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Abstract

Background: Recent studies have shown that in the developing embryo, arterial and venous identity is established by
genetic mechanisms before circulation begins. Vascular endothelial growth factor (VEGF) signaling and its downstream
Notch pathway play critical roles in arterial cell fate determination. We have recently shown that Foxc1 and Foxc2, two
closely related Fox transcription factors, are essential for arterial cell specification during development by directly inducing
the transcription of Delta-like 4 (Dll4), a ligand for Notch receptors. However, the basic mechanisms whereby the VEGF and
Notch signaling pathways control transcriptional regulation of arterial-specific genes have yet to be elucidated.

Methodologies/Principal Findings: In the current study, we examined whether and how Foxc transcription factors are
involved in VEGF and Notch signaling in induction of Dll4 as well as the Notch target gene Hey2 in endothelial cells. We
found that Foxc1 and Foxc2 directly activate the Hey2 promoter via Foxc binding elements. Significantly, Foxc2 physically
and functionally interacts with a Notch transcriptional activation complex containing Su(H) and Notch intracellular domain
to induce Hey2 promoter activity. Moreover, activation of the Dll4 and Hey2 promoters is induced by VEGF in conjunction
with either Foxc1 or Foxc2 more than by either component alone. VEGF-activated PI3K and ERK intracellular pathways
modulate the transcriptional activity of Foxc proteins in Dll4 and Hey2 induction.

Conclusions/Significance: Our new findings demonstrate that Foxc transcriptional factors interact with VEGF and Notch
signaling to regulate arterial gene expression in multiple steps of the VEGF-Dll4-Notch-Hey2 signaling pathway.
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Introduction

Advances in understanding the basic mechanisms of the

formation and remodeling of blood vessels have led to the

identification of several signaling molecules that are critical for

vascular development. In particular, conclusive evidence demon-

strates that during embryonic development, the arterial-venous

identity of endothelial cells lining the blood vessels is established by

genetic mechanisms prior to the onset of circulation [1–3]. In this

process, vascular endothelial growth factor (VEGF) signaling

activates the Delta-Notch pathway, including Notch1 and its

ligand, Delta like 4 (Dll4), in arterial endothelial progenitors.

Notch signaling subsequently upregulates the expression of Hey

transcription factors, thereby specifying an arterial cell fate.

Whereas mutant mice for Hey2 (also known as CHF1, Herp1,

Hrt2, Hesr2 or gridlock in zebrafish) show no obvious vascular

abnormalities with multiple cardiac defects [4–6], compound

Hey1; Hey2 mutant embryos have impaired arterial-venous

specification [7,8], similar to those seen in mutant mice for Notch

receptors and ligands, including Dll4 [9–11]. In contrast to arterial

cell specification, the nuclear orphan receptor COUP-TFII, which

is expressed in a subset of venous endothelial precursors, induces a

venous cell fate by suppressing the expression of arterial-specific

genes [12].

We have recently shown that Foxc1 and Foxc2, two closely

related Fox transcription factors [13–16], are essential for vascular

development [17–19]. Compound Foxc1; Foxc2 mutants have

defective vascular remodeling of primitive blood vessels and

abnormal vascular connections between arteries and veins,

arteriovenous malformations [17,18]. It should be noted that such

arteriovenous malformations similarly develop in endothelial cells

of mutant mice and zebrafish in which Notch signaling is defective

[8,9,11,20,21]. Indeed, endothelial cells of compound Foxc1; Foxc2

homozygotes fail to induce arterial-specific genes, including Dll4

and Hey2, whereas venous markers such as COUP-TFII and

EphB4 are normally expressed in these mutants [18]. These results

suggest the lack of Foxc1 and Foxc2 results in a failure of arterial

cell specification during development. On the other hand,

overexpression of Foxc1 and Foxc2 upregulates the expression of

arterial-specific genes in cultured endothelial cells. Most impor-

tantly, Foxc proteins directly activate the Dll4 promoter through a

Fox-binding element (FBE) that is conserved between human and

mouse. Taken together, Foxc transcription factors act upstream of

Notch signaling in arterial specification [18]. However, it remains
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unknown whether VEGF signaling directly interacts with Foxc-

mediated transcriptional control in arterial gene expression.

Moreover, as we have recently demonstrated that Foxc1 and

Foxc2 induce expression of the chemokine receptor CXCR4 [13],

Foxc proteins are likely to regulate multiple arterial-specific genes,

including Hey2.

The aim of the present study is to define the molecular

mechanisms by which Foxc transcription factors control arterial

gene expression. We show here that Foxc1 and Foxc2 directly

activate the Hey2 promoter via FBEs in endothelial cells.

Remarkably, Foxc2 binds to a Notch transcriptional mediator,

Suppressor of Hairless [Su(H)], and directly contributes to Notch-

dependent activation of the Hey2 promoter. Furthermore, we

demonstrate that VEGF-mediated PI3K and ERK/MAPK

pathways modulate the activity of Foxc proteins in the activation

of the Dll4 and Hey2 promoters. Taken together, our new findings

provide the mechanistic basis for transcriptional regulation of the

arterial program in endothelial cells.

Materials and Methods

Reagents
Wortmannin was purchased from Invitrogen. LY294002,

PD98059 and U0126 were purchased from Promega. Mouse

VEGF164 was purchased from R & D Systems.

Isolation of Pulmonary microvascular endothelial cells
Foxc2 mutant mice [17] and endothelial-specific Foxc1 mutant

mice [13] were described previously. Pulmonary microvascular

endothelial cells (PMVECs) were isolated from adult lungs of

Foxc2+/2 and endothelial-specific Foxc1 mutant mice, as

described previously [22].

Real-time RT-PCR
Isolation of total RNA from PMVECs of endothelial-specific

Foxc1 mutant mice and Foxc2+/- mice and cDNA synthesis were

performed using the RNeasy Mini Kit (Qiagen) and iScript (Bio-

Rad). Real-time PCR were carried out using the SYBR GREEN

PCR Master Mix (ABI) and i-Cycler (Bio-Rad) according to the

manufacturers’ instructions. Each data was normalized by the

expression level of peptidylprolyl isomerase A (Ppia), an internal

control. PCR primers used are Hey2-sense: 59-CCTGTC-

TCCCAGGCTACACT-39, Hey2-antisense: 59-GGCAGTGG-

TAGCTATTCTCCTG-39, Ppia-sense: 59-CAAATGCTGGAC-

CAAACACA-39, and Ppia-antisense: 59-TGCCATCCAGCCA-

TTCAGTC-39. Results are reported as mean+s.d. of triplicate

experiments from 3 samples per each group. P values were

determined by Student’s t-test (*p,0.05).

Construction of expression vectors
The expression vectors for Foxc1, Foxc2, caFoxc1, caFoxc2 and

Smad3 were described previously [23]. An expression vector for

NICD, pCS2+mN1 IC(V1744)wt, was provided by Dr. Kopan

(Washington University, St. Louis). An insert for GST-NICD was

amplified by PCR using primers (sense: 59-CGGGATTCGTG-

CTGCTGCCCGCAAGCGCCGG-39, antisense: 59-GGAAT-

TCTTATTTAAATGCCTCTGGAATGTGGG-39; BamHI and

EcoRI sites underlined, respectively) and pCS2+mN1

IC(V1744)wt as a template DNA. An insert for GST-Su(H) was

amplified by PCR using primers (sense: 59-CGGGATCCATGG-

CGCCTGTTGTGACAGG-39, antisense: 59-GGAATTCTTA-

GGACACCACGGTTGCTG-39; BamHI and EcoRI sites under-

lined, respectively) and the Su(H) expression vector (Invitrogen;

Full-Length Mammalian Gene Collection) as a template DNA.

The PCR fragments for GST-NICD and GST-Su(H) were then

subcloned into the BamHI and EcoRI sites of pGEX2T (GE

Healthcare) using T4 DNA ligase (New England Biolab), followed

by sequence confirmation.

Construction of luciferase reporters
The Hey2 promoter (nucleotides –6.8 kb to the Nru site +10)

was isolated from a mouse genomic DNA bacterial artificial

chromosome clone (BACPAC Resource Center at Children’s

Hospital Oakland Research Institute) and inserted into the SmaI

site of pBluescriptKS+ vector (Invitrogen). The fragment after

confirming its sequence was subsequently inserted into pGL3-basic

reporter (Promega), resulting in FULL-LUC reporter. A series of

deletion constructs for NdeI (25.8 kb), SacI (22.0 kb) and NheI

(20.5 kb) were generated by digesting FULL-LUC with these

restriction enzymes, respectively. Mutant luciferase reporters,

FxMT-LUC (from ACCAATAGAAAGCCACAC to ACCGGG-

AGAGGGCCACAC), NotMT-LUC (from CGTGGGAAA to

CGTGTTCCA) and FNMT-LUC (in combination with FxMT

and NotMT), were generated using the NheI-LUC reporter as a

template DNA and PfuTurbo DNA polymerase (Stratagene)

according to the instructions of QuickChange XL Site-Directed

Mutagenesis Kit (Stratagene). The mutated fragments were

enzymatically digested, purified, and subcloned into linearized

pGL3-basic vector at the NheI and NruI sites, followed by

sequence confirmation. The Dll4 luciferase reporter was described

previously [18].

Cell culture, transfection, and reporter assay
Immortalized mouse embryonic endothelial cells (MEECs) [24]

and primary bovine aortic endothelial cells (BAECs) were cultured

in Dulbecco’s modified Eagle’s medium supplemented with 10%

fetal bovine serum. Transfection of plasmid DNA was performed

using Lipofectamine and Plus reagent for BAECs or Lipofectoa-

mine 2000 (Gibco-BRL) for MEECs according to the manufac-

turer’s instructions. For luciferase reporter assay, pRL-CMV

reporter plasmid (Promega) containing the Renilla luciferase gene

as an internal control was co-transfected with the firefly luciferase

reporter constructs. All transfections were carried out in triplicate

in gelatin coated 24-well plates. For VEGF treatment, the

transfected cells were cultured in the presence of 0.1 % serum

(serum-starved) for 1 h before treatment with VEGF alone or

VEGF and chemical compounds at 24 h after transfection and

harvested after additional 24 h. Luciferase assays were carried out

using the Dual-Luciferase assay kit (Promega). Data are expressed

as means+s.d. of three independent experiments in triplicates.

Chromatin Immunoprecipitation (ChIP) assay
Cultured MEECs were washed with PBS and treated with

formaldehyde to cross-link protein to DNA. Cellular lysates were

obtained by scraping, followed by pulse ultrasonication to shear

cellular DNA. After centrifugation, supernatants containing

sheared chromatin were incubated with anti-Foxc1 or Foxc2

antibody (Abcam) overnight, followed by addition of Protein A+G

Sepharose (Santa Cruz). After elution, immune complexes were

subsequently treated with proteinase K at 55uC for 1.5 h and

extracted with phenol/chloroform and chloroform. Immunopre-

cipitated DNA was analyzed by PCR using specific primers

corresponding to the Hey2 promoter (sense: 59-GTCCGCC-

CCTCCATATAAC-39 and antisense: 59-CTACTGTCGCCTA-

GCGGAAC-39) or the Dll4 promoter (sense: 59-GGCAAAAAC-

TCCAAGTACGC-39 and antisense: 59-CACCTGCCGGTCAA-

TAAATC-39).

Induction of Dll4 and Hey2
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Figure 1. Foxc1 and Foxc2 directly regulate Hey2 expression. (A) Reduced expression of Hey2 in Foxc-mutant endothelial cells. Total RNA
was prepared from PMVECs isolated from control (Foxc1flx/flx) and endothelial-specific Foxc1 conditional mutant (Foxc1-CKO) mice (upper panel) as
well as wild-type and Foxc2+/2 mice (lower panel). Relative mRNA levels of Hey2 were measured by real-time RT-PCR. Values are mean+s.d. of

Induction of Dll4 and Hey2
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GST pull-down assay
GST-fusion proteins were produced in Escherichia coli and

purified by glutathione-conjugated agarose beads (Sigma-Aldrich).

Proteins for Foxc1, Foxc2 and NICD were generated by in vitro

transcription and translation using the TNT-coupled reticulocyte

lysate system (Promega) and [35S]methionine. Different combina-

tions of GST-fusion proteins and 35S-labeled proteins were mixed

(1:1) with lysis buffer (50mM Tris, pH8.0, 150 mM NaCI, 0.1%

SDS, 0.5% and sodium deoxycholate with Protease Inhibitor

Cocktail tablets) for 1 h at 4uC. Beads were centrifuged, washed

with lysis buffer, boiled with SDS-sample buffer, and subjected to

SDS-PAGE. Expression levels of GST-fusion proteins were

determined by Coomassie Brilliant Blue (CBB) staining. Autora-

diography was subsequently processed using PharosFX Molecular

Imager System (Bio-Rad) to detect specific binding of 35S-labeled

proteins to GST-fusion proteins.

Results

Foxc transcription factors activate the Hey2 promoter in
endothelial cells

We have recently demonstrated that Hey2 expression is

downregulated in compound Foxc12/2; Foxc22/2 mutant

embryos, whereas Hey2 transcription is significantly induced by

overexpression of Foxc genes in endothelial cells [18]. In fact, we

found that mRNA levels of Hey2 were significantly reduced in

PMVECs isolated from adult lungs of endothelial-specific Foxc1

mutant mice [13] as well as Foxc2+/2 mice [17], compared with

the control PMVECs (Figure 1A). Despite transcriptional

activation of mouse Hey2 mediated via canonical Notch signaling,

ie, through the interaction of Notch1 intercellular domain (NICD)

and [Su(H)] [25], the identification of additional transcription

factors involved in Hey2 expression remains to be elucidated.

Therefore, we first tested whether Foxc1 and Foxc2 could directly

regulate Hey2 promoter activity. Using a 59-upstream region (6.8

kb) of the Hey2 gene, we found that Foxc1 and Foxc2 dose-

dependently activated the Hey2 promoter in two endothelial cell

lines, immortalized MEECs and primary BAECs (Figure 1B).

Consistently, constitutively active forms of Foxc1 and Foxc2

(caFoxc1 and caFoxc2, respectively) [23], which include the N-

terminal activation domain and the DNA binding domain, further

activated the Hey2 promoter (Figure 1B). Analysis of a series of

deletion constructs of the Hey2 promoter revealed that Foxc-

mediated activity of the shortest promoter (0.5 kb) remained

almost intact compared with the longer promoter regions

(Figure 1C), suggesting that this region is responsible for the

induction. In addition, NICD strongly activated the shortest Hey2

promoter, as previously shown [25]. Based on consensus Fox

binding sequences that overlap each other, RYMAAYA [26,27]

and WAARYAAAYW [28] (R = A or G; Y = C or T; M = A or C;

W = A or T), the Hey2 promoter element (0.5 kb) contains two

FBEs that are located adjacent to the previously reported binding

site for Su(H) [25]: ACCAATA (or CCAATAGAAA) and

GAAAGCC (or AAAGCCACACC) (Figure 1D). Although these

FBEs do not completely match the consensus sequences, Fox

proteins can bind to sequences partially matched to the consensus

sequences [26]. In accordance with these results, specific binding

of Foxc1 and Foxc2 proteins to the endogenous Hey2 promoter

containing the FBEs was detected in MEECs by ChIP assays, as in

the case of the reported FBE in the Dll4 promoter [18] that

matches the consensus RYMAAYA sequence (Figure 1E). To-

gether, these data suggest that Hey2 is a novel downstream target

of Foxc1 and Foxc2.

Foxc2 interacts with the Notch pathway to regulate Hey2
promoter activity

It has previously been shown that the proximal Su(H) site

located in the shortest Hey2 promoter (Figure 1D) is critical for

Notch-mediated Hey2 induction [25]. Therefore, we examined

the effects of Foxc on the FBEs and Su(H) in the Hey2 promoter in

endothelial cells (Figure 2A). In both MEECs and BAECs, Hey2

promoter activity mediated by Foxc1 and Foxc2 was significantly

attenuated by mutating the FBEs (FxMT-LUC), indicating that

Foxc proteins directly regulate the Hey2 promoter through the

FBEs. Similarly, NICD-induced promoter activity was abolished

by mutating the Su(H) site (NotMT-LUC). Remarkably, Foxc2-,

but not Foxc1-, induced promoter activity was also reduced by the

mutation of the Su(H) site. Disruption of both the FBEs and the

Su(H) site almost completely abolished the promoter activity

induced by Foxc2, suggesting that Foxc2 mediates the activation of

the Hey2 promoter through these functionally distinct sites.

The functional interaction between Foxc2 and the Su(H) site led

us to further investigate whether Foxc and NICD in combination

could synergistically induce Hey2 promoter activity in MEECs

and BAECs (Figure 2B). Indeed, co-expression of Foxc2 and

NICD showed the synergistic activation of the Hey2 promoter

compared with expression of each molecule alone, while Foxc1

showed no synergistic effects with NICD. Surprisingly, the

mutation of the Su(H) site alone greatly abolished the synergism

between Foxc2 and NICD (Figure 2C). The cooperative activity of

Foxc2 and NICD was completely inhibited by mutating the FBEs

and the Su(H) site, whereas the combined activity remained

largely intact in the mutation of the FBEs only. These findings

indicate that Foxc1 and Foxc2 directly regulate the Hey2

promoter in endothelial cells and that Foxc2 functionally

cooperates with Notch signaling for the induction of Hey2

promoter activity.

Foxc2 physically interacts with Su(H)
Since Foxc2 and NICD functionally interact with each other to

activate the Hey2 promoter, we tested physical interactions of Foxc

proteins with NICD and Su(H). We first examined whether 35S-

labeled Foxc proteins could directly bind to GST-NICD by GST

pull-down assays. Although both Foxc1 and Foxc2 bound to Smad3,

as previously shown [23], neither Foxc1 nor Foxc2 physically

interacted with NICD (Figure 3A). On the other hand, Foxc2, but

triplicate experiments from 3 samples per each group. Statistical significance was determined by Student’s t-test (*p,0.05 versus control). (B) MEECs
and BAECs were transfected with Hey2 luciferase reporter (6.8 kb; FULL-LUC) along with different amounts (0–500 ng) of Foxc expression vectors.
Constitutively active forms of Foxc1 and Foxc2 (caFoxc1 and caFoxc2, respectively) were also transfected as positive controls. Values are means+s.d.
of 3 experiments in triplicates. Statistical significance was determined by Student’s t-tests (*p,0.05, **p,0.01 versus control). (C) A series of Hey2-
luciferase constructs was transfected with or without Foxc expression vectors. NICD was also transfected as a control. Note that the minimum
promoter (0.5 kb) of Hey2 still retained Foxc- and NICD-induced promoter activity. (C) Tandem FBEs conserved among several species in the
minimum Hey2 promoter. Conserved nucleotides are shown in bold face. The previously reported Su(H) site [25] is located adjacent to the FBEs. (E)
Foxc1 and Foxc2 bind to the endogenous promoters of Hey2 and Dll4 in endothelial cells. MEECs were subjected to ChIP assays with PBS (No Ab) or
anti-Foxc antibodies, and immunoprecipitated DNA was analyzed by PCR using specific primers for the Hey2 promoter shown in (C) or the Dll4
promoter [18].
doi:10.1371/journal.pone.0002401.g001

Induction of Dll4 and Hey2
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not Foxc1, directly bound to GST-Su(H) (Figure 3B). Interestingly,

when Foxc2, NICD and Su(H) were incubated together, the three

proteins formed a protein complex (Figure 3B). Coupled with the

results obtained from the luciferase reporter assays (Figure 2), these

findings suggest that Foxc2 is directly involved in the NICD-Su(H)-

mediated transcriptional activation of Hey2.

Figure 2. Foxc2 and NICD synergistically activate the Hey2 promoter. (A–C) Luciferase assays. Values are means+s.d. of 3 experiments in
triplicates. Statistical significance was determined by Student’s t-tests. (A) Foxc-mediated promoter activity was analyzed by Hey2 luciferase
constructs containing mutations in the FBEs, the proximal Su(H) sites, or both. *p,0.05, **p,0.01 versus the intact promoter with either Foxc1 or
Foxc2. N.S., non-significant. (B) Synergistic activation of the Hey2 promoter by combinations of Foxc2 and NICD. **p,0.01 versus NICD. N.S., non-
significant. (C) Foxc2 and NICD synergistically induce Hey2 expression largely via the Su(H) site and partially via the FBE. **p,0.01 versus NICD. N.S.,
non-significant.
doi:10.1371/journal.pone.0002401.g002

Induction of Dll4 and Hey2
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VEGF signaling activate the Dll4 and Hey2 promoters
Although VEGF induces the expression of arterial-specific genes

such as Dll4 in endothelial cells [29–31], VEGF-responsive elements

upstream of these genes has not yet been characterized. Therefore,

we analyzed the effects of VEGF and its intracellular signaling

pathways on the activation of the Hey2 promoter (0.5 kb), as well as

the previously reported Dll4 promoter (3.7 kb) whose activity is

regulated by Foxc1 and Foxc2 via the FBE [18]. First, VEGF

treatment alone significantly activated the Dll4 and Hey2 promoters

in BAECs (Figure 4A), suggesting that the promoter regions used are

able to respond to VEGF in endothelial cells. More importantly,

PI3K inhibitors (Wortmannin and LY294002) almost completely

suppressed VEGF-induced luciferase activity in BAECs, whereas

treatment with MEK inhibitors (PD98059 and U0126) largely

showed no effects on the responsiveness of VEGF to the Dll4 and

Hey2 promoters (Figure 4A).

Transcriptional activity of Foxc proteins is modulated by
VEGF signaling

While VEGF acts upstream of Notch signaling in arterial

differentiation, we have previously shown that Foxc1 and Foxc2

are expressed in both arterial and venous endothelial cells in the

early mouse embryo [18]. Given that VEGF stimulation does not

increase the expression of Foxc1 and Foxc2 in endothelial cells

[32,33] (Figure S1), we tested whether VEGF signaling itself could

regulate the activity of Foxc proteins in the activation of the Dll4

and Hey2 promoters in BAECs (Figure 4B). First, overexpression

of Foxc1 and Foxc2 along with VEGF treatment induced higher

activity of the Dll4 and Hey2 promoters than Foxc expression

alone. More significantly, VEGF treatment along with PI3K and

MEK inhibitors revealed that blocking PI3K signaling inhibited

Foxc2-mediated activation of the Dll4 and Hey2 promoters,

whereas blocking ERK signaling enhanced Foxc2 action.

Similarly, Dll4 induction by Foxc1 was blocked by PI3K

inhibition, whereas Hey2 induction by Foxc1 was augmented by

ERK inhibition. Taken together, these results indicate that VEGF

signaling, specifically the PI3K component, augments Foxc-

induced promoter activity of Dll4 and Hey2.

Discussion

We have previously shown that Foxc1 and Foxc2 have a dose-

dependent role in arterial specification and that they directly

regulate Dll4 expression. Our new findings in this paper

demonstrate that Foxc1 and Foxc2 directly activate the Hey2

promoter through the FBEs and that Foxc2 cooperates with the

Su(H)-NICD transcriptional complex in the induction of Hey2.

Furthermore, Foxc1 and Foxc2 cooperate with the VEGF

signaling pathway to activate the Dll4 and Hey2 promoters. To

our knowledge, this is the first demonstration of the basic

mechanisms that control arterial gene expression in concert with

the VEGF and Notch signaling pathways, and such novel

regulatory mechanisms mediated by Foxc proteins provide new

insight into the arterial program (Figure 5).

Direct activation of the Hey2 promoter by Foxc1 and Foxc2

indicates that in addition to the induction of Dll4 expression, they

reinforce an arterial phenotype in endothelial cells. Notably, by

forming the transcriptional complex with Su(H) and NICD, Foxc2

acts downstream of Notch signaling to activate the Hey2

promoter. Interestingly, a recent study demonstrates the functional

cooperation between Foxo1 and Notch signaling in myogenic

differentiation [34], indicating interactive pathways between Fox

and Notch in developmental processes. The difference between

Foxc1 and Foxc2 in the binding to the Su(H)-NICD complex may

Figure 3. Foxc2 directly binds to Su(H). (A, B) GST-pull down
assays. (A) Foxc1 and Foxc2 proteins do not physically interact with
NICD. [35S]methionine-labeled Foxc proteins were incubated with GST-
NICD or GST–Smad3 as a control and were subjected to SDS-PAGE. The
gels were first stained by CBB to detect GST-fusion proteins (lower
panel). Foxc proteins that bind to GST-fusion proteins were subse-
quently visualized by autoradiography (upper panel). (B) Foxc2 directly
binds to Su(H) and forms a protein complex with Su(H) and NICD.
[35S]methionine-labeled NICD and Foxc proteins were mixed with GST-
Su(H), and GST pull-down assays were performed.
doi:10.1371/journal.pone.0002401.g003

Induction of Dll4 and Hey2
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Figure 4. Foxc proteins interact with VEGF signaling in the activation of the Dll4 and Hey2 promoters. (A) The VEGF-induced PI3K
pathway activates the Dll4 and Hey2 promoters. BAECs transfected with DLL4-LUC or Hey2-LUC at 24 h after transfection and serum starvation were
treated with either PI3K inhibitors (Wortmannin and LY294002) or MEK inhibitors (PD98059 and U0126) along with VEGF (50 ng/ml) for additional
24 h. Luciferase activity was assayed at 48 h after transfection. (B) Transcriptional activity of Foxc proteins is modulated by VEGF-mediated PI3K and
MEK pathways. BAECs transfected with Foxc expression vectors along with DLL4-LUC or Hey2-LUC at 24 h after transfection and serum starvation

Induction of Dll4 and Hey2
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be attributable to diverse C-terminal regions in the two Foxc

proteins (,30% homology), compared with their N-terminal and

DNA-binding domains (56% and 97% homology, respectively). It

is worth noting that compound Foxc1+/2; Foxc22/2 mutants

have much more severe defects in the cardiovascular system than

compound Foxc12/2; Foxc2+/2 mutants [16–18]. While we

cannot rule out the possibility that Foxc1 is involved in non-

canonical Notch signaling [35], it has also been shown that Hey2

expression is Notch-independent in some cases [36,37].

We also show in this paper that Foxc1 and Foxc2 functionally

cooperate with VEGF signaling, through the PI3K pathway, to

induce Dll4 and Hey2 promoter activity. Our results are consistent

with evidence that the VEGF/PI3K-mediated pathway induces

Notch1 and Dll4 expression in cultured human endothelial cells

[30]. In contrast, in the zebrafish embryo, the PI3K pathway

suppresses arterial differentiation by blocking the ERK signaling

cascade [38]. The discrepancy between these in vitro and in vivo

experiments is currently unclear. While the effects of a single

isoform of VEGF on arterial gene expression was tested in the in

vitro experiments, spatiotemporal activity of multiple isoforms of

VEGF in the zebrafish embryo may differently affect activation of

VEGF-dependent intracellular signaling pathways in endothelial

cells in vivo. Interestingly, it is noteworthy that MAPK activity stays

much longer in the zebrafish embryo than in cultured endothelial

cells. In any case, it should be emphasized that in both contexts,

the two VEGF-mediated components, the PI3K and ERK

pathways, appear to have opposing effects [38,39] on arterial

differentiation. One possibility to explain our in vitro studies is that

PI3K-mediated inhibition of the ERK pathway leads to the

activation of Foxc proteins. While we cannot exclude the

possibility that Foxc function is, in part, independent of VEGF

signaling, activity of Foxc proteins may be modulated by

phosphorylation in response to VEGF. This idea is supported by

evidence that human FOXC1 and FOXC2 are phosphorylated by

EGF stimulation [40,41] and that human FOXC1 activity is

elaborately modulated by phosphorylation levels [40,42]. In fact,

both Foxc1 and Foxc2 have 10 potential phosphorylation sites for

ERK that are conserved between human and mouse (data not

shown). While there is no potential ERK1/2 phosphorylation site

in the DNA binding-domains, the distribution of 10 potential sites

in flanking N- and C-terminal regions are rather similar between

the two proteins. It is conceivable that specific residues such as

potential phosphorylation sites are commonly important for the

function of Foxc1 and Foxc2. Further analysis is under way to

define the amino acid residues in Foxc proteins that are

phosphorylated in response to VEGF.

VEGF signaling induces the expression of Neuropilin 1 (Nrp1),

as a positive-feedback loop to promote the arterial program [43].

Given evidence that Nrp1 expression is downregulated in

compound Foxc1; Foxc2 homozygotes [18], we have found that

Foxc2 also upregulates Nrp1 expression in endothelial cells and

that there is a conserved FBE between human and mouse in the 3

kb upstream region of Nrp1 (Figure S2). It is therefore possible

that Foxc transcription factors also regulate Nrp1 expression,

thereby regulating the positive-feedback loop of VEGF signaling

(Figure 5). In conclusion, our results demonstrate that Foxc1 and

Foxc2 are important transcriptional regulators in the arterial

program by interacting with VEGF and Notch signaling.

Supporting Information

Figure S1 Expression levels of Foxc1 and Foxc2 in MEECs

treated with VEGF. RNA samples were prepared after treatment

with VEGF at indicated concentrations for 24 hr, and relative

mRNA levels of Foxc1 and Foxc2 were measured by real-time

RT-PCR. Results are presented as means+/2s.d. from triplicate

experiments.

Found at: doi:10.1371/journal.pone.0002401.s001 (0.02 MB PDF)

Figure S2 Foxc2 upregulates Neuropilin 1 expression in

endothelial cells. MEECs were infected with recombinant

adenovirus expressing Foxc2 and GFP or control adenovirus

expressing GFP only (Mock). Neuropilin 1 (Nrp1) mRNA was

detected by semi-quantitative RT-PCR. Gapdh was used as an

internal control. (B) Identification of a conserved Foxc-binding

element in the upstream region of Neuropilin 1. Human and

mouse sequences in the Neuropilin 1 locus are aligned using

mVISTA to identify highly conserved regions. Putative Fox-biding

elements are marked by red boxes.

Found at: doi:10.1371/journal.pone.0002401.s002 (0.22 MB PDF)
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were treated with VEGF (50 ng/ml) in the presence of Wortmannin or PD98059 for additional 24 h. Luciferase activity was assayed at 48 h after
transfection. Values are means+s.d. of 3 experiments in triplicates. Statistical significance was determined by Student’s t-tests. (*p,0.05, **p,0.01
versus control cells treated with VEGF)
doi:10.1371/journal.pone.0002401.g004

Figure 5. Model for the involvement of Foxc proteins in arterial
gene expression program. Upon VEGF stimulation, the expression of
Notch signaling genes, including the Dll4 ligand and the Notch1/4
receptors, as well as downstream targets of Notch signaling, including
Hey2 and ephrinB2 [44], is induced in endothelial cells. Foxc1 and Foxc2
transcription factors directly control Dll4 and Hey2 transcription, while it
remains speculative whether Foxc proteins function downstream of VEGF.
Foxc2 is involved in the Su(H)-NICD transcriptional complex for the
induction of Hey2 expression. Foxc proteins may also regulate expression
of Nrp1, the arterial-specific co-receptor for VEGF (dashed arrow), thereby
controlling the positive feedback loop of VEGF signaling.
doi:10.1371/journal.pone.0002401.g005
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