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Abstract

Carbohydrate binding modules (CBMs) are found in polysaccharide-targeting enzymes and increase catalytic efficiency.
Because only a relatively small number of CBM structures have been solved, computational modeling represents an
alternative approach in conjunction with experimental assessment of CBM functionality and ligand-binding properties. An
accurate target-template sequence alignment is the crucial step during homology modeling. However, low sequence
identities between target/template sequences can be a major bottleneck. We therefore incorporated the predicted
hydrophilic aromatic residues (HARs) and secondary structure elements into our feature-incorporated alignment (FIA)
algorithm to increase CBM alignment accuracy. An alignment performance comparison for FIA and six others was made, and
the greatest average sequence identities and similarities were achieved by FIA. In addition, structure models were built for
817 representative CBMs. Our models possessed the smallest average surface-potential z scores. Besides, a large true
positive value for liagnd-binding aromatic residue prediction was obtained by HAR identification. Finally, the pre-simulated
CBM structures have been deposited in the Database of Simulated CBM structures (DS-CBMs). The web service is publicly
available at http://dscbm.life.nthu.edu.tw/ and http://dscbm.cs.ntou.edu.tw/.
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Introduction

Carbohydrate-binding modules (CBMs) are structural domains

found within polysaccharide-targeting enzymes but do not contain

the active sites. CBMs increase the catalytic efficiencies of their

enzymes by bringing the catalytic sites into prolonged and intimate

contact with substrates [1,2]. Currently, CBMs are found among

64 protein families which are defined in CAZy, a regularly

updated database (http://www.cazy.org/) [3], according to their

homologies and functionalities. In addition to conventional

carbohydrate-binding functions, CBMs have been reported to

participate in an immune system-related allergic reaction [4].

Historically, several binding modules that were found to bind

cellulose were named cellulose-binding domains (CBDs) [5,6].

With the subsequent identification of CBMs that bind a wide

range of polysaccharides, including crystalline cellulose, hemicel-

luloses, such as glucan, xylan, mannan, and glucomannan as well

as insoluble and soluble starches [7], the generalized term CBM

has evolved. CBMs represent all of the non-catalytic sugar-binding

modules derived from glycoside hydrolases. Furthermore, ligand-

binding site properties and structural topologies for CBMs have

been summarized and reviewed [8]. CBMs are classified into three

types in terms of ligand-binding function: surface-binding (type A),

glycan-chain binding (type B) and small-sugar binding (type C) [9].

Type A CBMs possess a platform-like or horizontal hydrophobic

surface consisting of aromatic residues. The planar conformation

of the type A binding site interacts with the flat surfaces of

crystalline polysaccharides. The binding site architecture of type B

CBMs form a cleft or groove shape in which aromatic residues

interact with free single polysaccharide chains. Type C CBMs are

characterized by steric restrictions in the binding site and only

binds mono-, di-, or tri-saccharides. Regardless of the three types,

aromatic residues contribute to stacking interactions with the sugar

rings leading to van der Waals interactions and the side chain of

polar residues may provide hydrogen bonds with the sugar ligand

[10]. Despite of their low sequence identity, CBMs are structurally

characterized by a b-sandwich fold and seven fold types have been

observed: b-sandwich, b-trefoil, cysteine knot, unique, OB fold,

hevein fold and hevein-like fold [7]. Among these seven, b-

sandwich and b-trefoil foldings are found in most CBM families.
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The best studied system to date are the starch-binding CBMs

whose structural, functional and evolutionary relationships has

been analyzed based on the comprehensive understanding of

CBM20 [11]. Starch-binding CBMs have been identified in ten

CBM families (20, 21, 25, 26, 34, 41, 45, 48, 53 and 58).

X-ray crystallography, nuclear magnetic resonance (NMR)

spectroscopy, and electron microscopy (EM) have been used to

determine the three-dimensional (3D) structures of CBMs

[12,13,14]. In general, a 3D structure reveals certain of the

chemical and physical characteristics of a protein, which can

increase our knowledge of substrate-protein, ligand-protein, and/

or protein-protein interactions and structural folding motifs.

Usually, hydrophilic residues are found on protein surfaces and

are the residues that interact with substrates, ligands, or other

proteins. Conversely, hydrophobic residues are usually located in

the core of a protein and stabilize the structure. Given the spatial

coordinates of a protein, in silico investigations, e.g., molecular

docking, can be performed before attempting more timely, costly,

and labor intensive ‘‘wet’’ experiments [15]. However, as of

August, 2011, more than 16 million sequences were available in

the UniProtKB/TrEMBL database (http://www.ebi.ac.uk/

uniprot/TrEMBLstats/), whereas fewer than 76 thousand 3D

structures had been deposited in the Protein Data Bank (http://

www.rcsb.org/). Additionally, the number of sequenced proteins is

increasing more rapidly than is the number of solved structures.

Although the technical aspects of the methods used to determine

3D protein structures have substantially improved over the years

and grown more sophisticated, their execution remains expensive

and time-consuming. For protein structures that have not been

solved experimentally, in silico modeling, e.g., homology modeling

[16], fold recognition [17], and ab initio prediction [18] can be used

instead. Of these three approaches, homology modeling is the

most accurate [19] and it involves three major steps: template

selection, target-template sequence alignment, and model build-

ing. In practice, the target-template sequence alignment and

template selection are the most critical steps for accurate

homology modeling. 30% sequence identity is the minimum

percentage that is necessary for accurate homology modeling [16],

because accurate target-template sequence alignment is sensitive

to high sequence identities. Less than 5% of CBMs has

experimentally solved structures, and the sequence identities

among families are usually less than 30%. Fortunately however,

CBM family members have similar secondary structures and

conserved potential solvent-accessible aromatic residues, which we

refer to as hydrophilic aromatic residues (HARs), which are often

responsible for ligand-binding function. The prototype of this idea

was successfully applied to predict an in silico structure for Rhizopus

oryzae glucoamylase (CBM21) in low sequence identity condition

and the predicted ligand-binding residues were experimentally

verified [20]. When the positions of the conserved HARs and the

secondary structure elements of CBMs were integrated into a

feature-incorporated alignment (FIA) algorithm [21], we found an

,5% improvement in the average sequence similarity and identity

compared with target-template alignments obtained using six

leading alignment algorithms. The improved alignments were

used to identify conserved ligand-binding aromatic residues in

CBM domains for which 3D structures were unavailable. For the

study reported herein, we were dedicated to construct in silico

structures for CBMs referred as targets. Therefore, 93 non-

redundant experimentally determined CBM structures and 817

representative CBM sequences for which the corresponding

structures have yet to be solved were used as templates and

targets, respectively. A template filter algorithm was developed to

rank the likelihood that a template structure would be a good

match for a given target by assessing the proposed identity level

and similarity level of the template-target sequence alignments

produced by the FIA algorithm in the preceding step (the proposed

identity level and similarity level are defined in Materials and

Methods). Then, in silico structures were built using single-template

and combinations of double templates. Finally, for each target the

best in silico structure was identified according to its surface-

potential z score, which was the lowest among the structures

Results

Functional correlation
The goal of this work reported herein was to establish reliable

in silico structures for CBMs by improving the target-template

sequence alignment procedure and template filter steps. In

addition, our long-range goal is to apply the results of our in silico

models to biological applications that involve CBMs. Table 1

contained the profile information for four CBMs from different

families and their identified HARs. Figure 1 showed that known

ligand-binding aromatic residues Tyr524 and Trp540 in CBM20

Aspergillus oryzae glucoamylase [22]; Trp545, Trp561 and Typ588 in

CBM20 Bacillus sp. TS-23 a-amylase [23]; Trp15 and Trp22 in

CBM22 Nicotiana tabacum Nictaba [24]; and Trp543, Trp580 and

Trp594 in CBM49 Solanum lycopersicum endo-b-1,4-D-glucanase

[25] have been experimentally validated, even though the

corresponding in vitro structures are not available. Among ten

known ligand-binding aromatic residues highlighted in ball and

stick, five colored in green in Figure 1 were predicted as HARs

with a 50% true positive rate. The lower surface-potential z score

indicated that the structures are more stabilized and reliable.

These four in silico structures each possessed low surface-potential z

score for the CBM and the known ligand-binding HARs were

located on the surfaces of the in silico CBM structures.

Prediction analysis
We could use the locations of the known ligand-binding

residues in the template structures to further characterize the

ligand-binding functions with respect to conserved HARs in in

silico structures. Table 2 listed four selected CBMs from different

CBM families for which neither ligand-binding abilities nor

in vitro structures have been experimentally determined. The

aromatic residues conserved to reported ligand-binding aromatic

residues were texted in green in Figure 2. (An additional sixteen

examples are given in Supporting Information Table S1 and

Figure S1). Tyr79 in Bacteroides ovatus arabinosidase (CBM4),

Tyr472, Phe481, Trp520 and Phe538 in Caldocellum saccharolyticum b-

1,4-mannanase (CBM6), Trp330 in Plasmodium falciparum LCCL

domain-containing protein (CBM32), and Trp309, Phe314 and

Tyr352 in Phaseolus vulgaris starch synthase III (CBM53) were

identified as HARs positioned on in silico structural surface,

indicating that they could be potential ligand-binding residues.

Nine of eleven conserved aromatic residues were identified as

HARs, hence a true positive rate of 81.8% was achieved.

Notably, the average sequence identity and similarity obtained

using FIA were greater than those obtained using the other

alignment algorithms (see Figure 3). Moreover, none of their

target-template alignments had sequence identities .28%, a

value which is found for the most difficult examples of homology

modeling [16]. Even though the sequence identities were always

,30%, the predicted HARs were conserved in the alignments

and located on the surfaces of the in silico structures. Our in silico

structures support the idea that these predicted HARs can be

potential ligand-binding residues.

HAR and in silico Structures for CBM
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Performance comparison
The alignment performances for FIA and the six leading

alignment programs were compared. Figure 3 showed the average

number of sequence similarities and identities for the FIA,

MUSCLE, ClustalW2, ProbCons, T-COFFEE, DIALIGN-TX,

and MAFFT alignments. Each of the 817 target sequences was

individually aligned with each of the 93 template sequences for a

total of 75,981 (817 * 93) target-template sequence alignments. For

the FIA alignments, the greatest average sequence similarity

(45.9%) and average sequence identity (28.1%) were found,

whereas the smallest average sequence similarity (28.5%) was

found for the DIALIGN-TX alignments, and the smallest average

sequence identity (16.4%) was found for the ClustalW2 align-

ments. Figure 4 plotted the average z scores for the in silico

structures derived from alignments of various alignment tools. The

modeling procedures used to produce the in silico structures were

identical except for the target-template sequence alignments,

which used different alignment tools. The z scores reported in

Figure 4 were the average of the five smallest z scores for each

target CBM. For FIA, the smallest average z score is –0.280,

whereas that for DIALIGN-TX is –0.206. The relative numbers

(as percentages) of structures build using single templates and

double templates were given in Figure 5. For the in silico structures,

between 60.8% and 63.0% of the top five candidates were derived

from double-template modeling indicating that double-template

modeling produced smaller z scores than the single-template

approach. In summary, the performance of FIA was superior for

both sequence alignment and structure building. The inclusions of

conserved secondary structure elements and HAR positions in FIA

improved model building and identification of ligand-binding

residues.

Discussion

Template choice
We expected that multiple-template-based structure modeling

would increase the quality of the models. The average z-scores

in Figure 4 showed that simulated structures based on double-

template ranked in the top five were at least 60%, indicating that

double-template modeling produces more accurate structural

predictions. An assessment of the raw data, which are not shown,

indicates that double-template-based modeling is slightly better

than is the single-template-based approach. Specifically, the best

combinations of double templates usually consisted of one major

template sequence that matched the target sequence as main

skeleton and a second compatible or complementary sequence.

‘‘Compatible’’ indicates that the two templates are homologues

with few insertions and deletions in their aligned sequences,

whereas ‘‘complementary’’ denotes that one template includes an

aligned sequence that is mismatched in the other template-target

Table 1. Profile summaries for selected CBMs containing known ligand-binding aromatic residues.

Family UniProt Protein Position Organism HARs Template(s) Identity Z score

CBM20 AMYG Glucoamylase 511–606 Aspergillus oryzae Y524, W540, Y553, W560, W586 1pam–1d3c 39.1 –0.545

CBM20 Q59222 a-amylase 515–608 Bacillus sp.
TS-23

W545, Y558, Y606 1cyg–1ac0 50.5 –0.838

CBM22 Q94EW1 Nictaba 1–165 Nicotiana
tabacum

W5, W15, Y45, Y59, F99, W121,
F129, F130, W151, F160

1dyo 30.1 0.445

CBM49 Q9ZSP9 Endo-b-1,4-D-
glucanase

529–625 Solanum
lycopersicum

W543, Y585, F589, Y622 2j1v–2orz 31.4 –0.186

The bold fonts indicate experimentally determined ligand-binding residues. No experimental data concerning their ligand-binding abilities is available for the
unannotated HARs. The used template structures are 1pam [39], 1d3c [40], 1cyg (N.A.), 1ac0 [41], 1dyo [42], 2j1v [24] and 2orz [43].
doi:10.1371/journal.pone.0024814.t001

Figure 1. CBMs containing known ligand-binding aromatic residues and their in silico structures. The four selected CBMs with
experimentally determined ligand-binding aromatic residues are Aspergillus oryzae glucoamylase (AMYG, CBM20, [22]), Bacillus sp. TS-23 a-amylase
(Q59222, CBM20, [23]), Nicotiana tabacum Nictaba (Q94EW1, CBM22, [24]), and Solanum lycopersicum endo-b-1,4-D-glucanase (Q9ZSP9, CBM49, [25]).
Known ligand-binding aromatic residues are highlighted in ball and stick model. HARs and non-HARs are texted in green and blue, respectively. Five
out of ten known ligand-binding residues are predicted as HARs. The 3D structures were rendered by Jmol (http://www.jmol.org/).
doi:10.1371/journal.pone.0024814.g001

HAR and in silico Structures for CBM
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sequence alignment. Therefore, a key factor for successful

homology modeling is the ability to choose compatible or

complementary combinations of templates rather than considering

as many templates as possible, i.e., the use of two or more

dissimilar templates may decrease the modeling quality. Another

disadvantage associated with multiple-template-based homology

modeling is the greater computational time as more combinations

of template structures must be matched to the target and

evaluated.

Correlation of hydrophilic aromatic residue
Given that aromatic residues are known to participate in ligand-

binding function in CBMs, the identification of HARs was

introduced into our homology-modeling scheme as they could

serve ligand-binding aromatic residues. The occurrence times for

the two upstream and downstream polar residues flanking 97

known ligand-binding aromatic residues were determined (see

Table 3). In addition to the polar residues, the occurrence times

for glycine and alanine were also determined. The large

occurrence times for glycine and alanine can be rationalized on

the basis of their relatively small sizes, which would minimize steric

conflicts with their neighboring aromatic residues. Moreover, the

HAR identification procedure can be used as a simple but

effective sequence-based ligand-binding residue predictor. 97

known ligand-binding aromatic residues and 558 aromatic

residues without experimental ligand-binding abilities in 49

CBM structure templates were used as positive and negative sets,

respectively (see Supporting Information Table S2). In comparison

with a sequence-based ligand-binding residue predictor, FRcons-

lig [26], which combined information of amino acid conservation,

secondary structure and relative solvent accessibility, the number

of true positives for any given number of false positives was larger

for HAR-based predictor than FRcons-lig as shown in Figure 6.

With the cut-off threshold for the sum of weighted scores set to 97,

the true positive and false positive percentages were 74.2% and

46.2%, respectively. Because some of the ‘‘real’’ ligand-binding

aromatic residues have yet to be determined, the false and true

positive percentage is an overestimation and underestimation,

respectively. When more experimentally determined ligand-

binding aromatic residues become available, the false and true

positive percentage are expected to be decreased and increased,

respectively. Furthermore, our intention was not just to build

reliable in silico structures but also to be able to correlate structural

aspects of CBMs with the corresponding experimental functional

assays. Here, we mainly focused on the prediction of the HARs of

CBMs that possibly bind substrate polysaccharides. In fact, a

typical CBM ligand-binding site contains multiple aromatic and

polar residues. To fully characterize the ligand-binding sites of

Figure 2. CBMs containing aromatic residues conserved to known ligand-binding residues and their in silico structures. The four
selected CBMs with aromatic residues conserved to known ligand-binding residues are Bacteroides ovatus arabinosidase (Q59218, CBM4), Caldocellum
saccharolyticum b-1,4-annanase (P77847, CBM6), Plasmodium falciparum LCCL domain-containing protein (Q8IK83, CBM32), and Phaseolus vulgaris
starch synthase III (A4F2M4, CBM53). Known ligand-binding aromatic residues are highlighted in ball and stick model. HARs and non-HARs are texted
in green and blue, respectively. Nine out of eleven aromatic residues conserved to known ligand-binding residues are predicted as HARs. The 3D
structures were rendered by Jmol (http://www.jmol.org/).
doi:10.1371/journal.pone.0024814.g002

Table 2. Profile summaries for selected CBMs containing aromatic residues conserved to known ligand-binding residues.

Family UniProt Protein Position Organism HARs Template(s) Identity Z score

CBM4 Q59218 Arabinosidase 59–197 Bacteroides ovatus W76, Y79, F116, F117 2zex 26.9 –0.463

CBM6 P77847 b-1,4-mannanase 453–575 Caldocellum
saccharolyticum

W461, Y472, Y477, F481, Y499,
Y514, W520, F538, Y564

1w9s–1uxx 27.9 –0.454

CBM32 Q8IK83 LCCL domain-
containing protein

305–420 Plasmodium
falciparum

Y307, Y329, W330, F335,
Y339, F380

2j1v–2j7m 26.7 –0.510

CBM53 A4F2M4 Starch synthase III 280–365 Phaseolus vulgaris F306, W309, F314, W327,
F346, Y352

2v8l–2c3w 24.3 –0.367

The italics denote aromatic residues conserved to reported ligand-binding residues in corresponding template(s). No experimental data concerning their ligand-binding
abilities is available for the unannotated HARs. The used template structures are 2zex [44], 1w9s [45], 1uxx [46], 2j1v [24], 2j7m [47] and 2v8l [48], 2c3w [49].
doi:10.1371/journal.pone.0024814.t002

HAR and in silico Structures for CBM
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CBMs, polar residues in the vicinity of the predicted HARs in the

in silico structures may also be involved in ligand-binding function.

How to use DS-CBMs
All in silico structures simulated in this study have been deposited

into DS-CBMs at http://dscbm.life.nthu.edu.tw and http://dscbm.

cs.ntou.edu.tw. The 817 target CBMs can be searched for by their

CBM family, protein, or organism names, and by keywords. In

answer to a query, matched CBMs with brief profiles as shown in

Figure 7(A) are returned. Additionally, the CBM entry, organism,

and structure template(s) are accessible via cross-database hyperlinks.

Finally, the in silico structure with the best surface-potential z score is

identified. Directly clicking on the structural preview image allows

users to switch into the interactive 3D visualization interface where

the structure can be manipulated as shown in Figure 7(B). Rotation

and shift functions are provided in the control panel and all operating

functions can be accessed by clicking the right mouse button. At the

bottom, HARs and known ligand-binding residues are annotated in

the sequence view. Finally, clicking on a specific amino acid within

the target sequence highlights its position in the corresponding in silico

structure. Researchers may also submit a CBM sequence to the on-

line structure modeling system. When the modeling procedure is

completed, a page similar to that shown in Figure 7(B) will be

generated.

Conclusion
We developed an automated and generalized homology

modeling procedure for CBMs. A total of 817 in silico structures

with the minimum z scores were generated and deposited in the DS-

CBMs. The major challenge of CBM homology model building is

that the target and template sequences contain only a small number

of homologues, i.e., low sequence identity, so that conventional

homology modeling procedures may fail to build reliable in silico

structures. Our main contribution has been to improve target-

template sequence alignment by incorporating the conserved

positions of secondary structure elements and HARs into the FIA

algorithm, which is used to provide accurate target-template

alignment for homology model building. Additionally, using a

single template to build the model may not be the best strategy. The

template filter step was incorporated to discover multiple homol-

ogous templates for model building and double-template-based

structure model building conducted lower surface-potential z scores

for in silico structures. Finally, low surface-potential z scores and

assessment of the in silico structures suggest that the structures likely

have been ‘‘correctly’’ built and are functionally relevant. HAR

identification demonstrated its higher true positive rate and lower

false positive rate for liagnd-binding aromatic residue prediction for

CBMs. In conclusion, more than 95% of the CBMs do not have

solved structures, and the ligand specificity of a particular CBM is

mainly determined by the positions and orientations of the aromatic

ligand-binding residues. The in silico CBM structures can be

integrated with current databases like CAZy and Pfam to discover

potential ligand-binding residues. The integrated in silico and in vitro

resources would facilitate the comprehension of functional similar-

ities and diversities among all CBMs.

Materials and Methods

System definition and overview
The objective of this study was to build accurate in silico structures

for CBMs without manual intervention. Figure 8 illustrated the

Figure 4. Average z scores for in silico structures built based on
seven sequence alignment methods. The z scores are averaged
from the lowest z scores of top five in silico structures for each target
CBM. The used alignment programs are FIA [21], MUSCLE [32],
ClustalW2 [33], ProbCons [36], T-COFFEE [35], DIALIGN-TX [34], and
MAFFT [37]. The surface potential z scores are evaluated by PROSA2003
[38].
doi:10.1371/journal.pone.0024814.g004

Figure 5. Percentages of structures built using single- and
double-templates based on seven sequence alignment meth-
ods. The percentages indicate the top five structures with lowest z
scores for each target CBM are derived from either single-template or
double-template homology modeling. The used alignment programs
are FIA [21], MUSCLE [32], ClustalW2 [33], ProbCons [36], T-COFFEE [35],
DIALIGN-TX [34], and MAFFT [37].
doi:10.1371/journal.pone.0024814.g005

Figure 3. Average sequence identities and similarities for CBMs
from seven sequence alignment methods. The sequence identi-
ties (similarities) are averaged from 75,981 (817 * 93) target-template
pairwise sequence alignments. The used alignment programs are FIA
[21], MUSCLE [32], ClustalW2 [33], ProbCons [36], T-COFFEE [35],
DIALIGN-TX [34], and MAFFT [37].
doi:10.1371/journal.pone.0024814.g003

HAR and in silico Structures for CBM
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flowchart for the modeling procedure and the mathematical

definitions are defined as follows. Given a target CBM sequence

of t and a set of m non-redundant CBM templates denoted P, the

goal was to generate the most reliable in silico structure s* for t by

identifying the minimum surface-potential z score after the

sequence of t was considered each of the templates in P. Secondary

structure prediction and identification of hydrophilic aromatic

residues (HARs) were performed in the first two steps. For the third

step, a set of pairwise alignments denoted A between a sequence of t

and each of the template sequences in P was made using feature-

incorporated alignment (FIA). For the fourth step, the set of

candidate target-template alignments denoted CA was ranked from

the top k-matched template among A according to the proposed

identity level and similarity level. Subsequently, a CSS set was build

that contained the candidate in silico structures of t derived from

single- and double-template alignments in the CA. s* was identified

as the in silico structure of t in the CSS that had the minimum surface-

potential z score. The implementation of each step is detailed in the

following sections.

Secondary structure prediction
CBM domains have been classified into seven fold families, i.e.,

b-sandwiches, b-trefoils, cysteine knots, unique, OB folds, hevein

folds, and hevein-like folds [8]. The b-sandwich and b-trefoil folds

have been found in CBMs, and these b-strand folds are conserved

among CBM families. We first predicted the secondary structure

elements of the CBMs using the Discrimination of protein

Secondary structure Class (DSC) algorithm [27]. When a residue

was predicted to be a-helical or b-stranded with a probability of

,50%, it was annotated as a loop residue (Only high confident

predictions for helix and strand were labeled for latter sequence

alignment.). On average, a three-state (helix, strand and loop)

accuracy of 70.1% was obtained by DSC.

Hydrophilic aromatic residue identification
CBM ligand-binding sites are of three types: surface binding

(type A), glycan-chain binding (type B), and small-sugar binding

(type C) [7]. Type A CBMs possess a platform-like hydrophobic

surface consisted of aromatic residues. In contrast, the binding site

architecture of type B CBMs shapes a cleft or groove arrangement

in which aromatic residues interact with free single polysaccharide

chains. Due to stereo restriction in the binding site, Type C CBMs

lacks of the cleft form as in type B CBMs only bind mono-, di-, or

trisaccharides. In general, CBM ligand-binding sites contain

aromatic and polar residues. In terms of their ligand-binding

interactions, aromatic residues are involved in aromatic stacking,

whereas polar residues form hydrogen bonds with ligands [8].

Additionally, polar residues adjacent to aromatic residues can

enlarge the surface area of neighboring regions thereby increasing

the contact area(s) between the binding residues and ligands. In

our previous study, the number of preferred occurrence time that

polar residues flanked an aromatic residue was determined for

starch-binding CBMs [21], and the aromatic residues that were

flanked on both sides by polar residues were defined as HARs. For

this study, the occurrence time for two upstream and downstream

amino acids that flank 97 known ligand-binding aromatic residues

was summarized in Table 3 (the structure template profiles

including known ligand-binding aromatic residues are shown in

Supporting Information Table S2). Interestingly, the preferred

occurrence times for Asn (N), Ser (S), Asp (D), Thr (T), Gln (Q),

Glu (E), and Lys (K) are observed and consistent with their ligand-

binding functionality for polar residues in CBMs. To identify

potential HARs, the weighted scores (directly derived from the

occurrence times) of the sets of two upstream and downstream

flanking residues for each aromatic residue were summed. When

the sum was greater than or equal to the cut-off threshold of 97

(see Discussion), these aromatic residues were defined as HARs.

For example, the motif GSWNP had a score of 134 (49 + 34 + 43

+ 8), and therefore, the central tryptophan was identified as an

HAR. Conversely, the motif PTYKA had a score of 92 (8 + 34 +
20 + 30), and the central tyrosine was therefore not identified as an

HAR. Step 1 and step 2 identified the core-conserved sequence

signatures associated with secondary structure prediction and

HARs that were then used for sequence alignment.

Target-template alignment by FIA
To evaluate the target-template sequence matching, a target

sequence t was aligned one by one with the templates in P as

described by Equation 1, where FIA represents the feature-

incorporated alignment [21], and A is the set of preliminary

alignments used in the template filter step.

A~f|
p[P

FIA(t,p)g ð1Þ

The FIA algorithm adopted the affine gap-penalty model and

the Blosum62 matrix [28,29]. The individual residues of a full-

length CBM were not uniformly weighted by the FIA, which

emphasized alignment of the secondary structure elements and

conserved HAR positions.

Figure 6. Receiver operating characteristic (ROC) curves of
ligand-binding residue prediction. 97 known ligand-binding
aromatic residues and 558 aromatic residues without experimental
ligand-binding abilities in 49 template structures (see Supporting
Information Table S2) are as positive and negative sets for prediction of
ligand-binding aromatic residues, respectively. The ROC curves are
generated by HAR-based and FRcons-lig [26] predictions.
doi:10.1371/journal.pone.0024814.g006

Table 3. Occurrence times for residues that flank known
ligand-binding aromatic residues.

G N S T D A Q I E K V L Y P C M F H R W

49 43 34 34 33 30 27 22 22 20 16 13 9 8 6 6 6 4 3 3

The occurrence times were derived from the two upstream and downstream
residues flanking 97 known aromatic ligand-binding residues and were
transformed into weighted scores for HAR prediction.
doi:10.1371/journal.pone.0024814.t003
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Template filter
Usually, conventional template selection that is used during

homology modeling attempts to identify the best template for

subsequent in silico modeling. However, the criteria used for

sequence matching may conflict with that used for structure

building and assessment, e.g., the surface-potential z score for the

modeled target structure. Therefore, we used a template filter that

had been designed to select templates according to the proposed

Figure 7. Snapshots of DS-CBMs system. (A) The DS-CBMs search results for the CBM20 family. The CBM entry, organism, and structure
template(s) are accessible via cross-database hyperlinks. (B) Simulated 3D structure visualization for Aspergillus oryzae glucoamylase (CBM20). The
CBM profiles, 3D structure manipulation, HAR identification and known ligand-binding residue annotation are provided.
doi:10.1371/journal.pone.0024814.g007
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identity level and similarity level for t’ and p’ as defined in Equation

2 and Equation 3, respectively. Here, ident(t’, p’), sim(t’, p’), and gap(t’,

p’) represent the number of aligned identical residues, similar

residues, and opening gaps, respectively, in t’ and p’, where t’ and p’

denote the sequences of t and p aligned using FIA. The proposed

identity level (similarity level) charged extra opening penalties. The

larger the identity level (similarity level) is, the larger the sequence

homology is and the fewer gaps present. Subsequently, Equation 4

was used to filter homologue target-template sequence alignments

for CA, where top_il(A) and top_sl(A) represent the top k target-

template alignments in A for the identity level and similarity

level, respectively. In practice, between k and 2k target-template

alignments were contained in CA for use in model building.

il(t0,p0)~
ident t0,p0ð Þ{gap t0,p0ð Þ

min DtD,DpDð Þ ð2Þ

sl(t0,p0)~
sim t0,p0ð Þ{gap t0,p0ð Þ

min DtD,DpDð Þ ð3Þ

CA~top il(A)|top sl(A) ð4Þ

Structure model building and evaluation
With the use of the template filter, CA was obtained to build

the CSS for the sequence of t. Intuitively, multiple-template-based

homology modeling would be expected to improve the accuracy of

a modeled structure, but that is not always the case. Larsson

reported that double-template and triple-template modeling was

more accurate than was considering four or more templates [30].

Multiple-template-based manner here refers to model construction

based on the integration of multiple templates instead of averaging

individual models from individual templates. To ensure the quality

of the model and the efficiency of the process, we incorporated

only single and combinations of double templates into the

modeling process. We did not include triple templates because

their computational costs were extremely high. The CSS were

generated using single templates, combinations of double tem-

plates and Equation 5 where s_modeling(a) and d_modeling(b, c) are

for modeling using a single template, a, and double templates, b

and c, respectively. For quality assessment, the quality of each in

silico structure was evaluated according to its surface-potential z

score. The most reliable structure s* in CSS was chosen as the one

that had the lowest average surface-potential z score as determined

by Equation 6, where z_score(s) is the z score for candidate

simulated structure s.

CSS~
[

a[CA

s modeling(a)

( )
|

[
b,c[CA,b=c

d modeling(b,c)

( )
ð5Þ

s�~ argmin
s[CSS

z score(s) ð6Þ

Materials
CBM with domain sizes exceeding 85 residues in length were

identified in the Pfam database and grouped according to their

Figure 8. Flowchart for FIA-based homology modeling. The proposed structure modeling procedure for CBMs comprises of five modules:
secondary structure prediction, hydrophilic aromatic residue (HAR) identification, target-template alignment, template filter, and structure building
and evaluation. Details are described in Materials and Methods.
doi:10.1371/journal.pone.0024814.g008
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CBM classification [31]. A total of 93 non-redundant templates

were then selected from 18 CBM families. Of these, 3, 2, 4, 11, 22,

2, 9, 3, 1, 25, 1, 5, 3, and 2 were from the CBM families CBM2

(PF00553), CBM3 (PF00942), CBM4&9&16&22 (PF02018),

CBM6 (PF03422), CBM13 (PF00652), CBM17&28 (PF03424),

CBM20 (PF00686), CBM21 (PF03370), CBM25 (PF03423),

CBM32 (PF00754), CBM33 (PF03067), CBM34 (PF02903),

CBM40 (PF02973), and CBM51 (PF08305), respectively. The

criteria for their selection were as follows. If multiple crystal

structures were available for a CBM, the one with the best

resolution was used. If more than one structure of the same CBM

had the same resolution, which was also the best, the one with the

smaller R-factor was used. For the ensemble of NMR solution

structures for a CBM, which were used when a corresponding

crystal structure was unavailable, the structure used was randomly

selected from the ensemble. A total of 817 representative CBM

sequences were used as targets to predict their in silico structures.

The targets all had pairwise sequence identities below 80% and

were from 19 CBM families among which 15, 25, 45, 36, 92, 1, 4,

97, 78, 33, 174, 131, 39, 4, and 43 were selected, respectively,

from CBM2, CBM3, CBM4&9&16&22, CBM6, CBM13,

CBM15 (PF03426), CBM17&28, CBM20, CBM21, CBM25,

CBM32, CBM33, CBM34, CBM40, and CBM51.

The alignment performance for the 817 target sequences

against the 93 template sequences was compared among FIA and

six alignment tools, MUSCLE v3.8.31 [32], ClustalW2 v2.1 [33],

DIALIGN-TX v1.0.2 [34], T-COFFEE v5.31 [35], ProbCons

v1.12 [36], and MAFFT v6.850 [37] with default parameter

settings used. The structure model building engine was Modeller

v9.8. The 3D visualization and the preview images were rendered

by Jmol (http://www.jmol.org/) and PyMol (http://www.pymol.

org/), respectively. Surface-potential z scores were calculated by

PROSA2003 [38].

Supporting Information

Figure S1 CBMs containing aromatic residues con-
served to known ligand-binding residues and their in
silico structures. Sixteen CBMs without in vitro structures are

predicted. O30421, Caldocellum saccharolyticum xylanase; O30426,

Caldocellum saccharolyticum xylanase; O88043, Streptomyces coelicolor

putative secreted arabinosidase; Q60043, Thermoanaero bacterium

endoxylanase; O69822, Streptomyces coelicolor putative secreted

protein; Q9KBL8, Bacillus halodurans glucan 1,4-b-glucosidase;

Q1ENB1, Guillardia theta putative starch binding domain protein;

Q6R608, Solanum tuberosum 4-a-glucanotransferase; PPR3C, Danio

rerio protein phosphatase 1 regulatory subunit 3C; Q89ZX7,

Bacteroides thetaiotaomicron putative uncharacterized protein;

Q8LEV3, Arabidopsis thaliana putative uncharacterized protein;

Q9U5D0, Drosophila melanogaster hemolectin; Q82M60, Streptomyces

avermitilis putative secreted protein; A8GAL3, Serratia proteamaculans

a-amylase catalytic region; Q8A1R7, Bacteroides thetaiotaomicron a-

galactosidase; and Q9XGC0, Vigna unguiculata starch synthase

isoform SS III. Known ligand-binding aromatic residues are

highlighted in ball and stick model. HARs and non-HARs are

texted in green and blue, respectively. The 3D structures were

rendered by Jmol (http://www.jmol.org/).

(TIF)

Table S1 Profile summaries for CBMs containing
aromatic residues conserved to reported ligand-binding
residues. Sixteen CBMs with target-template sequence identity

less than 30% are selected for prediction analysis. The HARs

highlighted italics denote aromatic residues conserved to known

ligand-binding residues in corresponding template(s). No experi-

mental data concerning their ligand-binding abilities is available

for the unannotated HARs.

(DOC)

Table S2 Profiles for non-redundant CBM structure
templates. 93 non-redundant structures are selected as tem-

plates. The HARs with bold fonts indicate experimentally

determined ligand-binding residues. No experimental data con-

cerning their ligand-binding abilities is available for the unanno-

tated HARs.

(DOC)
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