
Effects of Ion-Transporting Proteins
on the Digestive System Under
Hypoxia
Yiwei Xiang1,2†, Dongdong Fan1,2†, Qimin An1,2, Ting Zhang1,2, Xianli Wu1,2, Jianhong Ding1,2,
Xiaolin Xu1,2, Gengyu Yue1,2, Siqi Tang1,2, Qian Du1,2, Jingyu Xu1,2*† and Rui Xie1,2*

1Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China,
2Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China

Hypoxia refers to a state of oxygen limitation, which mainly mediates pathological
processes in the human body and participates in the regulation of normal physiological
processes. In the hypoxic environment, the main regulator of human body homeostasis is
the hypoxia-inducible factor family (HIF). HIF can regulate the expression of many hypoxia-
induced genes and then participate in various physiological and pathological processes of
the human body. Ion-transporting proteins are extremely important types of proteins. Ion-
transporting proteins are distributed on cell membranes or organelles and strictly control
the inflow or outflow of ions in cells or organelles. Changes in ions in cells are often closely
related to extensive physiological and pathological processes in the human body.
Numerous studies have confirmed that hypoxia and its regulatory factors can regulate
the transcription and expression of ion-transporting protein-related genes. Under hypoxic
stress, the regulation and interaction of ion-transporting proteins by hypoxia often leads to
diseases of various human systems and even tumors. Using ion-transporting proteins and
hypoxia as targets to explore the mechanism of digestive system diseases and targeted
therapy is expected to become a new breakthrough point.
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1 INTRODUCTION

Oxygen is vital to the human body. The human body allows oxygen to enter the body through lung
ventilation, and the oxygen is exchanged in the alveoli and delivered to the capillaries through the
alveolar-capillary exchange system. In capillaries, oxygen combines with hemoglobin to enter cells of
various tissues, and finally participates in energy production in mitochondria in cells to meet the
metabolic needs of cells (Ortiz-Prado et al., 2019). However, each organ in the human body has
different metabolic levels and functional states, so under physiological conditions, most organs are in
their unique physiological normoxic state (Nakayama and Kataoka, 2019). For example, the partial
pressure of oxygen (PO2) in the brain is 30–48 mmHg, and the PO2 in the superficial epidermis of the
kidney is 72 ± 20 mmHg. The PO2 in the liver is 55.5 ± 21.3 mmHg, the PO2 around the portal vein is
about 60–65 mmHg, while in the perivenous area it drops to about 30–35 mmHg (Kietzmann, 2019).
There is a unique oxygen gradient in the human gut. The partial pressure of oxygen in the colon wall
is 42–71 mmHg, the PO2 near the recess-cavity interface is 5–10 mmHg, and the PO2 in the
ascending colon cavity and sigmoid colon cavity are 11 and 3 mmHg, respectively. The PO2 of the
small intestinal wall is 59 mmHg, the tip of the villi is about 22 mmHg, and the PO2 of the small
intestinal lumen is < 10 mmHg (Singhal and Shah, 2020). The PO2 of the pancreas is about 40 mmHg
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(Lo et al., 2013; Ortiz-Prado et al., 2019). However, in the event of
conditions including respiratory failure, insufficient blood flow to
end organs, dysfunctional or low levels of hemoglobin, or
chemically induced hypoxia, the partial pressure of oxygen will
fall below physiological normoxic levels. The oxygen will be
limited, and the cells will be in a hypoxic environment. A
hypoxic microenvironment can trigger changes in cellular
metabolism and trigger different molecular responses. The
hypoxia response can be part of the normal physiological
activities of the human body, but it mainly mediates the
pathological process and promotes the progression of the disease.

1.1 Hypoxia and its Regulating Factors
Themain regulator of human tissue homeostasis under hypoxia is
the hypoxia-inducible factor (HIF) family. Hypoxia-inducible
factor was originally discovered as an enhancer of the
erythropoietin (EPO) gene in the process of identifying
hypoxia response elements (HREs) (Ke and Costa, 2006). The
HIF family has three main members, namely, HIF-1, HIF-2, and
HIF-3. The functional subunit forms of these three members are
HIF-1α, HIF-2α, and HIF-3α. Currently, the effect of HIF-3α is
unclear. Studies have only found that HIF-3α can inhibit the
transcription of HIF-1/2α and act as a dominant negative
regulator of HIF-1/2α activity. HIF-2α has a similar structure
to HIF-1α, but its expression pattern is different because in
contrast to widespread HIF-1α, HIF-2α is expressed only in

certain tissues. Therefore, HIF-1α is most widely known
(Loboda et al., 2010; Duan, 2016). The stability and activity of
HIF-1α are regulated by posttranslational modification,
hydroxylation, acetylation, and phosphorylation. Hypoxia-
inducible factor-1α can interact with various protein factors,
including PHD, pVHL, ARD-1, p300/CBP, RBX1, Elongin B,
and Elongin C. Under normoxic conditions, the hypoxia-
inducible factor-1α subunit can be triggered by the
hydroxylation of proline and the acetylation of lysine in a
polypeptide segment called the oxygen-dependent degradation
(ODD) domain, and combined with von Hippel-Lindau tumor
suppressor gene product (pVHL), pVHL mediates the
ubiquitin–proteasome composed of RBX1, Elongin B, Elongin
C, and VHL and rapidly degrades HIF through the
ubiquitin–proteasome pathway. In contrast, under hypoxic
conditions, the hypoxia-inducible factor-1α subunit becomes
stable and interacts with coactivators, such as p300/CBP.
Thus, the transcriptional activity of hypoxia-inducible factor-
1α is enhanced, and under hypoxic conditions, it becomes the
main regulator of many hypoxia-inducible genes (Lee et al.,
2004). These genes are involved in cell survival, proliferation,
movement, metabolism, pH regulation, extracellular matrix
function, inflammatory cell recruitment, and angiogenesis
(Joseph et al., 2018). HIF-1 regulates these genes and leads to
various pathological processes (Figure 1). In conclusion, HIF is
an important factor regulating the oxygen balance in the human

FIGURE 1 | HIF can be expressed in different ways under normoxia and hypoxia. Under normoxic conditions, the hypoxia-inducible factor-1α subunit can bind the
von Hippel-Lindau tumor suppressor gene product (PVHL). pVHL mediates the ubiquitin–proteasome, which is composed of RBX1, Elongin B, Elongin C, and VHL. The
ubiquitin–proteasome pathway rapidly degrades HIF. In contrast, under hypoxic conditions, the hypoxia-inducible factor-1α subunit becomes stable and interacts with
coactivators, such as p300/CBP, and the transcriptional activity of hypoxia-inducible factor-1α is enhanced. Under hypoxic conditions, it has become the main
regulator of many hypoxia-induced genes involved in cell survival, proliferation, exercise, metabolism, pH regulation, extracellular matrix function, inflammatory cell
recruitment, angiogenesis, etc.
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body and an important target of hypoxia-mediated activities (Li
et al., 2020).

1.2 The Role of Hypoxia and its Regulating
Factors in the Physiological and
Pathological Processes of the Digestive
System
The impact of hypoxia and its regulatory factors on the human
body has always been a hot topic and studies have increasingly
shown that hypoxia can play an important role in the human
body (Fuentes and Christianson, 2016). In the past, a large
number of studies on the effects of hypoxia on the human
body tended to focus on the cardiovascular, respiratory,
urinary, and nervous systems, such as myocardial apoptosis
and hypertrophy (Eigel et al., 2004; Chu et al., 2012),
pulmonary artery contraction and remodeling (Dong et al.,
2012; Simonneau et al., 2014; Parpaite et al., 2016), nerve cell
apoptosis (Aarts et al., 2003), and renal ischemia reperfusion
(Kita et al., 2007; Liu et al., 2018). However, the effects of hypoxia
on the human body are not limited to the cardiovascular,
respiratory, nervous, urinary, and other systems. In recent
years, the effects of hypoxia on the digestive system have also
received increasing attention. Increasing evidence shows that
hypoxia and its regulatory factors can also be widely expressed
in various organs of the digestive system and play an extremely
important role in the physiological and pathological processes of
the digestive system.

1.2.1 The Physiological Role of Hypoxia in the
Digestive System
Hypoxia can be used as a physiological signal that can affect many
physiological processes in the digestive system (Hubbi and
Semenza, 2015). For example, as an important digestive organ,
the liver performs various functions necessary for maintaining
systemic homeostasis. The liver is the central metabolic organ
responsible for maintaining blood glucose levels, ammonia
metabolism, endogenous metabolic by-products of
biotransformation and metabolism of xenobiotics, and bile
synthesis. All of these processes require many pathways and
enzymatic reactions to run in parallel in the most efficient
manner. To achieve this, the liver parenchyma exhibits a
functional organization called metabolic zonation. It is
currently recognized that both Wnt/β-catenin pathway and
Hedgehog (Hh) signaling play a decisive role in metabolic
partitioning (Benhamouche et al., 2006; Matz-Soja et al.,
2013). In hypoxic environment, hif-1a and HIF-β promote the
expression of Wnt/β-catenin target genes including Dkk-4, Lef-1,
and Tcf-1. And HIF-1α can directly bind to the promoters of
Lef1 and TCF1 genes, thereby greatly enhancing the
transcriptional activity of β-catenin (Mazumdar et al., 2010).
At the same time, hypoxia can induce the expression of Hh
ligand SHh and the pathway activity marker Patched1, thereby
inducing a systemic Hh response (Bijlsma et al., 2009). Through
these two pathways, hypoxia and its regulators promote the
formation of hepatic metabolic zonation (Kietzmann, 2017).
Induced hepatic stem cells (iHepSCs) are lineage-

reprogrammed cells derived from murine embryonic
fibroblasts with self-renewal and bipotential differentiation
properties, which hold great potential as hepatocyte therapy
donors. Physiological hypoxia can accelerate the G1/S
transition through the p53-p21 signaling pathway, thereby
enhancing stemness characteristics and promoting the
proliferative capacity of iHepSCs. In addition, short-term
hypoxia preconditioning enhances the hepatic differentiation
efficiency of iHepSCs, and long-term hypoxia promotes
cholangiocyte differentiation but inhibits hepatic
differentiation of iHepSCs (Zhi et al., 2018). Studies have
shown that physiological hypoxia can assist the formation of
the barrier function of the gastrointestinal tract. Tight junctions
are the backbone that form the upper intestinal barrier, and
claudins are integral membrane proteins in the intestinal barrier
responsible for the selective permeability of tight junctions
(Ivanov et al., 2010). The hypoxic intestinal environment
induces the production of HIF-1β, which maintains
CLDN1 expression by binding to the hypoxia-responsive
element sequence in the gene promoter (Saeedi et al., 2015).
Xenobiotic clearance is an important function of the intestinal
epithelial barrier. P-glycoprotein, also known as multidrug
resistance protein 1, has broad substrate specificity. In the
process of xenobiotic clearance, P-glycoprotein is the main
effector of xenobiotic transport into the lumen. P-glycoprotein
is transcriptionally regulated by HIF-1 (Comerford et al., 2002;
Zheng et al., 2015).

1.2.2 The Pathological Role of Hypoxia in the Digestive
System
As a common environmental stress factor, hypoxia is more
involved in the pathological process of the digestive system.
First, in the liver, hypoxia-induced overexpression of HIF-2α
can inhibit fatty acid β-oxidation, thereby activating peroxisome
proliferators to activate the receptor PPARα, which, in turn,
induces fat formation in the liver and exacerbates nonalcoholic
fatty liver disease (NAFLD) (J. Chen et al., 2019). Hypoxia is a
common phenomenon in hepatocellular carcinoma (HCC).
Hypoxia stabilizes the transcription factor hypoxia-inducible
factor (HIF), and the expression of HIF is closely related to
the metastasis of liver cancer. The metastasis of liver cancer
requires the support of metastasis-promoting genes, and hypoxia/
hypoxia-inducible factor-1α has been shown to be a central
regulator of many metastasis-promoting genes that can
activate metastasis-promoting genes; thus, it ultimately
participates in every step of liver cancer metastasis (Wong
et al., 2014). In the pancreas, pancreatic ductal
adenocarcinoma (PDAC) is characterized by fewer blood
vessels, strong invasiveness, and a very poor prognosis. PDAC
has strong invasion and migration ability because under hypoxic
conditions, pancreatic cancer-associated fibroblasts (CAFs) are
stimulated by hypoxia to produce insulin-like growth Factor 1
(IGF1), and IGF1/IGF1R signaling can stimulate the invasion and
migration activity of PDAC cells (Hirakawa et al., 2016). In the
esophagus, hypoxia can promote the growth and metastasis of
esophageal squamous cell carcinoma (ESCC). Under hypoxic
conditions, hypoxia stimulates the production of HIF-1α, and
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HIF-1α can induce the expression of microRNA (miRNA), a
posttranscriptional regulatory factor. MicroRNAs can stimulate
the growth and metastasis of esophageal squamous cell
carcinoma (ESCC) (Zhang et al., 2019). In the stomach, a key
factor underlying gastric cancer invasion and metastasis is the
epithelial-mesenchymal transition (EMT). Hypoxia-inducible
factor-1α not only is an independent prognostic factor of gastric
cancer but also, under hypoxic conditions, can stimulate the
overexpression of prostate cancer gene expression marker 1
(PCGEM1). The overexpression of prostate cancer gene
expression marker 1 (PCGEM1) can affect the epithelial-
mesenchymal transition (EMT), thereby promoting the invasion
and metastasis of gastric cancer cells (Zhang J et al., 2019). In the
intestine, the severity of inflammatory bowel disease was found to be
positively correlated with the expression of HIF-1a (Cummins and
Crean, 2017). In colorectal cancer (CRC), the Hippo signaling
pathway is a central pathway that regulates intestinal growth.
Related protein 1 (YAP1) is a downstream effector of the Hippo
signaling pathway. YAP1 is an important regulator of proliferation,
organ size, and cell differentiation. HIF-2α can directly increase the
activity of cancer cells by upregulating YAP1 activity to promote the
growth of colorectal cancer cells (Ma et al., 2017).

Overall, numerous studies have shown that hypoxia can play
an important role in the physiological processes and diseases of
the digestive system. However, to date, how hypoxia specifically
affects the digestive system, especially in some diseases and
tumors, its mechanism, and its function have not been fully
elucidated. A deeper understanding of the mechanism of hypoxia
and its regulatory factors in the digestive system could help us
further understand the development, changes, and prognosis of
the disease and discover new drug treatment targets.

1.3 Correlation Between Ion-Transporting
Proteins and Hypoxia
In recent years, through the exploration of the mechanism of
hypoxia and its regulatory factors, it has been discovered that
hypoxia can affect various human systems by regulating the
expression of ion-transporting proteins and interacting with
various ion-transporting proteins. First, for human cells, ion-
transporting proteins constitute an extremely important class of
proteins that are distributed on the cell membrane and form pores in
the cell membrane, strictly controlling the inflow or outflow of ions
in the cell or organelle (Keynes, 1975). Ions are important cell signals
in the human body. Changes in ions in cells are often closely related
to extensive physiological and pathological processes in the human
body. In addition, there is amazing molecular diversity in ion-
transporting proteins. Ion transporters comprise a wide range of
ion channels, exchangers, pumps, and ionotropic receptors. They are
based on ion selectivity (sodium channel, potassium channel,
chloride channel, calcium channel, proton channel, and
nonselective channel), gating mechanism (voltage gating, ligand
gating, cyclic nucleotide gating, light gate, and mechanically
sensitive), or localization (plasma membrane and intracellular) for
classification (Venter et al., 2001), Kv, Kca, Ki, NCX, and TRP
channel families (Venkatachalam and Montell, 2007), STIM, NHE,
etc. Because of their diversity, limited tissue distribution, and

important role in regulating key cell functions, they are very
attractive therapeutic or diagnostic targets in many diseases
(Kaczorowski et al., 2008).

However, numerous studies have proven that under normal
circumstances, hypoxia and its regulatory factor HIF-1 can regulate
the transcription and expression of ion-transporting protein-related
genes such that the related ion-transporting proteins are
overexpressed or inhibited. Sometimes, activated ion-transporting
proteins will in turn affect the expression of HIF-1, causing it to
activate or silence. When the various systems of the human body are
under hypoxic stress, the regulation and interaction of hypoxia on
ion-transporting proteins often leads to the occurrence of related
diseases and even tumors. This article aims to review the effects of
ion-transporting proteins on the digestive system under hypoxia to
provide new ideas for clinical treatment (Figure 2).

2 THE ROLE OF ION-TRANSPORTING
PROTEINS IN THE DIGESTIVE SYSTEM
UNDER HYPOXIA

2.1 The Effect of Vacuolar H+-ATPase on
Energy Metabolism of Esophageal
Carcinoma Cells Under Hypoxia
2.1.1 Physiological Role of V-ATPase and Energy
Metabolism of Esophageal Cells
The vacuolar (H+)-ATPase (V-ATPase) is an ATP-dependent
proton pump. V-ATPase is composed of V0 and V1 domains.
The V0 domain consists of five distinct subunits involved in
proton transport (Forgac, 2007). On the other hand, the
V1 domain consists of 8 different subunits responsible for the
hydrolysis of ATP (Forgac, 2007). V-ATPase is mainly
responsible for the maintenance of PH in human plasma and
cells, the transport and secretion of intracellular and intracellular
membranes, the processing and degradation of some
macromolecules, and the coupled transport of some small
molecules such as neurotransmitters and ATP (Cipriano et al.,
2008). Like cells in other parts of the body, under normal
circumstances, esophageal cells usually use glycolysis to
convert glucose in the cytoplasm into pyruvate. Pyruvate is
further metabolized in mitochondria through the tricarboxylic
acid (TCA) cycle and the electron transport chain (ETC) through
oxidative phosphorylation (OxPhos) to generate energy storage
adenosine triphosphate (ATP) (Pelicano et al., 2006).

But we were surprised to find that V-ATPase plays a
completely different role in esophageal cancer cells, and the
energy metabolism of esophageal cancer cells is also
completely different from the tricarboxylic acid cycle of
normal cells.

2.1.2 V-ATPase can Positively Regulate HIF-1,
Thereby Enhancing the Expression of Key Genes of
Glycolysis and Promoting Glycolysis in Esophageal
Cancer Cells
Esophageal cancer is one of the deadliest malignant tumors, and
the prognosis is often poor (Nassri et al., 2018). Although there

Frontiers in Physiology | www.frontiersin.org September 2022 | Volume 13 | Article 8702434

Xiang et al. Hypoxia and Ion Transporter

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


have been advances in chemotherapy and radiotherapy in recent
years, due to its high mortality rate, the 5-year survival rate of
patients with esophageal squamous cell carcinoma (ESCC) is very
low (up to 30%–45%) (Russo and Franceschi, 1996). One of the
main reasons is that, in contrast to normal cells, tumor cells
heavily rely on glycolysis to produce energy, even with sufficient
oxygen levels, which allows them to maintain a high proliferation
rate and resist apoptosis signals (Liu et al., 2001).

Studies have shown that in the process of glycolysis, the key
genes of glycolysis, glucose transporter 1 (Glut1), hexokinase II
(HK2), and lactate dehydrogenase A (LDHA) activation are often
dependent on HIF-1 (Nagao et al., 2019). In esophageal cancer
cells, vacuolar H+-adenosyl triphosphate (V-ATPase) is highly
expressed. V-ATPase is particularly important for maintaining
the pH environment required for tumor growth. At the same
time, V-ATPase can promote the expression ofmammalian target
of rapamycin (MTOR) (Buller et al., 2011). MTOR increases
glucose uptake and expression of glucose transporter 1 (GLUT1).
In addition, experiments showed that V-ATPase can also
promote HIF-1 and other glycolytic genes such as HK2,
phosphofructokinase-1 (PFK1), enolase 1 (ENO1), PKM2,
LDHA, and pyruvate dehydrogenase thiamine kinase

isoenzyme (PDK1) expression (Son et al., 2019). Therefore, in
the process of glycolysis of esophageal cancer cells, V-ATPase
itself can activate the transport of glucose and positively regulate
HIF-1, so as to enhance the expression of key genes of glycolysis,
promote glycolysis, and provide energy for the proliferation,
growth, and metastasis of esophageal cancer cells. For the
treatment of esophageal cancer, how to inhibit its glycolytic
pathway seems to provide a new idea for the development of
new targeted anticancer drugs, and HIF-1 and V-ATPase may
also be potential targets for inhibiting glycolysis (Son et al., 2016).

2.2 The Regulatory Role of Ion Transporters
in Gastric Diseases Under Hypoxia
2.2.1 Under Hypoxia, Vacuolar H+-ATPase can
Promote the Multidrug Resistance of Gastric Cancer
Cells
2.2.1.1 The Emergence of Multidrug Resistance in Gastric
Cancer
Gastric cancer is the second leading cause of death worldwide
(Ferro et al., 2014). Sixty-five percent of gastric cancer patients are
often in the advanced or metastatic stage at the time of diagnosis

FIGURE 2 | Summary of the effects of ion transporters on the digestive system under hypoxia.
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(Hundahl et al., 2000). The combination of chemotherapy and
targeted therapy provides hope of survival for patients with
advanced gastric cancer. However, tumor cells sometimes
develop resistance to multiple cytotoxic drugs that reduces the
effectiveness of chemotherapy, known as multidrug resistance
(Ozben, 2006). The main mechanisms of MDR production
include reducing drug accumulation in tumor cells, altering
intracellular drug distribution, increasing detoxification,
reducing drug-target interactions, increasing DNA repair,
altering cell cycle regulation, and uncoupling pathways that
link cell damage to apoptosis (Martínez-Lacaci et al., 2007;
Gillet and Gottesman, 2010). The most dominant form of
resistance to chemotherapy has been correlated with two MDR
transporters including P-glycoprotein (P-gp), multidrug resistant
protein1 (MRP1) (Szakács et al., 2006). They can often be
overexpressed in malignant cells and can pump a variety of
anticancer drugs out of the cell, resulting in lower levels of the
intracellular drugs needed for effective treatment (Rees et al.,
2009). Therefore, it is necessary to explore the regulatory
pathways of these transporters.

2.2.1.2 Vacuolar H+-ATPase Increases HIF-1α Translation to
Promote P-Gp and MRP1 Expression
As we described above, the main physiological role of V-ATPases
in the human body is to maintain the homeostasis of cellular pH.
But in gastric cancer cells, we surprisingly found that the activity
of V-ATPase was greatly increased. Activated V-ATPase can
promote the expression of mTOR. mTOR, a master regulator
of protein synthesis and cell growth, increases the translation of
hypoxia-inducible factor 1α (HIF-1α) (Advani, 2010). In the
hypoxic environment formed by gastric cancer cells, hypoxia-
inducible factor-1α (HIF-1α) can also regulate the transcription
of a large number of hypoxia-related genes including multidrug
resistance genes (Semenza, 2002; Lin et al., 2014). Among them,
the expression of HIF-1α can induce a significant increase in the
translation of P-gp and MRP1 (L. Liu et al., 2008), thereby
reducing intracellular drug accumulation and enhancing the
drug resistance of esophageal cancer cells. Therefore, both
V-ATPase and HIF-1α provide effective therapeutic targets,
and reducing the expression of V-ATPase and HIF-1α can
increase the effectiveness of chemotherapeutic drugs and even
reverse the drug resistance of gastric cancer cells (Chen et al.,
2012).

2.2.2 Mitochondrial Calcium Uniporter Regulates
Migration, Invasion, Angiogenesis, and Growth of
Gastric Cancer Cells Under Hypoxic Conditions
The mitochondrial calcium uniporter (MCU) is a highly selective
calcium channel and the primary pathway for calcium entry into
mitochondria. In the hypoxic microenvironment of gastric cancer
tissue, MCU is highly expressed. The overexpressed MCU can
significantly increase the mitochondrial membrane potential
level, and after the mitochondrial membrane potential level is
increased, the invasive ability of gastric cancer cells is significantly
improved. MCU may promote the proliferation of gastric cancer
cells by increasing the level of mitochondrial membrane potential.
The extracellular matrix (ECM) plays an important role in the

invasion and metastasis of gastric cancer. Overexpression of
MCU can cause calcium disturbance in gastric cancer cells.
Matrix metalloproteinases are zinc- and calcium-dependent
proteases that degrade ECM components, promote
angiogenesis, and regulate cell adhesion. MCU can regulate
matrix metalloproteinases to disrupt ECM homeostasis and
promote the invasion and metastasis of gastric cancer cells
(Gan et al., 2018). MCU overexpression also significantly
promotes the expression of HIF-1α and vimentin, and
suppresses the expression of E-cadherin in gastric cancer cells,
while HIF-1α can induce the proliferation, migration, and
invasion of gastric cancer cells by promoting the expression of
VEGF, suggesting that MCU may regulate the expression of
VEGF through HIF-1α. Inhibition of E-cadherin promotes
epithelial-mesenchymal transition (EMT). EMT is the process
by which cells transition from a proliferative epithelial phenotype
to a migratory and invasive mesenchymal phenotype. MCU can
promote the migration and invasion of gastric cancer cells by
regulating the EMT process in vitro and in vivo. Therefore,
targeting MCU may inhibit the migration, invasion,
angiogenesis, and growth of gastric cancer cells, providing a
new idea for the treatment of gastric cancer (Wang et al., 2020).

2.3 The Regulatory Role of Ion Transporters
in Intestinal Diseases Under Hypoxia
2.3.1 Hypoxia and K2P Channels are Involved in the
Pathogenesis of Inflammatory Bowel Disease
2.3.1.1 K2P5.1 Channel is Up-Regulated in Inflammatory
Bowel Disease
Studies have shown that dysregulation of transcription,
translation, and posttranslational expression of K+ channels is
related to the pathogenesis of immune and inflammatory diseases
(Ohya et al., 2016). Among them, K2P5.1 channel may be
involved in the pathogenesis of inflammatory bowel disease.
The alkaline pH-activated K+ channel (K2P5.1) belongs to the
two-pore domain K+ (K2P) channel superfamily. K2P5.1 is not
only involved in the resting potential of human cells, but also has
various physiological functions such as maintaining cell volume
and regulating renal bicarbonate reabsorption (Cid et al., 2013;
López-Cayuqueo et al., 2015; Williams et al., 2013). But of most
interest is its role in autoimmune and inflammatory diseases such
as inflammatory bowel disease. In the study of autoimmune
disease models such as inflammatory bowel disease (IBD), it
was found that the expression and activity of K2P5.1 were
significantly upregulated in the CD4+ T cells of the model.
However, the mechanism of K2P5.1 upregulation remains
unclear (Nakakura et al., 2015).

2.3.1.2 Under Hypoxia, HIF can Promote the Occurrence of
Inflammatory Bowel Disease by Activating K2P5.1
Hypoxia-inducible factor-1α is strongly expressed in T cells
infiltrating the inflammatory mucosa in patients with IBD
(Higashiyama et al., 2012). Hypoxia-inducible factor-1α plays
an important role in the pathogenesis of inflammatory diseases by
promoting the expression of inflammatory genes (Taylor and
Colgan, 2017). Brazier et al. found that HIF-1 dimers can bind
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target HIF-1 response element (HRE) regions to activate target
gene transcription (Brazier et al., 2005) and clone the common
binding site of the K2P5.1 promoter and Ets (E-26)-like 1 (ELK-
1), whose activity is sensitive to oxygen and is necessary for
K2P5.1 transcription initiation. The expression and activity of
K2P5.1 increase under hypoxia (1.5% O2), and treatment with the
HIF inhibitor FM19G11 instead of the selective HIF-2 inhibitor
has the opposite effect. This finding indicates that under hypoxia,
HIF can promote the occurrence of IBD by activating K2P5.1
(Endo et al., 2019).

2.3.2 Under Hypoxia, Transient Receptor Potential
Channel 5 (TRPC5) can Promote Colon Cancer Tumor
Metastasis Through the HIF-1α-Twist Signaling
Pathway
Overexpression of TRPC5 in colon cancer cells promotes cancer
cell migration and proliferation by inducing epithelial-
mesenchymal transition (EMT). TRPC5 belongs to the TRP
(Transient receptor potential) superfamily and is one of the
major Ca2+ regulatory channels in the intestine. Epithelial-
mesenchymal transition (EMT) is closely related to the
invasive metastasis of tumor cells (Thiery et al., 2009). Several
studies have shown that the occurrence of EMT is associated with
calcium influx in colon cancer cells. In colon cancer,
overexpressed TRPC5 leads to massive Ca2+ influx, which
reduces the expression of E-cadherin. On the other hand, the
expression of interstitial biomarkers N- cadherin and vimentin is
significantly increased. Loss of function of the adhesion junction
protein E-cadherin is regarded as a major hallmark and
fundamental event of EMT (Kalluri and Weinberg, 2009).
Further studies have revealed the molecular mechanism of
how TRPC5 affects E-cadherin of EMT through Ca2+ influx.
The major transcription factors that bind to the E-cadherin
promoter and directly repress its transcription are the ZeB,
Snail, and Twist families (Lee and Nelson, 2012; Perez-
Moreno et al., 2001). The transcription factor Twist is highly
expressed in colonic cells. The expression of Twist is regulated by
HIF-1α, which can regulate the expression of Twist by directly
binding to the hypoxia-responsive element (HRE) in the
proximal promoter of Twist in the hypoxic environment of
colon cancer cells (Yang et al., 2008). At the same time, HIF-
1α itself is also a calcium-sensing factor, and the overexpression
of TRPC5 can promote the increased translation of HIF-1α.
Therefore, overexpression of TRPC5 promotes the migration
and proliferation of colon cancer cells through the TRPC5/
HIF-1α/Twist signaling pathway, and TRPC5 and HIF-1α may
become potential therapeutic targets for colon cancer (Chen et al.,
2017).

2.3.3 Piezo1 and MCU are Involved in Colon Cancer
Metastasis in Hypoxic Environment
Colon cancer is the leading cause of cancer-related deaths
worldwide and, like other tumors, is characterized by
migratory, invasive, and metastatic capabilities. Tumor cell
mobility is affected by multiple signaling cascades, including
multiple ion channels and transporters (Schwab and Stock,
2014). Piezo1, also known as FAM38A, is a member of the

PIEZO family, which includes Piezo1 and Piezo2.
Piezo1 protein is a component of mechanically activated
cation channels. It directly senses mechanical forces and
translates environmental signals into intracellular Ca
responses, and is widely expressed in a variety of cells and
tissues, including tumor cells (Miyamoto et al., 2014; Liu Q
et al., 2018). MCU is an evolutionarily conserved Ca2+ channel
that plays a role in intracellular Ca2+ signaling in mitochondria
(Ren et al., 2017). HIF-1α, a Ca2+ sensitive factor, has been shown
to be involved in tumor cell metastasis. In the hypoxic
environment of colon cancer, highly expressed Piezo1 activates
the MCU. MCU can regulate the concentration of intracellular
calcium ions to promote the expression of HIF-1α. VEGF is
involved in the migration, invasion, and metastasis of tumor cells.
VEGF has been identified as a downstream target activated by
HIF-1. Therefore Piezo1 and MCU are likely to play a role in
colon cancer cell metastasis through the Piezo1-MCU-HIF-1α-
VEGF pathway (Sun et al., 2020).

2.3.4 Under Acute Hypoxia, BKca Channel can
Promote Mesenteric Vasodilation, Thereby Improving
Mesenteric Microcirculation
Studies have shown that acute hypoxia affects the
electrophysiological properties of guinea pig mesenteric arterial
smooth muscle cells. BKCa channels belong to a heterogeneous
family of Ca2+-activated K+ channels. Like most cells in vivo, K+

channel is the main ion channel in the cytoplasmic membrane of
smooth muscle and it contributes significantly to resting
membrane potential. Activation of the channel can lead to K+

cell efflux and membrane hyperpolarization (Guntur et al., 2021).
Acute hypoxia can activate the outward current mediated by the
BKca channel in the guinea pig mesenteric artery, thereby
significantly enhancing the outward current. The activity and
current magnitude of this channel directly affect vascular
hyperpolarization and vasodilation. When the mesenteric
artery smooth muscle cells are acutely hypoxic, the BKca
channel on the membrane is activated to cause K+ efflux.
Therefore, vascular smooth muscle cells are hyperpolarized to
relax the blood vessels and improve mesenteric microcirculation
(Ma et al., 2011).

2.3.5 IKCa Activation Promotes Increased Colonic
Permeability Under Chemical Hypoxia
Chemical hypoxia can increase colonic permeability. Studies have
shown that intestinal permeability may be related to basolateral
membrane K+ channel activity. Metabolic stress secondary to
chemical hypoxia causes a rapid increase in the activity of Ca2+-
sensitive intermediate conductance K+ (IK Ca) channels in the
basolateral membrane of natural human intestinal epithelial cells.
It can greatly increase the whole cell conductance on the basal
side of human colonic crypts and double the permeability of
colonic membrane cells. Increased mucosal permeability may
lead to bacterial translocation, sepsis, and multiple organ failure.
The increase in colon permeability caused by chemical hypoxia
can be prevented by IKCa channel inhibition, whichmay be a new
way to prevent the harmful effects of increased intestinal
permeability (Loganathan et al., 2011).
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2.3.6 Hypoxic Preconditioning Increases Ca2+-ATPase
Activity and Protects Intestinal Mucosal Cells From I/R
Injury
In a rat liver transplantation model, hypoxia-induced HIF-1α
expression protected mitochondrial function and Ca2+-ATPase
activity to prevent I/R damage. As an important Ca2+ transporter,
Ca2+-ATPase tightly controls intracellular Ca2+ levels. Ionized
calcium is the ubiquitous second messenger that activates the
signal cascade (Berridge, 1993; Brini and Carafoli, 2000; Berridge
et al., 2003). Ca2+ signaling regulates a wide range of cellular and
physiological processes, but prolonged elevation of intracellular
free Ca2+ is toxic and can cause damage to cells (Orrenius et al.,
2015). Therefore, secondary active transporters represented by
plasma membrane Na+/Ca2+ exchangers will excrete excess Ca2+

in large quantities, thereby maintaining intracellular Ca2+

homeostasis. Decreased Ca2+-ATPase activity is an early
manifestation of intestinal mucosal cells during
ischemia–reperfusion injury. During intestinal ischemia,
decreased Ca2+-ATPase activity can lead to intracellular
calcium overload. During intestinal ischemia, the massive
inactivation of Ca2+-ATPase allows the influx of extracellular
calcium and greatly increases the concentration of calcium ions in
the cytoplasm. Intracellular calcium-activated proteolytic enzyme
produces a large number of free radicals. Oxygen free radicals
destroy cell membrane lipids and can also lead to the inactivation
of Na+-K+-ATP ATPase and Ca2+/Na+ exchange, which can
promote Ca2+ influx and cause intracellular calcium overload
(Lounsbury et al., 2000). At the same time, intracellular Ca2+

imbalance can lead to mitochondrial oxygen utilization disorder,
which, in turn, leads to ATP synthesis disorder and cell damage.
Hypoxic pretreatment (HP) can improve the hypoxia tolerance of
small intestinal mucosal cells. Under hypoxia, HIF-1 increases
Ca2+-ATPase activity and reduces apoptosis and pathological
damage in small intestinal cells. HP may be an excellent way to
promote the recovery of bowel function after transplantation (Ji
et al., 2018).

2.4 The Role of Ion Transporters in the
Pathogenesis of Liver Disease Under
Hypoxic Conditions
2.4.1 TRPC6 Can Induce the Expression of
Hypoxia-Inducible Factor-1-α and Promote Multidrug
Resistance of Hepatocellular Carcinoma Cells
TRPC6 is also a member of the transient receptor potential (TRP)
channel superfamily and promotes the development of multidrug
resistance in hepatocellular carcinoma (HCC). Hepatocellular
carcinoma is a highly malignant tumor with low sensitivity to
chemotherapy. Part of this is because it is prone to multidrug
resistance (MDR). Among them, EMT, HIF1-α signaling, and
DNA damage repair play important roles in the multidrug
resistance of HCC (Zhang et al., 2007; Teicher, 2009; Van Zijl
et al., 2009; Luo et al., 2014). Several studies have shown that
MDR-related mechanisms such as EMT, hypoxia-induced HIF1-
α signaling pathway, and DNA damage repair are closely related
to intracellular calcium. Intracellular calcium is a multifunctional
secondary messenger involved in many physiological and

pathological processes. The calcium signaling pathway plays a
vital role in tumor cells through apoptosis, proliferation, invasion,
and metastasis. Intracellular calcium homeostasis is regulated by
calcium channels/pumps. In oncology, changes in the expression
of specific calcium channels and pumps are characteristic of
certain cancers (Monteith et al., 2007). TRPC6 is expressed at
low levels in normal hepatocytes, but is highly expressed in liver
cancer samples. Studies have shown that the expression of
TRPC6 is significantly increased in the hypoxic environment
of liver cancer cells. The overexpression of TRPC6 causes a
continuous increase in intracellular free calcium and regulates
the EMT, HIF1-α signaling, and DNA damage repair
mechanisms related to multidrug resistance to stimulate and
enhance the resistance of liver cancer cells to multiple drugs.
However, after pretreatment with the calcium chelator BAPTA-
AM, TRPC6 interference was observed. Hepatocarcinoma cells
show a significant decrease in drug resistance under stimulation
by EMT, HIF1-α signaling, and DNA damage repair mechanisms.
Mechanisms of EMT, HIF1-α signaling, and DNA damage repair
have been reported to be regulated by upstream calcium-
dependent protein phosphorylation, such as Erk, AKT, and
STAT3 (Li and Melton, 2012; Liu et al., 2014; Pawlus et al.,
2014; Xu et al., 2015). Studies have shown that calcium chelation
reduces the expression of STAT3, suggesting that
STAT3 activation acts as a downstream regulator in TRPC6/
calcium signaling. Collectively, the TRPC6/calcium/
STAT3 pathway can mediate mechanisms such as EMT,
HIF1-α signaling, and DNA damage repair to promote
multidrug resistance in HCC cells under hypoxia. Targeting
TRPC6 in the treatment of liver cancer may be a new
antitumor strategy, especially in combination with
chemotherapy (Wen et al., 2016).

2.4.2 Under Hypoxia, TRPC6 Stimulates Hepatic
Stellate Cell Fibrosis
2.4.2.1 During Liver Fibrosis, HIF-1α Promotes the
Expression of TRPC6 Through the Notch Pathway
Hypoxia is a key factor regulating liver fibrosis, which is a self-
healing and healing process for chronic liver damage and is
closely related to the development of liver cirrhosis and
hepatocellular carcinoma. However, it is currently known to
be a dynamic process characterized by the excessive synthesis
and deposition of the extracellular matrix (ECM), which destroys
the normal structure of the liver and ultimately leads to organ
dysfunction and failure (Bataller and Brenner, 2005). In the
process of fibrosis, hepatic stellate cells (HSCs) are
undoubtedly the main cells responsible for the excessive
deposition of the extracellular matrix (ECM). Hypoxia acts as
an environmental stress factor to activate oxygen-sensitive
hepatic stellate cells, and stellate cell activation is a unique
initiating factor of liver fibrosis (Shi et al., 2007). Stimulated
by hypoxia, hepatic stellate cells undergo a complex activation
process leading to increased ECM synthesis and deposition in
fibrotic livers. Hypoxia can activate the transcription of hypoxia-
inducible factor (HIF), and HIF-1α can induce the expression of
key signaling components of the Notch pathway. The Notch
pathway plays an extremely important role in the process of
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fibrosis (Kavian et al., 2012), inducing transcription factors to
trigger the differentiation of fibroblasts into myofibroblasts (Gao
et al., 2012). The key to the Notch pathway is the expression of the
Notch intracellular domain (NICD) (Suwanjunee et al., 2008).
Activated NICD can enter the nucleus to interact with
transcriptional regulators, replace transcriptional co-repressors,
recruit coactivators, and finally perform transcriptional activation
of target genes (Lai, 2002). Qiang et al. (2012) showed that HIF1-
α can promote the expression of Notch downstream genes by
inducing the expression of NICD (Reya et al., 2001; Qiang et al.,
2012). The transcriptional regulator NICD can activate the
transcription of many ion channel genes, one of which is
TRPC6 (Chigurupati et al., 2010).

2.4.2.2 TRPC6 Can Promote ECM Deposition to Form
Fibrosis
Under hypoxia, HIF-1α upregulates the expression of TRPC6 by
inducing the expression of NICD. It is well known that Ca2+

channels are crucial in regulating growth control processes
(Kunzelmann, 2005). Ca2+ influx mediated by
TRPC6 channels directly activates calcineurin A expression.
Increased calcineurin A activates various processes involved in
myofibroblast and fibrotic transformation through its
downstream activated T cell transcription effector nuclear
factor (NFAT) (Kuwahara et al., 2006). Including ECM
proteins such as α-SMA and collagen, which are activated by
the transcriptional effector NFAT, both α-SMA and collagen
mRNA transcript levels are significantly increased under hypoxia
compared with normoxia. Furthermore, a previous study found
that Smad3 is a main mediator of HSC fibrosis, especially in
inducing collagen expression (Inagaki et al., 2001; Schnabl et al.,
2001; Furukawa et al., 2003). Hypoxia-induced TRPC6 activates
Smad2/3-dependent transforming growth factor-β signaling and
promotes the upregulation of α smooth muscle actin, fibronectin,
and collagen, which greatly promotes the transformation of
activated hepatic stellate cells into myofibroblasts (Zhao et al.,
2011). Taken together, hypoxia-induced TRPC6 activation leads
to ECM protein deposition, which promotes the formation of
liver fibrosis. TRPC6 appears to be a potential therapeutic target
in the development of targeted intervention points for liver
fibrotic diseases (Iyer et al., 2015).

2.4.3 Effects of STIM on Hepatocellular Carcinoma
Under Hypoxic Environment
2.4.3.1 STIM Mediates SOCE Signaling Pathway
Matrix interacting molecules (STIMs) are a specialized class of
single-channel transmembrane proteins ubiquitously expressed
in the endoplasmic reticulum (ER) membrane. They typically
associate with Orai ion channels in the plasma membrane (PM)
to form calcium release-activated calcium (CRAC) channels. An
intracellular signaling pathway called store-operated calcium
entry (SOCE) is heavily dependent on CRAC channels. SOCE
is one of the major pathways for calcium entry in non-excitable
cells. The SOCE pathway is activated by ligand-induced depletion
of ER calcium stores. STIM proteins acting as calcium sensors
then sense this depletion and activate Orai ion channels through
direct physical interactions to allow influx of calcium ions for

storage refill and downstream signaling processes. SOCE
regulates a variety of biological processes. Growing evidence
suggests that SOCE even plays a key role in cancer cell
proliferation, metastasis, and tumor neovascularization, as well
as in antitumor immunity (Xie et al., 2016).

2.4.3.2 In Hypoxic Environment, STIM Interacts With
HIF-1a to Promote Hepatocarcinogenesis
Hypoxia and intracellular Ca2+ transients are the basic
characteristics of tumors, signaling cascades initiated or
regulated by HIF-1 are critical for the process of tumorigenesis
(Neumann et al., 2005), and STIM1 mediates SOCE activation
and promotes tumor invasion andmigration (Van de Vijver et al.,
2002; Tsai et al., 2014). However, there is no clear consensus on
the relationship between HIF-1 and STIM1.We were surprised to
find that some studies have shown that in the hypoxic
environment of liver cancer cells, hypoxia-induced HIF-1a
promotes STIM1 expression and SOCE in liver cancer cells by
directly binding to the STIM1 promoter. SOCE can positively
regulate the expression of Vascular endothelial growth factor
(VEGF) and other growth factors to promote the proliferation
and migration of hepatoma cells. Meanwhile, SOCE stabilizes
HIF-1a by activating CaMKII and p300, thereby preventing HIF-
1a degradation. This regulatory loop aggravates the hypoxic
microenvironment and accelerates the growth of tumors.
Giving the HIF-1 inhibitor YC-1 or knocking out HIF1a can
significantly reduce hypoxia-enhanced STIM1 and inhibit the
occurrence of tumors. These results suggest that STIM1 and HIF-
1 are interdependent and regulated in controlling Ca2+

mobilization and hypoxic tumor growth and may become
potential targets for early cancer intervention (Y. Li et al., 2015).

2.4.4 STIM Mediates Hepatic Ischemia-Reperfusion (I/
R) Injury Under Hypoxic Conditions
Hepatic ischemia–reperfusion (I/R) injury is unavoidable during
trauma, elective liver resection, shock, or liver transplantation
and has adverse effects on patients’ health (Inoue et al., 2014; Li
et al., 2014). Hepatic I/R injury is a complex and multifactorial
pathophysiological process involving the effects of inflammatory
cytokines, ROS, and apoptosis (Sun et al., 2014). Furthermore,
ROS induces the activation of Kupffer cells, which, in turn,
produce a large amount of inflammatory cytokines and oxygen
free radicals, further aggravating liver damage (Kalogeris et al.,
2014; Tao et al., 2014). Under hypoxic conditions, the levels of the
STIM1 gene and protein in Kupffer cells are significantly
upregulated. The STIM protein is a calcium storage sensor
that mediates cell responses to various stress conditions,
including elevated ROS and hypoxia (Zhou et al., 2010). STIM
can release and enter the cell to cause continuous Ca2+ overload
and promote the production of the transcription factor NF-κB.
NF-κB plays an important role in mediating inflammation by
promoting the release of proinflammatory cytokines (Haddad,
2002). In I/R injury, the activation of NF-κB is related to an
increase in tumor necrosis factor-α, interleukin-1β, and
interleukin-6 (Lan et al., 2013). STIM1 gene knockout can
reduce inflammation, oxidative stress, and apoptosis in cells
exposed to hypoxia. Therefore, we believe that STIM1 can be
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TABLE 1 | The effects of ion-transporting proteins on the digestive system under hypoxic conditions.

Digestive
system

Ion-transporting
proteins

The role of
ion-transporting proteins in

the digestive system
under hypoxia

Mechanism References

Esophagus V-ATPase Energy metabolism of esophageal cancer V-ATPase can promote the expression of mammalian
target of rapamycin (MTOR). MTOR increases glucose
uptake and expression of glucose transporter 1
(GLUT1). In addition, experiments showed that
V-ATPase can also promote HIF-1 and other glycolytic
genes such as HK2, phosphofructokinase-1 (PFK1),
enolase 1 (ENO1), PKM2, LDHA and pyruvate
dehydrogenase thiamine kinase isoenzyme (PDK1)
expression

Son et al. (2016)

Stomach V-ATPase Promote multidrug resistance in gastric cancer cells V-ATPase increases HIF-1α translation to promote
P-gp and MRP1 expression, thereby reducing
intracellular drug accumulation and enhancing the
drug resistance of esophageal cancer cells

Chen et al. (2012)

MCU MCU can promote the invasion of gastric cancer MCU can increase the level of MMP, destroy the
balance of ECM, reduce E-cadherin and promote
EMT, enhance the transcription of HIF-1α and
promote the expression of VEGF to induce the
proliferation, migration and invasion of gastric cancer
cells

Wang et al. (2020)

Large
intestine

K2P5.1 Involved in the pathogenesis of inflammatory bowel
disease

HIF-1 can clone the promoter of K2P5.1, and the
dysregulation of K2P5.1 expression is related to the
pathogenesis of immune and inflammatory diseases

Endo et al. (2019)

Piezo1 and MCU Piezo1 and MCU are involved in colon cancer
metastasis in hypoxic environment

Piezo1 and MCU are likely to play a role in colon
cancer cell metastasis through the Piezo1-MCU-HIF-
1α-VEGF pathway

Sun et al. (2020)

BKca Related to the electrophysiology of mesenteric
artery vascular smooth muscle cells (VSMCs)

Acute hypoxia activates the BKca channel on the
mesenteric artery smooth muscle cell membrane to
cause K+ efflux, and the vascular smooth muscle cell
hyperpolarizes and causes vasodilation, thereby
improving the mesenteric microcirculation

Ma et al. (2011)

IKCa Increase the permeability of mesenteric cells Metabolic stress secondary to chemical hypoxia
causes a rapid increase in the activity of IKCa channels
in the basolateral membrane of natural human
intestinal epithelial cells and a significant increase in the
whole cell conductance on the basal side of human
colonic crypt. Furthermore, the paracellular
permeability (GS) of the colonic membrane is doubled,
and the increase in mucosal permeability may lead to
bacterial translocation, sepsis and multiple organ
failure

Loganathan et al.
(2011)

TrpC5 Tumor metastasis in colon cancer patients may be
related to transient receptor potential channel 5
(TrpC5)

TrpC5 can induce colon cancer cell epithelial-
mesenchymal transition through the HIF-1α-Twist
signaling pathway, thereby promoting tumor cell
metastasis

Chen et al. (2017)

Small
intestine

Ca2+-ATPase Hypoxia-induced HIF-1α expression can protect
mitochondrial function and Ca2+-ATPase activity to
prevent I/R damage

Under hypoxia, HIF-1 increases the activity of Ca2+-
ATPase, thereby avoiding calcium overload and
reducing apoptosis and pathological damage in small
intestinal cells

Ji et al. (2018)

Liver TRPC6 The HIF1-α signaling pathway can stimulate liver
cancer cells to develop multidrug resistance by
affecting the expression of TRPC6

Under hypoxia stimulation, TRPC6 mRNA
transcription significantly increases. The
overexpression of TRPC6 causes the continuous
increase of intracellular free calcium and regulates the
multidrug resistance-related EMT, HIF1-α signaling
and DNA damage repair mechanisms to stimulate and
enhance the resistance of liver cancer cells to multiple
drugs

Wen et al. (2016)

TRPC6 HIF1α can affect liver fibrosis by regulating the
expression of TRPC6

HIF1α stimulates the expression of TRPC6 to change
the intracellular Ca2+ concentration, thereby activating
the expression of calmodulin A. Calmodulin A
regulates the NFAT factor and activates various
processes in the process of myofibroblast and fibrosis

Kuwahara et al.
(2006); Zhao et al.
(2011)

(Continued on following page)
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used as a potential therapeutic target to improve I/R injury (Y. Li
et al., 2018).

2.5 Ion Transporters Affect the Occurrence
of Pancreatic Diseases Under Hypoxic
Conditions
2.5.1 STIM1 Promotes the Invasion and Metastasis of
Pancreatic Ductal Carcinoma Under Hypoxia
Pancreatic ductal adenocarcinoma (PDAC) is among the most
aggressive and refractory cancers. Numerous studies have
shown that the growth, invasion, and metastasis of PDAC
are related to calcium ions and calcium channels (Morrone
et al., 2016; Shapovalov et al., 2016; Yeung et al., 2017).
Hypoxia is a common microenvironmental feature in
tumors that promotes tumor growth and metastasis,
especially in PDAC. Substantial evidence shows that the
expression of hypoxia-inducible factor-1α in pancreatic
cancer tissue is positively correlated with the expression of
STIM1. HIF-1α can bind the HER2-3 region of the
STIM1 promoter to regulate the transcription of STIM1.
When shRNA was used to knock out hypoxia-inducible
factor-1α in pancreatic cancer cells, STIM1 mRNA and
protein were significantly reduced in the pancreatic cancer

cells with HIF-1α gene knockout. HIF-1 frequently upregulates
the expression of STIM1 in pancreatic cancer cells. STIM1 can
upregulate vimentin and decrease the expression of
E-cadherin, indicating that STIM1 may play a key role in
PDAC oncogenic transformation, cell growth and invasion,
and epithelial-mesenchymal transition (EMT). Moreover,
studies have shown that high expression of STIM1 is
significantly related to the tumor grade and early
recurrence, which are important clinical factors affecting
the prognosis of PDAC patients. Therefore, detecting the
expression level of STIM1 in PDAC tissues can be used as a
new method to predict the prognosis of PDAC patients. The
HIF1α/STIM1 axis may be a potential therapeutic target for
PDAC (Wang et al., 2019).

2.5.2 TRPC6 Promotes Pancreatic Stellate Cell
Fibrosis Under Hypoxia
Pancreatic cancer is characterized by massive fibrosis mainly
caused by activated pancreatic stellate cells (PSCs). Pancreatic
stellate cells are the predominant mesenchymal cell type in the
PDAC stroma and are responsible for the overproduction of
extracellular matrix proteins. Pancreatic stellate cells are
primarily affected by transforming growth factor beta
(TGF-β), tumor necrosis factor alpha (TNF-α), and other

TABLE 1 | (Continued) The effects of ion-transporting proteins on the digestive system under hypoxic conditions.

Digestive
system

Ion-transporting
proteins

The role of
ion-transporting proteins in

the digestive system
under hypoxia

Mechanism References

transformation. Furthermore, hypoxia-induced
TRPC6 activates Smad2/3-dependent transforming
growth factor-β signaling and promotes the
upregulation of smooth muscle actin, fibronectin, and
collagen, thereby promoting myofibroblasts in
activated hepatic stellate cell formation

STIM1 STIM1 mediates the invasion and migration of liver
cancer cells under the stimulation of HIF1-a

Hypoxia-induced HIF-1 directly binds the
STIM1 promoter to promote STIM1 expression and
SOCE in liver cancer cells. SOCE stabilizes HIF-1a by
activating CaMKII and p300. This regulatory loop
intensifies the hypoxic microenvironment and
accelerates the growth of tumors

Li et al. (2015)

STIM1 STIM1 is related to I/R damage Under hypoxia, the STIM1 gene and protein levels in
Kupffer cells are significantly upregulated. The
overexpression of STIM can increase ROS, and ROS
induces Kupffer cell activation, which, in turn,
produces numerous inflammatory cytokines and
oxygen free radicals and aggravates I/R damage

Li et al. (2018)

Pancreas STIM1 HIF-1α stimulates the expression of STIM1, which,
in turn, participates in the growth and metastasis of
pancreatic cancer cells。

HIF-1α can bind the HER2-3 region of the
STIM1 promoter to regulate the transcription of
STIM1. STIM1 can upregulate vimentin and decrease
the expression of E-cadherin, thereby promoting the
proliferation and invasion of pancreatic cancer cells

Wang et al. (2019)

TRPC6 TRPC6 under hypoxia is related to pancreatic
cancer fibrosis

In the hypoxic tumor microenvironment, TRPC6 can
continuously activate pancreatic stellate cells in
pancreatic cancer cells, which, in turn, promotes a
large amount of fibrosis

Nielsen et al. (2017)

NCX NCX is related to the immune response of pancreas
transplantation

Hypoxia can activate NCX and increase Ca2+ in β cells,
which, in turn, stimulates the release of HMGB1 from
islet β cells. HMGB1 mediates immune rejection

Mera et al. (2013)
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factors such as platelet-derived growth factor (PDGF) or
interleukin-8 (IL- 8) Activate. In the hypoxic environment
of PDAC, hypoxia can promote the secretion of matrix
proteins and growth factors to activate pancreatic stellate
cells, but the specific mechanism of the action is not fully
understood in molecular details. In recent years, studies have
found that TRPC6 and Ca2+ signaling are involved in the
activation of pancreatic stellate cells. Further studies have
shown that most growth factors and chemokines trigger
their actions through G protein-coupled receptors (GPCRs).
The TRPC6 channel is the effector protein of these G protein-
coupled receptor pathways. In the hypoxic tumor
microenvironment, the TRPC6 channel participates in the
continuous activation of PSCs, which is a typical feature of
the PDAC microenvironment. At the same time, it provides a
potential target for the treatment of pancreatic ductal
carcinoma (Nielsen et al., 2017).

2.6 Inhibition of NCX Expression Prevents
Hypoxia-Induced Pancreatic β-cell Damage
The Na+/Ca2+ exchanger (NCX) belongs to the antiporter
family and is a major Ca2+ regulatory protein, expressed in
all excitable and many non-excitable cells, and transports Ca2+

across the plasma membrane (Khananshvili, 2021) (Quednau
et al., 2004). Islet B cells express NCX (Van Eylen et al., 1997).
It is not only involved in maintaining glucose homeostasis by
regulating Ca2+-dependent insulin secretion (Hamming et al.,
2010), but also in cell survival or death through its anti-
apoptotic or pro-apoptotic effects, respectively (Diaz-Horta
et al., 2002; Nguidjoe et al., 2011). Immediately exposed to low
oxygen tension, the transplanted islets release a large amount
of HMGB1, which triggers innate immune rejection and
activates DCs, NKT cells, and neutrophils to produce IFN-
γ, and ultimately pancreatic transplantation fails. Therefore,
the release of HMGB1 plays a crucial role in this process.
Experiments have demonstrated that the release of
HMGB1 from transplanted islets is due to hypoxia-induced
Ca2+ influx into β cells through Na+/Ca2+ exchanger (NCX),
and Ca2+ stimulates islet β cells to induce the release of
HMGB1. Furthermore, hypoxia-induced β-cell damage is
prevented by pretreatment with NCX-specific inhibitors
prior to transplantation, resulting in protection and long-
term survival of transplanted islets (Mera et al., 2013).

3 CONCLUSION

In summary, under hypoxia, ion-transporting proteins mediate
various signaling pathways in various organs of the digestive
system (Table 1), thereby regulating cell functions and
participating in the pathophysiological process of the
development of various diseases of the digestive system. HIF
and ion-transporting proteins have become a new research
hotspot and may become new markers for the diagnosis,
treatment, and prognosis assessment of diseases of the
digestive system. The development of drugs related to ion-
transporting proteins and hypoxia could also become a new
direction for the treatment of digestive system diseases.
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