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Editorial on the Research Topic

Big Data and Machine Learning in Cancer Genomics

Cancer is one of the major causes threatening human health and life. With the rapid development
of cancer genomics and bioinformatics analysis methods, a number of tumor biomarkers have
been identified to facilitate the early detection, prognosis and treatment response prediction of
tumors, and have successfully reduced themortality of cancer patients (Wu andQu, 2015). In recent
decades, public profiling data sources, including the Gene Expression Omnibus (GEO) database
and The Cancer Genome Atlas (TCGA) (Barrett et al., 2013) provide us the opportunities to
explore the tumorigenesis and progression of cancers, and identify novel biomarkers for diagnosis,
prognosis and treatment response. In this Research Topic of Frontiers in Genetics on Big Data and
Machine Learning in Cancer Genomics, we have collected eight manuscripts that used single or
multi-omics data to develop relative biomarkers for disease diagnosis, prognosis and treatment.

Cancer is a type of disease with high molecular heterogeneity that is a major cause of treatment
failure. To elucidate themolecular heterogeneity of Endometrioid adenocarcinoma (EAC), Lei et al.
used consensus clustering to analyze gene expression profiling data of EAC from TCGA and GEO
and identified two different molecular subtypes (EAC I and EAC II), which were further verified
in an independent EAC cohort. Moreover, three subtype specific diagnostic biomarkers including
MDM2 for EAC subtype I, MSH2 and MSH6 for EAC subtype II, were identified. This EAC
subtyping would help to understand the mechanism of EAC tumorigenesis, and further facilitate
the development of targeted therapies.

Prognostic biomarker can predict the outcome and help to guide the treatment of cancers.
Benefiting from the recent advances of bioinformatics methods, Meng et al. analyzed the gene
expression data of Clear Cell Renal Cell Carcinoma (ccRCC) cohort in TCGA and demonstrated
that Caspase 4 (CASP4) (Shalini et al., 2015) could predict adverse overall survival (OS) of ccRCC
patients and positively correlated with clinical stage and pathological grade. Functional enrichment
analysis showed that the gene sets in the subgroup with higher CASP4 expression were significantly
enriched in the cell cycle and immune-related pathways. To deeply explore what components of
the immune microenvironment were related to CASP4, they analyzed the proportion of tumor
infiltrating immune cells (TICs) using CIBERSORT, and showed that activated CD4 memory T
cells, follicular helper T cells, and regulatory T cells were positively correlated to CASP4 expression.
In addition, high expression of CASP4 was found to be associated with drug resistance.

Although many single gene biomarkers have been reported, increasing studies demonstrated
that multi-gene marker is more effective than single one even the cost of the multi-gene test is
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higher (Tao et al., 2020). Recurrence and metastasis are the main
reasons of Prostate Cancer (PCa) patients’ mortality. Thus, risk
assessment methods are urgently needed to identify PCa patients
at high risk of recurrence and metastasis (Lu et al., 2019). To
solve this problem, Vittrant et al. used machine learning methods
to develop a prediction model of a three-gene signature for
PCa recurrence by in-depth analysis of transcriptome data. In
addition, Zhang et al. analyzed the mRNA expression profiling
and clinical histopathological data of breast cancers (BRCA) from
TCGA, and identified four prognostic glycolysis genes, including
PGK1, SDHC, PFKL, andNUP43. The high expression of the four
genes, as an independent prognostic signature, could shorten the
OS of BRCA patients.

Analysis of tumor genome, transcriptome and epigenome
identified a number of tumor driver molecules (Argelaguet
et al., 2018; Consortium ITP-CAoWG, 2020). So far, there are
numerous bioinformatics tools available for gene expression
profiling data analysis, however, the integrative analysis tools for
multi-omics data are still limited. In this regard, Planell et al.
designed a multi-omics conceptual framework (STATegra) by
integrating three multi-omics methods (Component Analysis,
Non-Parametric Combination, and an integrative exploratory
analysis). STATegra not only saves time but also provides
information that single mics cannot provide.

Recent reports showed that tumor microenvironment plays
important regulatory roles in tumor progress and treatment
resistance (Colli et al., 2017). More and more evidence of
immune evade of TICs in the tumor microenvironment, have
opened up the opportunities for developing therapies against the
cross-talks between tumor cells and TICs, nowadays we call it
immunotherapy, which has improved the prognosis of patients
and provided the possibility of tumor remission in different types
of cancers (Murciano-Goroff et al., 2020). To investigate the
immune infiltration of lung squamous cell carcinomas (LSCC),
Fu et al. collected the expression profiles of 502 LSCC and
47 adjacent normal tissues from TCGA, and identified seven
immune-related prognostic genes (IRGs) includingGCCR, FGF8,
CLEC4M, PTH, SLC10A2, NPPC, and FGF4. In addition, they

used CIBERSORT and TIMER to measure the infiltration levels
of five immune cell types, including CD4T cells, CD8T cells,
neutrophils, macrophages and dendritic cells, and showed a
correlation of TICs with the patient’s risk score.

Immune checkpoints regulate the intensity and extent of
the immune response. During the development of tumors, the
immune checkpoint has been evolved as one of the main causes
of immune tolerance of cancers (de Miranda and Trajanoski,
2019). As a result, immune checkpoint inhibitor (ICI) has
shown remarkable effects on the treatment of many cancer
types, even though only a fraction of patients responded to
ICI (Martins et al., 2019). To explore the incomplete response
of ICI on bladder cancer patients, Yi et al. analyzed clinical
and mutational data of 210 bladder cancer patients who had
received immunotherapy, and demonstrated that bladder cancer
patients with Ataxia Telangiectasia Mutated-mutant (ATM-MT)
benefited from ICI treatment, and possessed longer OS, and may
have increased sensitivity to 29 drugs.

Diagnostic markers are helpful to detect disease and guide
the treatment in time. Preeclampsia (PE) is a major cause
of maternal mortality. To identify the diagnostic biomarkers
of PE, Wang et al. used machine learning methods and
built a PE diagnostic signature, which could stratify PE
into three subgroups with different clinical outcomes,
may provide direction for individualized treatment of
PE patients.

In summary, this Research Topic provides new bioinformatics
tools and applications for omics data analysis and translational
researches, paves the way for further development of tumor
diagnostic, prognostic, treatment biomarkers, the tumor immune
infiltrating estimation and immunotherapeutic treatment.
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