 million years ago (Dujon 2006). Importantly, we
selected strains such that their genomic phylogenetic rela-
tionships mismatch their relationships of environmental ori-
gins. That is, some strains are phylogenetically relatively
distant from one another but have similar ecological environ-
ments, whereas others are phylogenetically relatively close to
one another but live in ecologically distinct environments. If
gene expression variations among these strains result from
the accumulation of neutral mutations, the relationships of
their transcriptomes should mimic the genome-based phylo-
genetic tree. On the contrary, if the expression variations
among these strains are largely shaped by adaptations to their
respective environments, their transcriptomes should cluster
according to their ecological environments, at least under
simple models (see Discussion for justification). Thus, our
design allows a distinction between the neutral and adaptive
hypotheses. We quantified the yeast transcriptomes by RNA
sequencing (RNA-seq) and discovered that these transcrip-
tomes cluster more or less according to the genome-based
phylogeny rather than their ecological environments. Only a
tiny fraction of yeast genes exhibit similar expression levels
among strains with a common ecological environment, no
greater than that among strains with comparable phyloge-
netic relationships but different environments. Our findings
strongly suggest that the vast majority of yeast gene expres-
sion variations result from neutral rather than adaptive
evolution.

Results

The Transcriptome Tree Approximates the Genome
Tree
To study the driving force of gene expression evolution, we
chose nine yeast strains belonging to three Saccharomyces
species (sister species S. cerevisiae and S. paradoxus, plus their
outgroup S. mikatae) and originating from five different eco-
logical environments (fig. 1A; see also supplementary table S1,
Supplementary Material online). The natural habitat of yeast
is thought to be the sap and bark of oak trees and adjacent
soils (Sniegowski et al. 2002). Five of our nine strains were
collected from this ecological environment and are referred
to as wild strains. They include two S. cerevisiae strains, two S.
paradoxus strains, and one S. mikatae strain. Four additional
S. cerevisiae strains were, respectively, isolated from four other
ecological environments and are referred to as nonwild
strains.

On the basis of the available genome sequences of these
nine strains (see Materials and Methods), we built a multiple
sequence alignment of the coding sequences of each of 4,325
genes that have fully sequenced and reliable one-to-one
orthologs across the nine strains. We concatenated the
aligned sequences after removing all gaps and used them to
reconstruct a neighbor-joining (NJ) tree (fig. 1A), which will be
referred to as the genome tree. This tree is highly resolved,
with all nodes having> 99.5% bootstrap support. As

expected, the nine strains are clustered in the genome tree
by species identity rather than ecological environment.
Furthermore, within the S. cerevisiae clade, the two wild
strains each have a nonwild sister strain. If gene expression
variations among the nine strains are in a large part due to the
accumulation of neutral mutations, the transcriptomes of
these strains should cluster in a tree similar to the genome
tree. If gene expression variations among the strains are largely
caused by environmental adaptations, the five wild strains
should cluster in the transcriptome tree, contrasting the ge-
nome tree.

To distinguish between the above two hypotheses, we
quantified the genome-wide gene expression levels of the
nine strains in the same growth medium and growth phase
such that the revealed expression variations reflect genetic
differences rather than phenotypic plasticity. The synthetic
medium used mimics oak exudate (Murphy et al. 2006), ren-
dering potential expression adaptations of the wild strains
readily detectable. We used diploid strains, as yeast is naturally
homothallic (Sniegowski et al. 2002; Johnson et al. 2004; Wang
et al. 2012) and therefore usually diploid because gametes can
switch mating type after dividing and mate with their daugh-
ter cells. RNAs were extracted from one exponentially divid-
ing culture of each of the nine strains and a replicate culture
of the S. cerevisiae wild strain YPS606 during exponential
growth, and the standard Illumina-based RNA-seq was per-
formed. A total of �744 million 52-nt single-end reads were
obtained (supplementary table S1, Supplementary Matertial
online); these reads were mapped to their respective genomes
and used to estimate gene expression levels. Our experiments
generated highly reproducible results, because gene expres-
sion levels quantified in the two biological replicates of strain
YPS606 have a Pearson correlation coefficient of 0.984
(P< 10�300; supplementary fig. S1, Supplementary Material
online). These two replicates were subsequently pooled in our
analysis unless otherwise noted.

Our transcriptome analysis focused on the same 4,325
genes used to reconstruct the genome tree, each of which
contains at least one read in at least one of the nine strains.
Using the gene expression levels measured by RPKM (reads
per kilobases per million reads), we calculated the standard-
ized Euclidian distance per gene between each pair of the nine
strains (see Materials and Methods) and then built an NJ tree,
referred to as the transcriptome tree (fig. 1B). The overall
topology of the transcriptome tree is similar but not identical
to that of the genome tree. Importantly, we found the nine
strains to cluster in the transcriptome tree by species identity
rather than ecological environment. Although the transcrip-
tome tree shows a different topology from that of the ge-
nome tree for the six S. cerevisiae strains, the two S. cerevisiae
wild strains are not clustered in the transcriptome tree (fig.
1B). Almost identical tree topologies were obtained when
TPM (transcript per million) (Wagner et al. 2012) or
quantile-normalized gene expression levels (Ritchie et al.
2015) were used (supplementary fig. S2A and B,
Supplementary Material online). Thus, the intraspecific topo-
logical differences between the transcriptome tree and ge-
nome tree do not appear to reflect environmental
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FIG. 1. Phylogenetic trees of the nine Saccharomyces yeast strains constructed using genome sequence, gene expression, and morphology data,
respectively. The three species are indicated by different colors, while the ecological environments where the strains were isolated are shown by
different symbols. (A) The genome tree of the nine strains based on the alignment of the coding sequences of 4,325 genes. Bootstrap percentages
estimated from 1,000 replications are shown on interior branches. Asterisks indicate> 99.5% bootstrap support. The scale bar shows 0.01
nucleotide substitutions per site. (B–D) The transcriptome tree of the nine strains based on standardized Euclidian distances in gene expression
levels of all 4,325 genes (B), the 75% most highly expressed genes (C), and the 50% most highly expressed genes (D). Bootstrap percentages
estimated from 10,000 replications are shown on interior branches. Asterisks indicate> 99.5% bootstrap support. The scale bar shows 0.1 unit of
the standardized Euclidian distance per gene. (E) The morphology tree of nine strains based on standardized Euclidian distances in 219 morpho-
logical traits. Strains IFO1804, RM11, CLIB219, Y12, and YPS163 are used as proxies of N44, BC187, DBVPG6040, Y9, and YPS606, respectively.
Bootstrap percentages estimated from 10,000 replications are shown on interior branches. Asterisks indicate> 99.5% bootstrap support. The scale
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adaptations in gene expression evolution. When we sepa-
rately analyzed the RNA-seq data from the two biological
replicates of the YPS606 strains, the two replicates cluster
in the transcriptome tree, as expected (supplementary fig.
S2C–E, Supplementary Material online).

Despite the high sequencing depths of our RNA-seq ex-
periments, expression level estimates of lowly expressed genes
are still less reliable than those of other genes. Because the
standardized Euclidian distance gives equal weights to all
genes, the inclusion of lowly expressed genes in the analysis
increases the sampling error of the transcriptome tree. We
thus repeated the above analysis using only the 75% (fig. 1C)
or 50% (fig. 1D) most highly expressed genes after ranking all
genes by their mean expression levels across all strains.
Interestingly, using these relatively highly expressed genes ren-
ders the transcriptome trees even more similar to the genome
tree. Specifically, they recovered the genome-tree-based rela-
tionships among some S. cerevisiae strains. This is not unex-
pected, given that 1) the differences between the
transcriptome tree made using all genes and the genome
tree seem random and 2) excluding lowly expressed genes
should increase the signal to noise ratio for making the tran-
scriptome tree.

To quantify the topological differences between the tran-
scriptome tree made using all genes and the genome tree, we
measured their topological distance (dT). The dT between two
unrooted trees is twice the number of interior branches at
which taxon partition is different between the two trees com-
pared (see Materials and Methods). We found that dT¼ 8
between the genome tree and transcriptome tree. In com-
parison, we generated 10,000 random tree topologies among
the nine strains and calculated their dT from the genome tree.
We found that only 4.2% of these random topologies have a
dT� 8 (fig. 1F), suggesting that the small dT between the
transcriptome tree and genome tree is unlikely to have
been caused by chance. The dT values from the genome
tree reduce to 6 and 4 for the transcriptome trees built using
the 75% and 50% most highly expressed genes, respectively,

and these dT values are again significantly smaller than ex-
pected by chance (P¼ 0.006 and 0.001, respectively; fig. 1F).

The exact topology of the environment tree that de-
scribes the relative similarities among the ecological envi-
ronments of the nine strains is unknown, except that the
tree should contain a monophyly of the five wild strains. We
thus defined an environment tree set by all trees that satisfy
the above condition. The dT between the genome tree and
the potential environment tree was defined by the smallest
topological distance between the genome tree and any tree
in the environment tree set. We similarly defined the dT

between the transcriptome tree and the potential environ-
ment tree. We found no difference between these two dT

values (fig. 1G), indicating that the transcriptome tree is not
closer than the genome tree to the potential environment
tree. The same is true when only the 75% or 50% most
strongly expressed genes are considered (fig. 1G).

While the above analyses found no evidence for the adap-
tive hypothesis of transcriptome evolution, it is important to
confirm that our experimental design is able to detect adap-
tations if they exist. In this context, it is worth mentioning a
yeast phenome study, which measured three growth charac-
teristics in 200 different conditions for a number of strains
and then clustered the strains by similarity in their growth
characteristics (Warringer et al. 2011). Four of the five wild
strains studied here (except DBVPG1788) form a monophyly
in the growth traits-based tree (fig. 2 in Warringer et al. 2011),
suggesting that phylogenetic clustering is able to detect at
least some potential adaptations. As a further verification, we
analyzed 219 morphological traits previously measured from
fluorescent microscopic images of triple-stained yeast cells
(Yvert et al. 2013; Ho et al. 2016). Using this dataset and
controlling for mutational size, we recently discovered that
morphological traits that are more important to organismal
fitness tend to differ more between strains, strongly suggest-
ing that the intra and interspecific morphological variations in
this dataset have been shaped by adaptive evolution to a large
extent (Ho et al. 2016). We thus subjected the yeast

FIG. 1. Continued
bar shows 0.1 unit of the standardized Euclidian distance per trait. (F) Frequency distributions of topological distances (dT) between the genome
tree and random tree topologies (grey), bootstrapped transcriptome trees with all genes (brown), bootstrapped transcriptome trees with the 75%
most highly expressed genes (dark purple), bootstrapped transcriptome trees with the 50% most highly expressed genes (light purple), and
bootstrapped morphology trees (blue), respectively. Each distribution is based on 10,000 random trees or bootstrapped trees. Arrows indicate the
observed dT between the genome tree and various other trees based on the original (rather than bootstrapped) data. P value shows the probability
with which the dT between the genome tree and a random tree topology is equal to or smaller than the observed dT between the genome tree and
the tree being compared. (G) Frequency distributions of topological distances (dT) between the potential environment tree and bootstrapped
genome trees (yellow), bootstrapped transcriptome trees with all genes (brown), bootstrapped transcriptome trees with the 75% most highly
expressed genes (dark purple), bootstrapped transcriptome trees with the 50% most highly expressed genes (light purple), gene expression trees
based on 533 individual GO categories (dark green), and bootstrapped morphology trees (blue), respectively, as well as frequency distributions of
dT between three control environment trees and 533 GO-based gene expression trees, respectively (light green). The dT between a tree and the
potential environment tree is defined by the minimal topological distance between the tree and any tree containing a monophyly of the five wild
strains. In the three control environment trees, one or both S. cerevisiae wild strains in the aforementioned monophyly are swapped with their
sister strains in the genome tree. Each distribution except for the bootstrapped genome trees (1,000 replications) and GO-based trees (533 GO
categories) is derived from 10,000 bootstrapped trees. Arrows indicate the observed dT between the potential environment tree and various other
trees based on the original (rather than bootstrapped) data. The P value is from a Z-test of the null hypothesis that the mean dT between 10,000
bootstrapped morphology trees and the potential environment tree is equal to or larger than that between the bootstrapped trees being
compared and the potential environment tree.
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morphological data to the same phylogenetic analysis used
for the transcriptome data. However, five of the nine strains
with transcriptome data do not have morphological data. We
chose five other strains that have morphological data as their
proxies. Each of the proxies is ecologically equivalent (with
one exception) and, based on the established genome trees
(Liti et al. 2009; Maclean et al. 2017), phylogenetically close to
the strain being replaced. The exception is the S. cerevisiae
fruit juice strain DBVPG6040. Because this strain has no phy-
logenetically close and ecologically equivalent strain in the set
of strains with morphological data, we chose a phylogeneti-
cally close wine strain (CLIB219) as its proxy. We then calcu-
lated standardized Euclidian distances between pairs of the
nine strains using all 219 morphological traits and built an NJ
tree (fig. 1E). Compared with the transcriptome tree, the
morphology tree is more different in overall topology from
the genome tree. For instance, morphological clustering of
the strains is no longer strictly by species identity, because the
six S. cerevisiae strains do not form a monophyletic clade.
Furthermore, in contrast to the genome tree and transcrip-
tome tree, the morphology tree unites the two wild S. cer-
evisiae strains in exclusion of all other strains. We found the dT

between the morphology tree and genome tree to be 10, not
significantly smaller than that between a random tree and the
genome tree (P¼ 0.262; fig. 1F). This is not caused by the
existence of two wine strains in the morphological data, be-
cause these two strains are not clustered in the tree. The dT

between the morphology tree and potential environment
tree is smaller than that between the genome tree and po-
tential environment tree (fig. 1G). To examine if this differ-
ence is statistically significant, we generated 10,000
morphology trees and 10,000 genome trees by bootstrapping
the 219 morphological traits and the 4325 genes, respectively.
The mean dT to the potential environment tree is significantly
smaller for the set of morphology bootstrap trees than the set
of genome bootstrap trees (P¼ 0.0005, Z-test; fig. 1G). These
observations confirm that our experimental design is able to
detect potential signals of environmental adaptation.

We similarly used the bootstrap method with 10,000 repli-
cations to examine if the dT between the transcriptome tree
and genome tree is significantly smaller than that between the
morphology tree and genome tree. While this difference in dT is
not statistically significant (P¼ 0.16; fig. 1F), the difference be-
comes significant when only the 75% or 50% most highly ex-
pressed genes are used in the transcriptome analysis
(P¼ 6� 10�4 and 2� 10�5, respectively; fig. 1F). By the
same approach, we found that the dT between any of the three
transcriptome trees and the potential environment tree is sig-
nificantly larger than that between the morphology tree and
potential environment tree (P¼ 0.04, 0.05, and 0.05, respec-
tively; fig. 1G). These results further support the hypothesis of
neutral rather than adaptive evolution of yeast transcriptomes.

It is notable that, while the transcriptome tree resembles
the genome tree in topology, the branch lengths of the two
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trees are not proportional to each other. This is unsurprising
because we used the Euclidian distance to measure transcrip-
tome differences, and the Euclidian distance is not known to
be proportional to the underlying number of genetic changes
or divergence time.

Principal Component Analysis Supports the
Phylogenetic Results
In addition to the phylogenetic analysis, we performed a prin-
cipal component analysis (PCA) of the genome sequence,
transcriptome, and morphology data, respectively. For the
genome sequence data, the nine strains are clearly separated
according to species identity rather than ecological environ-
ment in the plane of the first two principal components (fig.
2A). Although to a lesser extent, the same can be said for the
transcriptome data (fig. 2B; supplementary figs. S3A and B,
Supplementary Material online). By contrast, there is no clear
grouping of strains by species identity when the morpholog-
ical data are analyzed (fig. 2C). For instance, the distances
between some pairs of interspecific strains on the PCA plot
are smaller than the distances between some pairs of in-
traspecific strains. Of special interest is that the distance be-
tween the two S. cerevisiae wild strains is much smaller than
that between each of them and their respective sister strains
or their proxies. The contrast between the morphology PCA
plot and transcriptome PCA plot is not due to the much
larger number of genes/traits in the transcriptome data, com-
pared with that in the morphology data. This is because, even
when only 219 randomly picked genes are used, the tran-
scriptome PCA plot still displays a much stronger grouping
of strains by species than does the morphology PCA plot
(supplementary fig. S3C, Supplementary Material online). In
summary, results from the PCA and phylogenetic analysis are
consistent, both suggesting that the transcriptome variation
among the nine strains is largely neutral.

Expression Variations of Functional Groups of Genes
Are Consistent with Neutral Evolution
The above finding that the evolution of the transcriptome as
a whole resembles genome sequence evolution suggests that
the expression variations of most genes are likely neutral.
However, this finding does not rule out the possibility that
the expression variations of a minority of genes are caused by
environmental adaptations. Specifically, these genes may be
enriched in certain functional groups. To investigate this pos-
sibility, we downloaded the Gene Ontology (GO)-based gene
functional annotations in GOslim (Cherry et al. 2012). For
each molecular function, biological process, or cellular com-
ponent GO category, we constructed an NJ tree using the
expression levels of all genes belonging to the GO category as
was done for all genes in fig. 1B. Of 533 GO categories exam-
ined, only one exhibits a monophyly of the set of all five wild
strains. To examine if this observation is explainable by
chance alone, we constructed three five-strain control sets
by swapping one or both of the two wild S. cerevisiae strains
with their respective nonwild sister strains shown in the ge-
nome tree. We found 3 (swapping DBVPG1788 with BC187),
1 (swapping YPS606 with Y9), and 1 (swapping both) GO

categories for which the three five-strain control sets form a
monophyly in the expression tree, respectively. Because the
observed number (1) for the all-wild strain set is not larger
than those (1–3) for the three control sets, we conclude that
genes with adaptive expression variations, if they exist, are not
significantly enriched in any GO category, which could hap-
pen if the number of such genes is small and/or these genes
are more or less evenly distributed among GO categories. We
further generated the distribution of dT between the expres-
sion tree of a GO category and the potential environment
tree using all 533 GO categories (fig. 1G). It is clear that there is
no enrichment of GOs with small dT in this distribution,
compared with the corresponding distributions when one
or both of the two wild S. cerevisiae strains are swapped
with their respective genomic sister strains in expression trees
(fig. 1G). Similar analyses were carried out for groups of genes
belonging to the same biochemical pathways and groups of
genes having the same deletion phenotypes, according to
SGD annotations (Cherry et al. 2012). Again, expression trees
of genes based on biochemical pathways or phenotypes are
no closer to the potential environment tree than are the three
negative controls aforementioned (supplementary fig. S2F,
Supplementary Material online).

Expression Variations of Individual Genes Are
Consistent with Neutral Evolution
The lack of significant GO enrichment of genes with potential
adaptive expression variations prompted us to examine indi-
vidual genes. For each gene, we calculated the standardized
Euclidian distance between each pair of the nine strains,
which is simply the absolute value of their standardized ex-
pression level difference for the gene (see Materials and
Methods). We then used these distances to construct an
expression tree by the NJ method. We were interested in
expression trees in which the five wild strains form a mono-
phyly, because such trees potentially result from adaptive
expression evolution. Only 22 genes met this requirement.
A careful examination of their expression variations, however,
led to three unexpected observations. First, for each of these
22 genes, all five wild strains showed either higher or lower
expressions than all four nonwild strains (fig. 3A). This is un-
expected, because the five wild strains could also form a
monophyly if they all have similar expression levels that are
intermediate to those of nonwild strains, with some nonwild
strains having higher expressions and others lower expres-
sions. Second, if the expression variation of a gene is primarily
due to environmental adaptations, given the first observation,
each of the five wild strains should have the same probability
to be the strain with the most dissimilar expression from
those of the four nonwild strains. Surprisingly, for only one
of the 22 genes is a wild S. cerevisiae strain’s expression most
dissimilar from those of the nonwild strains, significantly be-
low the expectation of 22� (2/5)¼ 8.8 (P¼ 2� 10�4, bino-
mial test). Because all four nonwild strains belong to S.
cerevisiae, the first two observations together strongly suggest
that, even for these 22 genes, the vast majority still show a
clear signal of expression clustering by species (fig. 3A), which
is consistent with neutral evolution. Third, the coefficient of
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variation (CV) of gene expression among the six S. cerevisiae
strains is smaller than the CV among the five wild strains for
15 of the 22 genes. Because the six S. cerevisiae strains are from
five different environments whereas the five wild strains are
all from one environment, the third observation is unexplain-
able by the simple environmental adaptation hypothesis but
is consistent with the neutral hypothesis. Thus, the expression
variations of even these 22 genes are unlikely to have been
primarily caused by environmental adaptations.

To investigate the possibility that the clustering of the five
wild strains by the expression levels for these 22 genes is by

chance, we enumerated all 126 ways that five strains can be
chosen from the nine strains. For each set of five strains
chosen, we calculated the number of genes whose expression
trees show a monophyly of these five strains, and referred to
this number as the number of monophyly genes (NMG) for
the five-strain set. We ranked NMG for the 126 five-strain sets
and found that 100 of the 126 sets have NMG� 22 (fig. 3B).
Furthermore, the all-wild set (red dot in fig. 3B) has the sec-
ond smallest NMG among the 15 five-strain sets that are com-
posed of any two S. cerevisiae strains and the three non-S.
cerevisiae strains (green and blue symbols in fig. 3B),

A B C

D E

F G

FIG. 3. Little evidence for environmental adaptation from the expression levels of individual genes. (A) Twenty-two genes whose expression levels
support a monophyly of the five wild strains. Expression levels of the nine strains for each gene have been scaled to a standard normal distribution for
comparison. The three species are indicated by different colors, while the ecological environments where the strains were isolated are shown by
different symbols. (B) Number of genes for which the expression tree supports the monophyly of each of the 126 possible five-strain sets. The red dot
shows the five-strain set composed of the five wild strains (“Five wild strains”), the three blue symbols show the three control sets in which one
(“YPS606 !Y9” and “DBVPG1788 !BC187”) or both (“Swap both”) of the two wild S. cerevisiae strains in the “Five wild strains” set are swapped
with their sister nonwild strains, the green circles show all other five-strain sets that include the three non-S. cerevisiae strains (“2 nonwild S.c.þ 3
non-S.c.”), and the grey dots show all other five-strain sets (“All others”). (C) Number of genes whose expression tree supports the monophyly of each
of the 84 possible six-strain sets. The red dot shows the six-strain set composed of the six S. cerevisiae strains (“Six S.c. strains”), while the grey dots show
all other six-strain sets (“All others”). (D) Same as panel B except that coding sequence data instead of gene expression data are used. (E) Same as panel
C except that coding sequence data instead of gene expression data are used. (F) Same as panel B except that morphological data instead of gene
expression data are used. (G) Same as panel C except that morphological data instead of gene expression data are used.
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suggesting that nonwild S. cerevisiae strains cluster more
often with (the wild strains of) the other two species than
do the wild S. cerevisiae strains at the level of gene ex-
pression. In addition, we found NMG to be smaller for the
all-wild set than each of the three control sets mentioned
in the previous section (blue symbols in fig. 3B). Because
each control set is composed of five strains that have
exactly the same phylogenetic positions as the five wild
strains in the genome tree but share lower environmental
similarities than the five wild strains do, the observation
of a smaller NMG for the all-wild set than each of the
control set indicates that having a common environment
does not increase NMG, supporting the neutral hypothesis
of expression evolution. Note that the above finding can-
not be caused by a potential lack of information in the
data, because if we choose six strains from the nine used,
the number of genes supporting the monophyly of the six
S. cerevisiae strains (red dot in fig. 3C) is the highest
among all 84 possible six-strain sets (gray dots in fig.
3C). Apparently, our expression dataset contains rich in-
formation, but the information points to a neutral rather
than adaptive explanation of gene expression variation.

For comparison, we repeated the above analyses using the
yeast genome and morphological data, respectively. When
using individual gene sequences to reconstruct the trees of
the nine strains, we found NMG¼ 33 genes to support the
monophyly of the all-wild set (red dot in fig. 3D). Twenty of
the 126 possible five-strain sets and 14 of the 15 possible five-
strain sets that are composed of the three non-S. cerevisiae
strains and any two S. cerevisiae strains (green and blue sym-
bols in fig. 3D) have NMG� 33. NMG for the all-wild set is larger
than that for one of the three control sets. As expected, a
monophyly of the six S. cerevisiae strains (red dot in fig. 3E) is
supported by more genes than any other six-strain set (grey
dots in fig. 3E). Thus, results from the gene sequence data are
overall similar to those from the gene expression data. If there
is any difference, the expression data appear to support the
monophyly of the all-wild set relative to other sets even less
often than the sequence data.

On the contrary, for the morphological data, 15 of the 219
traits support the monophyly of the all-wild set (red dot in fig.
3F). This fraction (15/219¼ 6.8%) is an order of magnitude
greater than the corresponding fractions for genome (33/
4325¼ 0.76%) and gene expression (22/4325¼ 0.51%) data
(P¼ 3� 10�9 and 3� 10�11, respectively, G-test of indepen-
dence). Only two of the 15 five-strain sets containing all
non-S. cerevisiae strains and any two S. cerevisiae strains
(green and blue symbols in fig. 3F) and 8 of all 126 five-
strain sets are supported by�15 traits. Furthermore, the
number of traits supporting the all-wild set exceeds that sup-
porting each of the three control sets (blue symbols in fig. 3F).
By contrast, the monophyly of all six S. cerevisiae strains, sup-
ported by only 27 morphological traits, is no longer the best
supported among all six-strain sets.

Altogether, these phylogenetic analyses of individual gene
sequences, expression levels, and morphological traits
strongly suggest that the observed yeast expression variations
within and between species are largely neutral.

Expression Variation among Wild Strains Exceeds That
between Wild and Nonwild Strains
If gene expression variations among the yeast strains are
mainly due to environmental adaptations, the expression
level differences among the five wild strains should be rela-
tively small, compared with those between wild and nonwild
strains. On the contrary, if expression variations are mainly
neutral, expression differences among strains should increase
with their genomic distances. Consequently, under the neu-
tral hypothesis and given the genome tree (fig. 1A), expression
differences among wild strains are not expected to be smaller,
compared with those between wild and nonwild strains. In
other words, the neutral and adaptive hypotheses may also be
tested by measuring expression differences of individual genes
among various strains without making a tree. We used two
measures of gene expression differences. First, for each gene,
we calculated the mean pair-wise difference in expression
level among all wild strains (PDww), as well as that between
all pairs of wild and nonwild strains (PDwo). The smaller the
ratio between PDww and PDwo, the stronger the evidence for
adaptation. Second, for each gene, we also compared the
variance in expression level among all wild strains (Vw) and
that among all strains (Vt). Again, the smaller the ratio be-
tween Vw and Vt, the stronger the evidence for adaptation.
We plotted the frequency distributions of these two ratios
using the actual wild and nonwild strains (fig. 4A and B). As
three controls, we plotted the frequency distributions when
we swap one or both wild S. cerevisiae strains with their re-
spective nonwild sister strains. But, neither PDww/PDwo nor
Vw/Vt is smaller for the actual wild strains when compared
with the three controls (P> 0.5, one-tail Mann–Whitney U
test; fig. 4A and B), consistent with the neutral hypothesis.

For comparison, we performed the same analysis with the
morphological data. Interestingly, both PDww/PDwo and Vw/
Vt are significantly skewed towards lower values when com-
pared with the three controls (fig. 4C and D), consistent with
the adaptive evolution hypothesis of morphological traits (Ho
et al. 2016).

Discussion
In this study, we measured genome-wide gene expression
levels in nine yeast strains belonging to three closely related
species and isolated from five different ecological environ-
ments. We repeatedly found that the intra and interspecific
variations in gene expression levels can be explained by the
neutral accumulation of random mutations but are inconsis-
tent with the simple environmental adaptation hypothesis.
Our study has several caveats that are worth considering.

First, the quality of the gene expression data is critical to
our conclusion. The sequencing depth in our RNA-seq exper-
iment is high, with �70.4 million mapped reads per sample.
For the gene with the median expression level in our data,
there are on average 93 reads covering each nucleotide.
Further, biological replicates show highly similar expressions
(supplementary fig. S1, Supplementary Material online) and
form a monophyly in transcriptome trees (supplementary fig.
S3, Supplementary Material online). Our finding of neutral
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expression variations is not an artifact of a lack of statistical
power in detecting adaptation, because 1) our finding is based
on positive evidence for neutrality in addition to negative
evidence for adaptation, and 2) adaptive signals were detect-
able in the morphological data despite that the morpholog-
ical measurements are less accurate than the gene expression
measurements.

Second, the laboratory condition under which gene ex-
pressions are quantified is important to the test of the neutral
and adaptive hypotheses. The oak exudate medium used
mimics the natural habitat of wild yeast strains; our previous
study showed that, compared with some nonwild strains, a
wild strain grows faster in this medium than in the other
commonly used media tested (Qian et al. 2012). Thus, using
this medium should help reveal environmental adaptations of
gene expressions in the wild strains if such adaptations exist.
The absence of adaptive signals even in this medium implies
the unlikelihood of detecting adaptations in other conditions
that are less similar to the natural habitat of the wild strains.

Nonetheless, the synthetic oak exudate medium is not iden-
tical to the natural habitat of the wild yeast strains, which
could have obscured the potential adaptive signals in gene
expression variations. However, natural environments fluctu-
ate and gene expression evolution includes the evolution of
expression responses to environmental fluctuations, of which
the oak exudate medium may be considered one. If gene
expression variations are primarily adaptive, one cannot ex-
plain why the among-strain variation in the expression re-
sponse to the oak exudate medium is structured like the
genome tree of the strains. By contrast, this pattern of vari-
ation is expected if it is due to the random accumulation of
neutral mutations. Thus, although the medium used in our
experiment is not identical to the natural habitat of the wild
yeast strains, our findings regarding the evolutionary mecha-
nism of expression variations are informative. Of course, this
conclusion should be further verified under other relevant
conditions in the future. One might wonder why we included
in our study four S. cerevisiae strains sampled from four

FIG. 4. Gene expression variances among wild strains and among all strains. (A) Frequency distribution of the logarithm of the ratio between the
mean expression difference between wild strains and that between wild and nonwild strains (“Wild”, black bars). As controls, the same quantity is
plotted when one (“YPS606 !Y9” and “DBVPG1788 !BC187”) or both (“Swap both”) of the wild S. cerevisiae strains are swapped with their
sister nonwild strains in the calculation. The P value from Mann–Whitney U test, measuring the probability that the median value of the observed
distribution (black) is equal to or greater than that of a control distribution, is indicated with the same color as the control distribution. (B)
Frequency distribution of the logarithm of the ratio between the variance in expression level among the wild strains and that among all strains
(“Wild”, black bars). As controls, the same quantity is plotted when one (“YPS606 !Y9” and “DBVPG1788 !BC187”) or both (“Swap both”) of
the wild S. cerevisiae strains are swapped with their sister nonwild strains in the calculation. The P value from Mann–Whitney U test, measuring the
probability that the median value of the observed distribution is equal to or greater than that of a control distribution, is indicated with the same
color as the control distribution. (C) Same as panel A except that morphological data instead of gene expression data are used. (D) Same as panel B
except that morphological data instead of gene expression data are used.

Variations of Gene Expression Levels in Yeast . doi:10.1093/molbev/msx171 MBE

2133

Deleted Text: (i
Deleted Text: (ii
Deleted Text: -


different nonwild environments instead of, for example, two
clinical and two distillery strains, which might be useful for
studying adaptations to each of these two nonwild environ-
ments. The reason is that our expression profiling used only
one medium that mimics the wild environment.
Consequently, the expression data are not particularly pow-
erful for detecting adaptations to nonwild environments
when they do not even show signals of adaptation to the
wild environment. In other words, the alternative sampling
strategy would not be helpful. In the future, when expression
data are collected from multiple media, such a sampling strat-
egy would be helpful.

Third, although the ecological environments of the five
wild strains are overall similar, these environments may still
differ in temperature, humidity, day length, etc.
Consequently, one could argue that the adaptive hypothesis
does not necessarily predict similar gene expressions among
the wild strains. While this argument may be valid, the adap-
tive hypothesis cannot explain the significant topological sim-
ilarity between the transcriptome tree and the genome tree,
because the differences among the environments of the nine
strains are certainly not represented by the genome tree. The
similarity between the transcriptome and genome trees, in
contrast to the dissimilarity between the morphology and
genome trees, strongly supports the neutral explanation of
the expression variations among the nine yeast strains, par-
ticularly in the light of the recent finding of adaptive varia-
tions of the morphological traits examined (Ho et al. 2016).

Fourth, we assumed that environmental adaptation means
that there is a single optimal expression level or a continuous
range of equally optimal expression levels for a given gene in
an environment. This assumption, however, may not be cor-
rect for all genes. Strains from the same ecological environ-
ment but with different genetic backgrounds could have
different optimal gene expression levels, due to different ge-
netic interactions that have accumulated since the strains
diverged from one another. For example, let X and Y be
two genes with virtually identical functions such that it is
the total expression level of X and Y that is optimized by
natural selection. Under this scenario, the optimal expression
level of X will vary among wild strains depending on the
expression level of Y. If this or other scenarios of genetic
interactions apply to most genes in the genome, our analysis
would be incapable of testing the adaptive hypothesis, be-
cause what is potentially selectively optimized is not the ex-
pression levels of individual genes but unknown
mathematical functions of the expression levels of multiple
genes. However, for the following reason, such genetic inter-
actions cannot be widespread. We previously found that de-
leting certain genes in a lab strain of yeast can increase the
yeast fitness under a given environment, which led us to
predict that these genes should have been down-regulated
in strains well adapted to that environment (Qian et al. 2012).
Interestingly, this prediction is usually correct (Qian et al.
2012), suggesting that genes with fitness effects upon deletion
are rarely subject to the type of genetic interaction aforemen-
tioned, because otherwise the prediction could not have been
so good. This consideration suggests that the necessary

assumption required for our rejection of the adaptive hypoth-
esis is likely satisfied for most genes. Whether the same is true
to mutations milder than gene deletion and in interspecific
comparisons, however, remains an open question. In the case
of morphological traits, the assumption apparently holds for
most traits, because otherwise signals of adaptation predicted
under this assumption should not have been detected.

While our study suggests the paucity of adaptive expres-
sion variations among the yeast strains studied, it does not
exclude the possibility of a small fraction of genes whose
expression variations are largely caused by adaptations. In
fact, adaptive expressional differences among S. cerevisiae
strains have been suggested for some genes (Bullard et al.
2010; Fraser et al. 2010; Qian et al. 2012). Furthermore, be-
cause we analyzed only one-to-one orthologous genes among
the nine strains, adaptive expression evolution of nonone-to-
one orthologous genes, including recently duplicated genes as
well as orthologs of recently lost genes, remains untested,
although a previous yeast study suggested that duplicate
genes contribute to adaptation more often via protein func-
tion changes than expression changes (Qian and Zhang
2014). It should be pointed out, however, that identifying
an adaptive signal in the expression difference of a gene be-
tween two strains does not necessarily mean that their ex-
pression difference is entirely or even largely explained by
adaptation. The following hypothetical example illustrates
this point. The optimal expression level for a gene in strain
A is anywhere between 5 and 10 units, while its optimal
expression level in strain B is anywhere between 25 and 100
units. If we observe that the expression level of the gene is
seven units in strain A and 82 units in strain B, the fraction of
their expression difference that is potentially adaptive is only
(25 � 10)/(82 � 7)¼ 20%. Adaptive signals can be detected
in some tests even when the fraction of expression variation
explainable by adaptation is low (Qian et al. 2012), whereas
some seemingly adaptive patterns, such as the similarity in
the expression levels of the 22 genes among the wild strains in
figure 3A, are better explained by neutral evolution upon a
closer examination. If only a small fraction of expression dif-
ferences between two populations are adaptive, the adaptive
expression differences likely arise early in their environmental
adaptations, because the fitness advantages of successive fix-
ations of mutations in an adaptation process are expected to
decline exponentially (Orr 1998). It is thus not surprising that
three parallel populations of yeast under continuous aerobic
growth in glucose-limited chemostats for 250–500 genera-
tions showed parallel expression changes for some genes
(Ferea et al. 1999), although it is unclear whether the number
of genes with parallel expression changes significantly exceeds
the random expectation. Notably, even during early stages of
adaptations, the amount of adaptive expression changes may
still be limited, compared with neutral changes. For example,
in a large-scale experimental evolution study that subjected
eight populations of yeast to each of three conditions (glu-
cose limitation, sulfate limitation, and phosphate limitation)
for 100–400 generations of mitotic growth, populations se-
lected under the same conditions do not form monophyletic
clades in the transcriptome tree (Gresham et al. 2008).
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Regardless, these experimental evolution studies were not
designed to distinguish between the neutral and adaptive
hypotheses and hence do not provide critical evidence for
or against each hypothesis.

Recently, Karen et al. measured the fitness effects on a
laboratory yeast strain by individually altering the expression
levels of �100 genes (Keren et al. 2016). Due to the limited
sensitivity of the laboratory fitness quantification, a measured
fitness effect<1% cannot be distinguished from no effect. We
thus estimated the “neutral” expression range, for which the
measured fitness effect is �1%. For 69% of the 78 genes that
can be analyzed (Keren et al. 2016), the neutral expression
range is wider than the actual expression range observed in
the nine strains studied here, explaining why the observed
expression variations within and between species appear neu-
tral for most genes. The above comparison is of course ap-
proximate, because the media used in the laboratory fitness
measurement differ from that used in our study, the genetic
background stays unchanged in the fitness measurement but
varies among our nine strains, and the sensitivity of the fitness
assay is lower than that of natural selection. Nevertheless, the
comparison shows that the direct fitness measures are not
inconsistent with our conclusion.

Except for one early microarray study that suggested no
purifying selection (Khaitovich et al. 2004), there is ample
evidence for and general agreement on the action of purifying
selection in gene expression evolution (Denver et al. 2005;
Jordan et al. 2005; Rifkin et al. 2005; Liao and Zhang 2006),
which may be detected by showing conservation in gene
expression level between distantly related species (Jordan
et al. 2005; Liao and Zhang 2006), reduced rate of expression
change in evolution compared with that in mutation accu-
mulation experiments (Denver et al. 2005; Rifkin et al. 2005),
and significantly lower expression variations than neutral ex-
pectations (Rohlfs et al. 2014). That early suggestion was
based on a lack of significant difference in the rate of expres-
sion evolution between intact genes and expressed pseudo-
genes (Khaitovich et al. 2004), which could have been due to
low statistical power caused by the inclusion of too few ex-
pressed pseudogenes and/or the action of purifying selection
on expressed pseudogenes (Khachane and Harrison 2009;
Podlaha and Zhang 2010; Xu and Zhang 2016). While our
study is not intended to detect purifying selection in gene
expression evolution, our data are consistent with the action
of purifying selection. For instance, for each gene, we mea-
sured the coefficient of variation in expression level among all
nine strains (CVt) and that among the five wild strains (CVw),
and found both to be negatively correlated with the impor-
tance of the gene measured by the fitness reduction caused
by deleting the gene in the oak exudate medium (Qian et al.
2012) (for CVt: q¼�0.095, P¼ 0.0001; for CVw: q¼�0.081,
P¼ 0.0009). This pattern is explainable by stronger purifying
selection acting on the expression levels of more important
genes.

After the removal of deleterious expression variations by
purifying selection, the remaining expression variations that
are observed can be neutral or adaptive. We found that they
are largely neutral rather than adaptive. Given the relatively

high expression variations observed (mean CVt ¼ 0.39 and
mean CVw¼ 0.36), this conclusion seems to be at odds with
the view that gene expression levels are tightly regulated and
consequently should show little neutral variation. For in-
stance, an elegant experiment on the Escherichia coli lactose
operon suggests that protein expression levels are finely
tuned according to the cost and benefit of gene expression
and protein production, which vary depending on the envi-
ronment (Dekel and Alon 2005). Similarly, by considering the
energy cost of protein synthesis, Wagner estimated that nat-
ural selection would prohibit a>2% increase in protein con-
centration above the optimal level for any gene that is more
highly expressed than the median gene expression level in
yeast (Wagner 2005). One possibility that could potentially
resolve the apparent conflict between these findings and our
results is the existence of posttranscriptional regulations that
minimize the downstream consequences of variations in
mRNA concentrations. Indeed, several studies have shown
that protein concentrations are generally more conserved
evolutionarily than mRNA concentrations (Schrimpf et al.
2009; Laurent et al. 2010) and that mRNA concentration dif-
ferences between species are often offset by differences in
translation (Khan et al. 2013; Artieri and Fraser 2014;
McManus et al. 2014). The much smaller energy cost of
mRNA synthesis than that of protein synthesis (Wagner
2005) also permits a larger range of neutral variation in
mRNA concentration. These considerations lead us to hy-
pothesize that the adaptive fraction of intra and interspecific
variations in protein concentration is greater than the adap-
tive fraction of gene expression variations. With the rapid
progress of quantitative proteomics, this hypothesis may be
tested in the near future.

In terms of how directly a trait impacts the organism-level
phenotype, the four types of traits discussed in this work can
be ranked as organismal morphology, protein concentration,
mRNA concentration, and genome sequence. Because natu-
ral selection acts at the organism level, it seems plausible that
the more directly that a trait affects the organism-level phe-
notype, the higher the probability that adaptation contrib-
utes to its natural variation. This hypothesis is supported by
the present study and can be further tested when compara-
tive proteomic data aforementioned become available.

The role of stochasticity in genotypic evolution is well
recognized, while that in phenotypic evolution is less appre-
ciated and agreed upon. Our finding that natural variations in
gene expression level, a molecular phenotype, is generally
shaped by stochastic genetic drift rather than deterministic
adaptation expands the role of stochasticity in evolution. It is
likely that the role of stochasticity in evolution, compared
with that of adaptation, is generally reduced as one moves
from traits that impact the organismic phenotype less directly
to those that impact more directly.

It has been heatedly debated whether phenotypic adapta-
tions seen at the organism level are mainly caused by protein
sequence/function changes or gene expression changes, es-
pecially those brought about by alterations of cis-regulatory
sequences (Hoekstra and Coyne 2007; Stern and Orgogozo
2008). We previously provided evidence supporting the
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hypothesis that evolution of morphological traits is more of-
ten caused by gene expression changes while that of physio-
logical traits is more often owing to protein function changes
(Liao et al. 2010). Regardless, our finding that gene expression
variations are largely neutral should reduce our expectation
that an organismic adaptation is caused by expression
changes (see Materials and Methods).

Given the huge effective population size of yeast, our find-
ing that yeast expression variations are largely neutral sug-
gests that the same would apply to species with smaller
effective population sizes, which include almost all multicel-
lular organisms. Some gene expression studies from inverte-
brates (Rifkin et al. 2003; Israel et al. 2016) and vertebrates
(Oleksiak et al. 2002) reported at most a tiny fraction of
adaptive expression variations and are thus consistent with
our prediction, but a stronger test of neutral expression var-
iation is warranted. Note that the observation (Liao and
Zhang 2006; Brawand et al. 2011) that the transcriptomes
of multiple organs from several mammalian species are clus-
tered by organ rather than species (e.g., human liver tran-
scriptome is closer to mouse liver transcriptome than to
human heart transcriptome) does not distinguish between
the neutral and adaptive hypotheses, because this clustering
is predicted by both hypotheses due to the fact that different
organs originated prior to the emergence of mammals and
that they have distinct functions. It will be of great interest
and importance to test the prediction that intra and in-
terspecific expression variations in multicellulars are mostly
neutral.

Materials and Methods

Yeast Genome Sequences and Phylogenetic Analysis
The genome sequences of all S. cerevisae strains used here
(supplementary table S1, Supplementary Material online)
were obtained from a recently completed yeast population
genomic study that sequenced 85 S. cerevisiae strains from a
diverse array of ecological and geographic origins (Maclean
et al. 2017). S. cerevisiae genomic annotations were down-
loaded from SGD (Cherry et al. 2012). The two S. paradoxus
and one S. mikatae genome sequences and their annotations
were previously published (Scannell et al. 2011) . We first
identified reciprocal best hits (RBH) between S. cerevisiae
and each of the other two species in a specie-wise tBLASTx
search (Camacho et al. 2009) among all annotated genes,
using an E value cutoff of 10�4. To avoid the complication
of gene expression changes after gene duplication, we should
exclude paralogs generated after the separation of the three
species and include only one-to-one orthologs among the
species. To this end, we removed from the above RBH gene
list any gene that is the best hit of a gene from either of the
other two yeasts but not on the list, resulting in a set of 4,625
one-to-one orthologous genes. We further removed those
genes that contain undetermined nucleotides in coding re-
gions due to incomplete genomic sequencing. Our final list
had 4,325 genes.

We aligned the coding sequences of each of the 4,325
genes from the nine yeast strains by MACSE (Ranwez et al.

2011) and removed alignment gaps. The aligned sequences of
each gene were then used by PHYLIP (Felsenstein 1989) to
estimate F84 pairwise nucleotide distances and reconstruct a
neighbor-joining (NJ) tree (Saitou and Nei 1987) of the nine
strains. To reconstruct the genome tree, we first concaten-
ated the coding sequence alignments of all genes and then
estimated F84 distances and built an NJ tree using PHYLIP.
Statistical support for each interior branch of the genome tree
was assessed by bootstrapping the 4,325 genes 1,000 times.
We used a distance method of tree-making for all types of
data in this study because of the lack of other phylogenetic
methods that can handle all of the different types of data
analyzed here.

RNA Sequencing and Transcriptome Analysis
Each of the nine yeast strains was streaked to form single
colonies from frozen glycerol stocks held at �80 �C onto
YPD plates (1% yeast extract, 2% peptone, 2% glucose, 2%
agar). After 48 h of growth at 30 �C, a single colony was picked
and inoculated into 5 ml of the synthetic oak exudate me-
dium (1% sucrose, 0.5% fructose, 0.5% glucose, 0.1% yeast
extract, and 0.15% peptone) (Murphy et al. 2006). Strains
were grown for 24 h at 30 �C before dilution into fresh syn-
thetic oak exudate medium to an OD660 of 0.1. Cultures were
grown at 30 �C until OD660¼ 0.5 (mid-log phase), at which
point cells were harvested by centrifugation. RNA-seq libraries
were prepared following a previous study (Nagalakshmi et al.
2008). Briefly, total RNA was extracted from each population
using RiboPure-Yeast Kit (Ambion) and treated with DNase I
to remove any contaminant DNA. Extraction of mRNA was
carried out using MicroPoly(A)Purist Kit (Ambion) and
200 ng of the resulting mRNA sample was fragmented
(Fragmentation Buffer, NEB) before ethanol precipitation.
First strand cDNA synthesis was performed using random
hexamer priming (Superscript II, Invitrogen), followed by sec-
ond strand cDNA synthesis (Invitrogen) as recommended by
the manufacturer. End repair, A-tailing, and ligation of the
Illumina adapters necessary for sequencing were then carried
out using the NEBnext mRNA sample preparation kit (NEB).
Libraries were then size-selected by agarose gel electrophore-
sis followed by gel extraction such that libraries consisted of
fragments containing inserts of �250 bp in length.
Polymerase-chain-reaction amplification was performed for
15 cycles using NEBnext mRNA sample preparation kit, be-
fore single-end sequencing on the Illumina GAII platform was
performed at the University of Michigan Sequencing Core.
Sequencing statistics are listed in supplementary table S1,
Supplementary Material online.

All raw read sequences generated by RNA-seq were first
processed by cutadapt (Martin 2011) to trim any remaining
adaptor sequences. The trimmed reads were then aligned to
the genome of the corresponding strains by tophat (Pollier
et al. 2013) under the default parameter set except that a
maximal intron size of 10 kb was allowed because the largest
annotated intron in S. cerevisiae is 9349 bp (Cherry et al.
2012). Alignment results were fed to cufflinks (Pollier et al.
2013) for quantification of known transcripts in S. cerevisiae
(Cherry et al. 2012), S. paradoxus (Scannell et al. 2011), and
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S. mikatae (Scannell et al. 2011). Unless otherwise noted, all
gene expression levels used in our analyses are in the unit of
RPKM (reads per kilobases per million reads). All RNA-seq
reads as well as estimated gene expression levels have been
deposited in NCBI with a GEO ID of GSE81320.

The expression levels of the 4325 genes used for construct-
ing the genome tree were analyzed. These genes each have at
least one RNA-seq read in at least one of the nine strains. Let
Xij be the expression level in RPKM of gene i in strain j and Xi

be the mean expression level of gene i in the nine strains. The
Euclidian distance in expression level of gene i between strains

j and k is defined by dijk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXij � XikÞ2

q
¼ jXij � Xikj. We

then used this distance measure to build the NJ tree of the
nine strains for gene i.

To analyze the transcriptome data as a whole, for each
gene i, we converted the raw expression levels of the nine
strains to standardized expression levels by Yij¼ (Xij� Xi)/Si,
where Si is the standard deviation of the expression level of
gene i among the nine strains. We calculated the average
transcriptomic Euclidian distance per gene between strains j
and k using the standardized expression levels of n¼ 4325

genes by djk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðYij � YikÞ2=n
q

. We then built the NJ

tree using these distances. The confidence of the transcrip-
tome tree was assessed by bootstrapping the 4325 genes
10,000 times. We similarly built an expression tree for each
GO, biochemical pathway, or phenotype using the per gene
average standardized Euclidian distances calculated from the
standardized expression levels of the genes that belong to the
GO, participate in the biochemical pathway, or are associated
with the phenotype, respectively.

Yeast Morphological Data and Analysis
The data of 219 morphological traits from nine strains were
obtained from two studies (Yvert et al. 2013; Ho et al. 2016).
The original data contained 220 traits (Ho et al. 2016), but one
of them (trait ID A103_C) was not used because the data
from strain YJM145 were missing. The phylogenetic analysis
using these traits was conducted in exactly the same way as
the analysis using the gene expression data. The NJ trees for
the expression and morphological data were built using the
APE package (Paradis et al. 2004).

Generation of Random Trees
We generated random trees (in terms of topology) of the nine
strains by repeatedly clustering two randomly chosen strains
at a time until all nine strains are clustered; after two strains
are clustered, they together are considered as a strain in the
next round of clustering.

Topological Distance between Two Trees
Given an unrooted tree structure, each (internal or external)
branch connects two sets of tips. In other words, each branch
represents a bipartition of the tips. The topological distance
between two unrooted trees of the same set of tips is twice the
number of internal branches defining different bipartitions of
the tips between the two trees (Penny and Hendy 1985).

Principal Component Analysis (PCA)
To perform PCA of the genome sequences of the nine strains,
we used the concatenated multiple sequence alignment of
the coding sequences of all 4325 genes. Each site of each
sequence in the alignment was converted to a four dimen-
sional vector, whose four components are assigned 1 (or 0)
based on the appearance (or not) of A, C, G, and T at this site,
respectively. In other words, a sequence with L nucleotides
was converted to a vector of length 4L. The alignment of the
nine strains was converted to nine vectors with “aligned”
components. For each gene or morphological trait, the ex-
pression levels or morphological trait values from the nine
strains were first scaled to the standard normal distribution
before PCA. PCA was conducted using the “prcomp” function
in the “stats” package in R (R. Core Team 2013).

Posterior Probabilities of Protein Function and Gene
Expression Changes
The posterior probability that an organismic phenotypic
adaptation is caused by an expression change, P(EjA), relative
to the posterior probability that it is caused by a protein
function change, P(FjA), can be calculated by [P(AjE)/
P(AjF)][P(E)/P(F)] according to the Bayes’ theorem, where
P(E) and P(F) are the prior probabilities of expression changes
and protein function changes, respectively, and P(AjE) and
P(AjF) are the probabilities of having an organismic pheno-
typic adaptation conditional on an expression change and a
protein function change, respectively. Our result that P(AjE)
is smaller than previously thought reduces the expectation
that an organismic adaptation is caused by a gene expression
change. The biological implication is mentioned in Discussion.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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