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Simple Summary: The family of coronaviruses comprises a diverse set of strains and variants which
cause diseases from the common cold to COVID-19. Moreover, they infect a wide array of hosts
from bats, camels, birds, to humans. Studying coronaviruses through the lens of host specificity
provides a unique perspective to understanding the evolution, diversity and dynamics of this family.
In particular, this can reveal groups of different hosts infected by similar strains, giving clues on
strains which were more likely to have evolved to jump from one host to another. In this work, we
frame host specificity as a classification task, in designing a very compact numerical representation of
the spike sequences of different coronaviruses. Based on this numerical representation, classification
methods are able to detect the target host with high accuracy. Such an approach can used to efficiently
scale to large volumes of sequences, in order to unveil trends in the host specificity of different
coronavirus strains.

Abstract: The study of host specificity has important connections to the question about the origin
of SARS-CoV-2 in humans which led to the COVID-19 pandemic—an important open question.
There are speculations that bats are a possible origin. Likewise, there are many closely related
(corona)viruses, such as SARS, which was found to be transmitted through civets. The study of the
different hosts which can be potential carriers and transmitters of deadly viruses to humans is crucial
to understanding, mitigating, and preventing current and future pandemics. In coronaviruses, the
surface (S) protein, or spike protein, is important in determining host specificity, since it is the point of
contact between the virus and the host cell membrane. In this paper, we classify the hosts of over five
thousand coronaviruses from their spike protein sequences, segregating them into clusters of distinct
hosts among birds, bats, camels, swine, humans, and weasels, to name a few. We propose a feature
embedding based on the well-known position weight matrix (PWM), which we call PWM2Vec, and
we use it to generate feature vectors from the spike protein sequences of these coronaviruses. While
our embedding is inspired by the success of PWMs in biological applications, such as determining
protein function and identifying transcription factor binding sites, we are the first (to the best of our
knowledge) to use PWMs from viral sequences to generate fixed-length feature vector representations,
and use them in the context of host classification. The results on real world data show that when
using PWM2Vec, machine learning classifiers are able to perform comparably to the baseline models
in terms of predictive performance and runtime—in some cases, the performance is better. We
also measure the importance of different amino acids using information gain to show the amino
acids which are important for predicting the host of a given coronavirus. Finally, we perform some
statistical analyses on these results to show that our embedding is more compact than the embeddings
of the baseline models.

Keywords: coronavirus; host specification; COVID-19; k-mers; position weight matrix; classification;
clustering

Biology 2022, 11, 418. https://doi.org/10.3390/biology11030418 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology11030418
https://doi.org/10.3390/biology11030418
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0001-8121-2168
https://orcid.org/0000-0002-9974-5824
https://orcid.org/0000-0002-4329-0234
https://doi.org/10.3390/biology11030418
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology11030418?type=check_update&version=2


Biology 2022, 11, 418 2 of 22

1. Introduction

The coronavirus (COVID-19) pandemic is caused by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2). The pandemic has put millions of people at risk in
numerous countries worldwide and caused an unprecedented public health crisis [1]. Al-
though the origin of COVID-19 (SARS-CoV-2) in humans is still unknown, there are many
theories that it could have been transferred to humans from bats [2]. Likewise, several
related coronaviruses (CoVs) have been transmitted from other animals, such as SARS
(SARS-CoV) from civets (civets are closely related to cats [3]), and MERS (MERS-CoV) from
dromedary camels [4]. SARS-CoV-2, and other CoVs, belong to the family coronaviridae
(of order nidovirales [5]), which is a large family of diverse enveloped, positive-sense
single-stranded genomic RNA (+ssRNA) viruses that can bring about respiratory diseases
in humans and animals [6]. They are grouped into five genera, namely, alphacoronavirus,
betacoronavirus, gammacoronavirus, alphaletovirus, and deltacoronavirus. They infect a
range of hosts such as humans, palm civets, bats, dogs, and monkeys, among others [7]. The
alphacoronaviruses and betacoronaviruses mostly infect mammals, and the gammacoron-
aviruses mostly infect birds. The deltacoronaviruses infect both birds and mammals [8].

SARS-CoV-2 is the seventh member of the coronavirus family known to affect humans,
and the other six are severe acute respiratory syndrome-CoV (SARS-CoV), HCoVs-NL63,
HCoVs-OC43, HCoVs-HKU1, HCoVs-229E, and middle east respiratory syndrome-CoV
(MERS-CoV) [9]. SARS-CoV-2 is similar to SARS-CoV, which led to the SARS epidemic in
2003, causing more than 8400 cases and approximately 800 deaths [10]. Compared to the
known SARS-CoV virus, the novel SARS-CoV-2 has a lower mortality rate but a higher
human-to-human transmission rate. Similarly, SARS-CoV-2 can have an adverse impact on
the human body. It is highly infectious and is a matter of significant concern, since it can
not only damage the respiratory system, gastrointestinal system, heart, and central nervous
system, but also may lead to multi-organ failure, and eventually, death [11,12].

Monitoring zoonotic diseases and host specificity are integral to understanding disease
dynamics. Sixty percent of known infectious diseases in humans and 75% of all emerging
diseases are zoonotic, as reported by the United Nations Environment Program (UNEP)
and the International Livestock Research Institute (ILRI) [13]. The study of the COVID-19
pandemic is of great significance, not only because it can help healthcare institutions to
cope with the ongoing epidemic, but also because it allows researchers to learn more
fundamentals about the family coronaviridae, which can provide new knowledge for the
prevention of potential pandemics in the future. CoVs are widespread among birds and
mammals and can be causes of zoonoses. A zoonosis is defined as any disease or infection
that is naturally transmissible from vertebrate animals to humans by the World Health
Organization, and COVID-19 has been classified as a zoonotic disease [14]. One important
step to learning about zoonoses and understanding the current pandemic better is finding
out how human infections began for SARS-CoV-2. CoVs can lead to various diseases in
domestic animals, including dogs, swine, chickens, and cats. Although the origin of COVID-
19 in humans is still unknown, genetic analysis results show that it is highly possible that
SARS-CoV-2 originates from bats and utilizes the pangolin as an intermediate host [15–17].

The CoVs have an envelope membrane that is associated with five structural proteins,
namely, the surface (S) protein, or spike protein, haemagglutinin-esterase protein (HE),
membrane protein (M), envelope protein (E), and the nucleocapsid protein (N) [18]; see
Figure 1. The spike protein is responsible for the binding and fusion between the virus and
the host cell receptors, and also the infected host cells and adjacent uninfected cells [19]. The
spike protein is further subdivided into two subunits, S1 and S2. The S2 subunit is then again
further subdivided into five domains, namely, the fusion peptide (FP), two heptad-repeat
regions (HR1 and HR2), the transmembrane domain (TM), and the cytoplasmic tail (CT),
all of which play a key role in mediating the viral cell membrane fusion and entry [20,21].
Hence, the spike proteins of different CoVs largely determine their ranges of host specificity.
Changes in spike protein sequences are reportedly sufficient to change tissue and species
tropism and viral virulence [7,22,23]. The S protein is a trimeric transmembrane protein
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with a protrusion, or spike, on the viral surface, which is the key for binding to and entry
into host cells. It is composed of the receptor binding domain or S1 subunit and an S2
subunit that harbor sequences for viral fusion to the cell membrane [7,22,23]. Due to their
importance, using the specificity of spike proteins offers an approach to classifying the
potential hosts of CoVs.

A common way to classify and understand the dynamics of viruses is to construct
a phylogenetic tree of evolution using the sequencing data of the virus [24,25]. After the
COVID-19 pandemic breakout, databases such as GISAID [26] collected a large number
of sequence data of SARS-CoV-2 from researchers and clinicians worldwide, which can
be used for phylogenetic tree inference. Many methods have been developed and ap-
plied for constructing phylogenetic trees, including the most similar supertree algorithm
(MSSA) method [27], the MRP method [28], and the approximate maximum likelihood
(ML) supertree method [29,30]. Upon similar methods, the state-of-the-art Nextstrain [24]
and IQTREE2 [25] have been developed. However, these methods of building a phy-
logenetic tree for CoVs require high computational complexity, and the vast volume of
sequence data can cause a scalability issue for phylogeny-based approaches [31]. For
example, Nextstrain [24] is able to construct trees on thousands of sequences, whereas
IQTREE2 [25] is able to scale to tens of thousands of sequences. There are currently millions
of sequences available on GISAID alone—clearly viable alternatives are necessary. Here
we study machine learning clustering and classification as an alternative to phylogenetic
tree building.

Figure 1. The genome of a coronavirus ranges from 26 to 32 kb in length [5], each of them coding for
two non-structural and four structural proteins. The non-structural proteins are coded in ORF1ab,
which contains the RNA-dependent RNA polymerase gene (RdRp). The structural genes include
spike (S), envelope (E), membrane (M), and nucleocapsid (N). The S gene region encodes the spike
protein, which is responsible for attaching the virus to receptors on the host cell membrane.

Some efforts have been made to study the coronavirus host data [32] by using the
one-hot embedding (OHE) approach to get fixed length feature embeddings for the spike
sequence. OHE provides good predictions, but it has drawbacks, such as the high dimen-
sionality of the feature vectors produced. Furthermore, the columns of the OHE-based
vector have a linear relationship, which means that one variable can be easily predicted
using the other variables. This behavior can cause parallelism and multicollinearity (when
multiple features are correlated with each other) in high dimensions. The authors of [33,34]
used the coronavirus spike sequences to classify different variants of COVID-19 using
k-mer-based frequency vectors. Researchers have performed clustering on the COVID-19
spike sequences using the same k-mer-based frequency vector generation approach [35,36].
Although their approaches are effective in terms of predictive performance, the dimension-
ality of the feature vector representation is still high, which can create a very well-known
problem in machine learning: the curse of dimensionality. Moreover, for each k-mer, it is
necessary to find the appropriate bin dedicated to a specific k-mer (“bin matching”) which
can be expensive in terms of computational cost.

Another possible solution, which is what we propose here, is the use of the position
weight matrix (PWM), sometimes also called a position-specific weight matrix (PSWM) or
position-specific scoring matrix (PSSM) [37]. It is a good representation of motifs in biological
sequences. A motif is a nucleotide or amino acid sequence pattern that is widespread and
has or is conjectured to have some biological significance. The PWM applies entropy and
relative entropy towards identifying transcription factor binding sites (TFBSs), for example.
A PWM contains information about the frequencies of nucleotides for each position in the
form of weights. These log-odds or log-probability weights are used for computing the
binding affinity score.
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The PWM can be used to distinguish the binding sites from the sequence, a well-known
method for de novo motif sequence finding. If we do not know about a possible motif in
a given sequence, there are methods such as expectation maximization (EM) and Gibbs
sampling, which uses the PWM. Inspired by this application, we computed an absolute
score from the PWM while scanning the sequence for “motifs” (here k-mers) using a sliding
window (of size k, see Figure 2) and computed the absolute score. We can find relevant
information on the motifs based on the score calculated from the PWM. The higher the
score, the more relevant the k-mer is.

In this paper, we propose an approach called PWM2Vec, a basic implementation of the
position weight matrix (PWM) to generate a feature vector representation of a coronavirus
spike sequence. Given a spike sequence, we first extract k-mers. From the k-mers, we
generate the PWM (see Figure 3). After that, we assign a score to each k-mer by using
the PWM to design a feature embedding and apply machine learning methods such as
classification and clustering in this feature embedding. While this is inspired by methods
for finding motifs (e.g., TF-promoter binding sites), our goal is to obtain a numerical
representation of these k-mers generated from each sequence.

Our contributions in this paper are as follows:

1. We propose an approach to generate a fixed-length numerical representation of a
spike sequence using a PWM. The generated feature vectors could be used as input to
any machine learning algorithm for tasks such as classification and clustering.

2. Our proposed feature embedding approach contains more compact information and
gives better results than the baselines in terms of classification and clustering.

3. Our feature vector contains fewer dimensions than k-mer and one-hot encoding-
based feature vectors (≈20-fold fewer dimensions than one-hot encoding and ≈4-fold
fewer dimensions than k-mer-based embedding), which improves the runtimes for
classification and clustering algorithms.

4. We performed statistical analysis on the data and show the importance of different
positions of amino acids that play key roles in the classification of different hosts. We
validated the compactness of our proposed embedding from an orthogonal point
of view.

The rest of the paper is organized as follows: Section 2 contains the previous work
related to sequence classification, in general, and coronavirus spike sequence classification
in particular. Section 3 contains the details about our proposed alignment-free method for
spike sequence classification. Section 4 contains the experimental setup, dataset collection,
and dataset statistics details. The results for our proposed method are given in Section 5.
Finally, we conclude our paper in Section 6.

2. Related Work

Several machine learning approaches based on k-mers have been proposed in the liter-
ature for classification and clustering tasks [33,35,38,39]. More specifically, there are many
classical algorithms for sequence classification [40,41]. Although these methods have been
proven to be useful in some studies, it is not clear if they can be used in the context of
coronavirus data. Furthermore, another major problem with all those methods is the high
computational complexity of the algorithms (because of the high dimensional representation
of the data), which can result in higher runtimes for the underlying classification algorithms.

Position weight matrix (PWM)-based approaches have been successfully applied for
diverse sequence analysis, motif predictions, and identification studies. Several popular
software applications and Web servers have been built based on the implementations of
PWMs, e.g., the PWMscan software package [42] and PSI-BLAST [43]. Furthermore, many
other advanced algorithms have been implemented to optimize PWM-based techniques:
examples include MEME (multiple EM for motif elicitation) [44], based on expectation
maximization (EM), and the Gibbs Sampler [45] for de novo motif discovery, which uses
Gibbs sampling algorithms [46,47]. The MEME EM algorithm basically finds an initial
motif and repeatedly uses EM steps to improve motifs until the PWM values do not
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improve further [44,48]. Furthermore, the BaMM (Bayesian Markov model) algorithm was
built based on the Markov algorithm to model correlations among nucleotides at other
positions—since the PWM cannot, because the method assumes probabilities at different
sites are independent of each other [47]. The PWM method continues to be applied and
extended. Log2PWMs is a simple implementation of PWMs extended to enable conversion
or reconstruction of a PWM representation from a sequence logo [49].

The PWM is also used for the binding specificity of a transcription factor (TF) [50].
It can be used to scan a sequence for the presence of DNA words, which are comparatively
more similar to the PWM than to the background [51,52]. Authors in [53] evaluated the
Bayesian network and a support vector machine (SVM) on four different TF binding site-
based datasets, and analyzed their performances using PWM. Authors in [54] developed
a tree-based PWM algorithm to simulate the interaction between TF and its binding sites
accurately. A new di-nucleotide PWM approach is proposed in [55] that outperforms the
conventional mono-nucleotide PWM method. Moreover, the research done in [56] proposes
an improved position weight matrix (IPWM) method to recognize prokaryotic promoters
based on an entropy measurement. Using hepatitis C virus (HCV) nucleotide sequences,
the authors of [57] designed a global PWM for the genotypes of HCV genomes. Then,
using the PWM, signatures were selected from the 5’ NCR, CORE, E1, and NS5B regions of
the HCV genome. The predictive power of the selected signatures was then evaluated for
predicting the most common HCV genotypes and subtypes.

Aside from DNA analysis, the PWM can also be applied to amino acid sequences.
Authors in [58] developed an approach involving the position-specific scoring matrix
(PSSM), another name for PWM, to predict protein–protein interactions between protein
sequences. First, each protein is transformed into a PSSM, and then the PSSMs are adapted
to detect distantly related proteins, the quaternary structural attributes of the proteins, and
the proteins’ folding patterns. The research of in [59] proposes a PWM-based algorithm to
predict signal peptide sequences and their cleavage positions in the amino acid sequences
of bacteria and eukaryotes. Authors in [60] developed a PWM-based method for protein
function prediction and proposed an argument for why the PWM and associated features
have great potential for protein sequence analysis. Although the above methods are
successful in their respective domains, they do not provide general means of designing a
feature embedding for the underlying sequence, which contains rich information about the
sequence and can be used as input to various machine learning algorithms.

The design of efficient feature vector-based representations has been studied in many
domains, such as graph analytics [61,62], smart grid [63,64], electromyography (EMG) [65],
clinical data analysis [66], network security [67], and text classification [68]. After the spread
of COVID-19, efforts have been made to study the behavior of the virus using machine
learning approaches. Several methods have been proposed recently for the classification
of spike sequences. Authors in [33,69] used k-mers along with a kernel-based approach
to classify SARS-COV-2 spike sequences. Authors in [32] proposed the use of one-hot
encoding to classify the viral hosts of coronaviridae using spike sequences only. Although
they were able to achieve higher predictive performance, some researchers in [33] showed
that the k-mer-based approach performs better than the one-hot based approach, since
it preserves sequence order information more effectively. Efficient clustering of spike
sequences was performed in [35].

3. Proposed Approach

This section proposes an approach, PWM2Vec, to generate a fixed-length numerical
feature embedding from coronavirus spike sequences for host specification. We also discuss
the baseline approaches, specifically one-hot embedding (OHE) [32,34] and k-mer-based
feature embedding [33,34]. We perform feature selection using ridge regression [70] on the
resulting embedding before applying machine learning (ML) algorithms. This helps to
reduce the dimensionality of the embedding, and hence the training time of the downstream
ML algorithms.
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3.1. One-Hot Embedding (OHE)

Machine learning algorithms require the input to be in a numerical format. It is
necessary to process the (spike protein) sequence data into some numerical representation to
apply these algorithms. One-hot embedding (OHE) [32] is a typical approach for obtaining
a fixed-length numerical representation from sequence data. Considering an alphabet Σ,
which contains the characters (amino acids) of the spike protein sequence, we need to map
each character of Σ to a numerical (binary 0–1 vector) representation. We have 20 unique
amino acids in the protein sequence data, namely, “ACDEFGHIKLMNPQRSTVWY.” We
designed a feature vector for each amino acid. Each symbol has a length of 20 and has a
value of 1 corresponding to the position of the character in the alphabet, and 0 for all other
places in the alphabet. For example, amino acid Cysteine (C) is encoded as 001 . . . 0. We
then concatenated the numerical representations of all characters of each protein sequence
into a single binary feature vector of this spike sequence. In our coronavirus spike protein
sequence dataset, after multiple alignments, the length of each spike sequence was found
to be 3498. Therefore, the length of each binary vector computed using OHE would be
3498× 20 = 69,960.

3.2. k-mer-Based Frequency Vectors

One of the significant drawbacks of OHE is the high dimensionality of the resulting
set of feature vectors. Another problem with OHE is that some (sequential) ordering
information on the sequence’s characters (amino acids) is not preserved. An approach that
addresses both of these problems is to use sub-strings (also called mers) of length k, i.e.,
k-mers. From a sequence, k-mers are generated by applying a sliding window of size k over
the sequences (see Figure 2). Given a sequence of length N, the total number of k-mers that
could be generated is as follows:

Total k-mers = (N − k) + 1 . (1)

In our experiments to generate k-mer-based frequency vectors, we used k = 3 (as done
in [33,34]).

Figure 2. Generating 3-mers (k = 3) from a spike protein sequence using a sliding window. Since this
sequence has length 13, the total number of k-mers generated is 13 − 3 + 1 = 11 (Equation (1)).

After generating the k-mers, we created a feature vector Φ (a frequency vector), which
contains the frequency (count) of each k-mer occurring in the sequence [33,34]. Given some
sequence σ with alphabet Σ, the length of feature vector Φk(σ) will be |Σ|k. Since we are
working with spike protein (amino acid) sequences and taking k = 3 in our experiments,
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the feature vector length we used is 203 = 8000. This feature vector can be used as
input for various ML algorithms. Note that generating sub-strings with a sliding window
preserves some (sequential) ordering information on the characters (amino acids) of the
(spike protein) sequences, which counters one of the drawbacks of the OHE approach.
However, still, to get the frequency count for k-mers, we had a high computational cost for
bin matching, especially for worst-case searches. Furthermore, the dimensionality of the
frequency vectors is still high.

3.3. PWM2Vec

Even though the problem of the high dimensionality of the vectors generated in
the OHE approach is somewhat mitigated in the k-mers approach, the dimensionality
of the frequency vectors generated in the k-mers approach remains quite high—further
improvements can certainly be made. Furthermore, if we can reduce the computational
cost for bin matching, that would be a huge improvement in computational cost. To
address these problems, we propose PWM2Vec, an approach for generating a fixed-length
numerical feature vector based on the concept of the position-weight matrix [71].

While our approach is inspired by the value of the PWM for finding motifs in (e.g.,
protein) sequences, we used it in a slightly different way in this study. We built a PWM
from the k-mers of our sequence, and our feature vector was the score of each k-mer from
this PWM. This allowed us to take advantage of k-mers—their ability to capture locality
information while also capturing the importance of the position of each amino acid in the
sequence (information that is lost in computing the k-mer frequency vector). Combining
these pieces of information in this way allows us to devise a compact and general feature
embedding that can be used in many downstream ML tasks.

Our approach for feature vector generation, PWM2Vec, is summarized in Figure 3.
It follows the steps (a–h) explained below. Figure 3a Given the input spike protein sequence
shown in Figure 3b, we first extracted the k-mers (we used k = 9 in the experiments,
which was decided using a standard validation set approach [72]). As in Figure 3c, we
then generated a position frequency matrix, which contains the frequency count for each
character at each position. Note that, in the example, since the (amino acid) sequence
is composed of four characters, there are four possible characters at any position. At
position 1, for example, in all five k-mers, there are two B characters, and so the frequency
count of B at position 1 is two. In our experiments, since we had 20 unique amino acids in
our spike protein sequence dataset, our PFMs had 20 rows and k = 9 columns. Figure 3d
Next, we normalized the PFM matrix and created a position probability matrix (PPM)
containing the probability of each (amino acid) character at each position. For example, the
probability of B in the k-mers at position 1 is the following:

frequency count
total count

= 2/5 = 0.4 (2)

It is possible that the frequency (hence probability in the PPM) of a character at a
certain position is 0. To avoid 0 values at any position in the matrix while calculating the
probability, we added a Laplace estimator (also called pseudocount) to each value in the
position probability matrix, as shown in Figure 3e. We used a pseudocount of 0.1 in our
experiments [73]. We then computed a position weight matrix (PWM) from the adjusted
probability matrix. We made the PWM by computing the log likelihood of each amino acid
character c, i.e., c ∈ A, C, . . . , Y, appearing at each position i according to

Wc,i = log2
p(c, i)
p(c)

{where c ∈ A, B, C . . . Z(bases)} (3)

Note that this likelihood was taken under the assumption that the expected frequency
of each amino acid is the same (i.e., p(c) = 1/|Σ|) because we have 20 amino acids
(p(c) = 1/20 = 0.05). Figure 3f shows the computed position weight matrix (PWM). Note
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that a more nuanced calculation of p(c) specific to amino acid c could be performed, based
on the number of codons n(c) in c, e.g., p(c) = n(c)/61, where 61 is the number of sense
codons. Here, n(c) = 1 for M and W; 3 for I; 4 for V, P, T, A, and G; 6 for R, L, and S; and 2
for everything else. This, however, carries with it assumption that the four bases coding the
nucleotide sequence from which this amino acid sequence originated appear with equal
probability. Since we are unsure about such assumptions, and moreover, when testing out
this calculation, the results did not change much, we adopted the standard definition of
p(c) = 1/20. In the future, when we scale this approach to millions of sequences, we will
test this empirically to see if there is a separation at this larger scale between these to ways
of calculating p(c). This could indicate factors about the sequences, such as GC-enrichment.

After getting the PWM, we used it to compute the absolute scores for each individual
k-mer generated from the sequence (see Figure 3g for an example). It is the sum of the
scores of the bases for the index. The score for k-mer (BFDBEDDFF) is shown in Figure 4.
The highlighted values in the matrices are summed up to give an absolute score for the
k-mer, which sums up to 28.28.

Figure 3. Building a feature vector for classification models by computing the position weight matrix
(PWM) from the k-mers of a sequence.

Finally, the scores of all the 9-mers are concatenated to get the final feature vector
for the given sequence (see Figure 3h for an example). This whole process is repeated for
each sequence.

Figure 4. Computing the score from the PWM using a sliding window on a sequence for a 9-m.

Given a k-mer and a PWM, the score for that k-mer can be computed as given in
Figure 4. The final length of PWM2Vec based feature vector is 3490, which is equal to the
number of k-mers in each spike sequence.
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3.4. Feature Selection Method

We use ridge regression (RR) as the feature selection approach, which is commonly
used for estimating parameters, thereby addressing collinearity in multiple linear regression
model problems [74,75]. This method uses a bias to boost the performance of the model by
improving the variance and making the slope more horizontal. This is useful when we need
to find out which of the independent attributes are not needed. This gives us the option
of removing such columns (attributes) and bringing the slope to zero. The expression for
performing ridge regression is the following:

min(sum of square residuals + α× slope2) (4)

where α× slope2 is a penalty term. For learning the optimal ridge regression line, we use
5 fold cross validation.

After performing RR in OHE, the total number of selected attributes was 22, 322;
for the k-mers approach it was 7088; and 1616 features were selected for the PWM2Vec-
based approach.

4. Experimental Setup

This section describes the setup we used for the experiments, followed by the dataset
statistics. We also give a visual representation of the data using t-SNE plots. All experiments
were conducted using an Intel(R) Xeon(R) CPU E7-4850 v4 @ 2.40 GHz having Windows
10 64 bit OS with 32 GB memory. We implemented our algorithm in Python, and the
code is available online for reproducibility (https://github.com/sarwanpasha/PWM2Vec,
accessed on 8 March 2022). Our pre-processed data are also available at this link. For
classification, we used support vector machine (SVM), naive Bayes (NB), multiple linear
regression (MLP), k-nearest neighbors (KNN), random forest (RF), logistic regression (LR),
and decision tree (DT). To compute results, we used the 5-fold cross validation approach.
We divided the data randomly into training (70%) and testing (30%) sets. For the training
data, we used 5-fold cross validation to optimize the parameters (divided the data into
5 equal parts, using 4 parts for training and 1 part for validation) and then tested the
performance on the 30% of unseen test data. We repeated this process 5 times (five training–
test splits; then we used 5-fold cross validation to tune parameters and compute results on
unseen test set) and report the average and standard deviation results.

4.1. Evaluation Metrics

To measure the performances of the classifiers, we used average accuracy, precision,
recall, weighted, macro F1, and receiver operating characteristic curve “ROC” area under
the curve “AUC” (one-vs.-rest approach) using the macro average. We also measured the
training time (in seconds) for each classifier.

For clustering, we used the simple k-means algorithm and used 3 internal clustering
quality metrics, namely, the silhouette coefficient, the Calinski–Harabasz score, and the
Davies–Bouldin score to measure the performances of the clusters. We also show the
runtimes for k-means for different embedding methods.

4.1.1. Silhouette Coefficient

The silhouette coefficient [76] is used for interpretation and validation of consistency
within clusters of data. A clustering algorithm having well-defined (comparatively pure)
clusters will have a higher silhouette coefficient value. The silhouette coefficient (SC) is
computed as follows:

SC =
y− x

max{y, x} (5)

where x is the average distance between a sample and all other points in the data belonging
to the same class, and y is the average distance between sample x and all other data points
in the next nearest cluster.

https://github.com/sarwanpasha/PWM2Vec
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4.1.2. Calinski–Harabasz Score

The Calinski–Harabasz score [77] is used to measure the quality of a clustering algo-
rithm based on the mean between-clusters’ sum of squares. A clustering algorithm with
well-defined clusters will have a higher Calinski–Harabasz score. The Calinski–Harabasz
score is defined as the ratio of the between-clusters dispersion (the sum of distances
squared) mean and the within-clusters dispersion. More formally, given a dataset D of size
nD that has been clustered into j clusters, we used the following expression to compute
Calinski–Harabasz (CH) score:

CH =
tr(Bj)

tr(Wj)
× (nD − j)

(j− 1)
(6)

where tr(Bj) is the trace of the between cluster dispersion matrix and tr(Wj) is the trace of
the within-group dispersion matrix.

4.1.3. Davies–Bouldin Score

The Davies–Bouldin (DB) score [78] of a clustering C is defined as follows:

DB(C) =
1
|C|

|C|

∑
i=1

maxj≤|C|,j 6=iDij (7)

where Dij is the ratio of the “within-to-between cluster distances” of the ith and jth clusters.
For each cluster, we computed the worst case ratio (Dij) of a within-to-between cluster
distance between it and any other cluster, and then took the mean. Therefore, by minimizing
the DB score, we could make sure that different clusters were separate from each other (a
smaller value is better).

4.2. Dataset Collection and Statistics

The spike protein sequences of CoVs for all hosts used in this analysis were retrieved
(on 21 September 2021) from the NIAD Virus Pathogen Database and Analysis Resource
(ViPR) [79] and GISAID [26]. A total of 5568 complete protein sequence were collected
(3358 from ViPR and 2210 from GISAID); we later dropped 10 that were not attributable
to any host detail. The distribution of the dataset across the different host types (grouped
by family) is shown in Table 1, which contains information about the 21 host types that
we collected from the annotation of the sequences. We also divided the viral sequences
themselves into genera and subgenera to see which category a specific coronavirus belongs
to. Figures 5 and 6 contain distributions of viral genera and subgenera, respectively. The
multiple sequence alignment (MSA) for the sequence dataset was conducted using the
Mafft alignment software with default parameter settings which automatically select the
appropriate strategy according to the sequence data size. In our case, the gap opening
penalty op was 1.53 and the gap extension penalty ep was 0.123 [80]. Given that our dataset
was already sufficiently large and contained a number of unknown or identified amino
acids, we were constrained to use the minimum accuracy parameter of Mafft MSA to allow
the alignment to complete in a reasonable amount of time. Attempts to set more stringent
parameters (op and ep) in order to improve this alignment resulted in runtimes >24 h.
Since this is already the case when performing multiple alignments of even 5000 sequences,
anything substantially larger is out of reach.
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Table 1. Dataset statistics for 5558 coronavirus hosts.

Host Name # of Sequences Host Name # of Sequences

Humans 1813 Rats 26
Environment 1034 Pangolins 21

Weasel 994 Hedgehog 15
Swine 558 Dolphin 7
Birds 374 Equine 5

Camels 297 Fish 2
Bats 153 Unknown 2
Cats 123 Python 2

Bovines 88 Monkey 2
Dogs 40 Cattle 1
Turtle 1

Figure 5. Pie chart for the distribution of different genera in the dataset.
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Figure 6. Pie chart for the distribution of different subgenera in the dataset.

4.3. Data Visualization

In order to see if there is any natural (hidden) clustering in the data, we used the
t-distributed stochastic neighbor embedding (t-SNE) [81] approach, which maps input
sequences to 2D real vectors. The t-SNE plots for different embedding methods are shown
in Figures 7–9: t-SNE plots for OHE, k-mers, and PWM2Vec, respectively. We can observe
that although with PWM2Vec, more information is included in lower-dimensional feature
vectors, the proposed embedding approach was able to preserve the structure of data
similarly to OHE and k-mers.

Figure 7. t-SNE plots for one-hot encoding.
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Figure 8. t-SNE plots for k-mers.

Figure 9. t-SNE plots for PWM2Vec.

5. Results and Discussion

In this section, we present our results for PWM2Vec and compare its performance
with the baseline one-hot embedding (OHE) and the more recent k-mer-based embedding
approach, which has shown to be an improvement over OHE [33,34]. For classification, we
also show the results for the feature selection method (ridge regression) for all embedding
approaches. We also show the runtimes with different numbers of sequences for the best-
performing classification algorithm. Finally, we show some statistical analysis on the data
and on the feature vectors computed using different approaches.

5.1. Classification Results

Table 2 shows the average results for various embedding methods with various
classification methods without performing any feature selection on the feature vectors. The
standard deviations for 5-fold cross validation are shown in Table 3. We can see that RF
with PWM2Vec is consistently performing better than other embedding methods (in some
cases, the performance gain for PWM2Vec is on the third significant digit). Furthermore, the
NB classifier with PWM2Vec was much better than other approaches in terms of training
runtime. This behavior shows that PWM2Vec is not only better in terms of predictive
performance but is also better in terms of runtime.
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Table 4 contains averages of the classification results after applying ridge regression
to different feature embedding approaches. The standard deviation values are shown in
Table 5. We can again see that RF with PWM2Vec outperformed other embedding methods
for the majority of the metrics, and NB with PWM2Vec was the best in terms of runtime.

Table 2. Performance comparison (average results for 5-fold cross validation) for different embedding
methods and different classifiers without using any feature selection approach. Best values are shown
in bold.

Acc. Prec. Recall F1 (Weig.) F1 (Macro) ROC AUC Train Time (S)

OHE

SVM 0.81 0.82 0.81 0.81 0.69 0.82 389.128
NB 0.68 0.81 0.68 0.66 0.65 0.80 56.741
MLP 0.76 0.75 0.76 0.74 0.43 0.70 390.289
KNN 0.79 0.78 0.79 0.78 0.54 0.77 16.211
RF 0.83 0.83 0.82 0.82 0.66 0.82 151.911
LR 0.82 0.83 0.83 0.82 0.70 0.83 48.786
DT 0.82 0.83 0.82 0.81 0.63 0.80 21.581

k-mers

SVM 0.80 0.81 0.80 0.81 0.64 0.82 52.384
NB 0.64 0.76 0.66 0.65 0.47 0.73 9.031
MLP 0.81 0.82 0.81 0.81 0.52 0.77 44.982
KNN 0.81 0.80 0.81 0.79 0.55 0.75 2.917
RF 0.82 0.83 0.83 0.81 0.63 0.81 17.252
LR 0.82 0.84 0.81 0.82 0.68 0.82 48.826
DT 0.81 0.82 0.81 0.80 0.64 0.81 4.096

PWM2Vec

SVM 0.80 0.81 0.80 0.81 0.71 0.85 40.55
NB 0.46 0.70 0.46 0.40 0.47 0.76 1.56
MLP 0.80 0.81 0.81 0.79 0.57 0.78 17.28
KNN 0.82 0.81 0.82 0.81 0.58 0.79 2.86
RF 0.85 0.85 0.85 0.84 0.72 0.84 5.44
LR 0.82 0.82 0.82 0.82 0.71 0.84 43.35
DT 0.81 0.81 0.82 0.81 0.66 0.83 3.46

Table 3. Performance comparison (standard deviation results for 5-fold cross validation) for different
embedding methods and different classifiers without using any feature selection approach.

Acc. Prec. Recall F1 (Weig.) F1 (Macro) ROC AUC

OHE

SVM 0.0093 0.0105 0.0097 0.0103 0.0389 0.0292
NB 0.0156 0.0144 0.0155 0.0177 0.0255 0.0202
MLP 0.0024 0.0064 0.0026 0.0042 0.0493 0.0300
KNN 0.0121 0.0115 0.0126 0.0133 0.0558 0.0270
RF 0.0195 0.0095 0.0115 0.0117 0.0582 0.0262
LR 0.0083 0.0048 0.0084 0.0093 0.0307 0.0236
DT 0.0179 0.0162 0.0176 0.0185 0.0536 0.0298

k-mers

SVM 0.0095 0.0101 0.0091 0.0102 0.0375 0.0235
NB 0.0132 0.0164 0.0125 0.0126 0.0263 0.0245
MLP 0.0012 0.0063 0.0029 0.0035 0.0465 0.0339
KNN 0.0118 0.0191 0.0135 0.0173 0.0594 0.0227
RF 0.0135 0.0063 0.0116 0.0193 0.0541 0.0235
LR 0.0063 0.0025 0.0043 0.0016 0.0325 0.0269
DT 0.0132 0.0135 0.0165 0.0142 0.0519 0.0148
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Table 3. Cont.

Acc. Prec. Recall F1 (Weig.) F1 (Macro) ROC AUC

PWM2Vec

SVM 0.0025 0.0165 0.0043 0.0125 0.0343 0.0232
NB 0.0143 0.0142 0.0156 0.0175 0.0251 0.0204
MLP 0.0056 0.0054 0.0027 0.0075 0.0475 0.0303
KNN 0.0125 0.0174 0.0193 0.0124 0.0568 0.0210
RF 0.0185 0.0035 0.0165 0.0143 0.0565 0.0296
LR 0.0043 0.0057 0.0093 0.0015 0.0357 0.0253
DT 0.0136 0.0193 0.0156 0.0165 0.0542 0.0235

Table 4. Performance comparison (average results for 5-fold cross validation) for different embedding
methods and different classifiers using ridge regression as the feature selection approach. Best values
are shown in bold.

Acc. Prec. Recall F1 (Weig.) F1 (Macro) ROC AUC Train Time (s)

OHE

SVM 0.83 0.83 0.83 0.82 0.67 0.81 63.992
NB 0.63 0.75 0.63 0.61 0.53 0.77 9.436
MLP 0.82 0.82 0.82 0.80 0.51 0.75 64.636
KNN 0.78 0.78 0.78 0.78 0.61 0.81 2.730
RF 0.83 0.83 0.83 0.82 0.59 0.81 22.423
LR 0.83 0.82 0.83 0.83 0.65 0.84 26.094
DT 0.83 0.83 0.83 0.82 0.60 0.83 6.316

k-mers

SVM 0.81 0.81 0.81 0.81 0.73 0.87 30.877
NB 0.67 0.78 0.67 0.67 0.64 0.83 4.012
MLP 0.83 0.83 0.83 0.83 0.58 0.81 26.280
KNN 0.80 0.80 0.80 0.80 0.69 0.83 1.601
RF 0.82 0.82 0.81 0.82 0.73 0.87 6.786
LR 0.82 0.82 0.81 0.82 0.79 0.88 39.501
DT 0.83 0.83 0.83 0.83 0.70 0.88 2.429

PWM2Vec

SVM 0.78 0.79 0.78 0.78 0.75 0.89 24.53
NB 0.41 0.64 0.41 0.40 0.38 0.68 0.94
MLP 0.81 0.81 0.81 0.80 0.67 0.82 9.85
KNN 0.80 0.80 0.80 0.79 0.62 0.80 1.55
RF 0.84 0.84 0.84 0.85 0.80 0.86 5.06
LR 0.80 0.81 0.80 0.80 0.66 0.90 21.76
DT 0.80 0.80 0.80 0.80 0.64 0.82 2.00
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Table 5. Performance comparison (standard deviation results for 5-fold cross validation) for different
embedding methods and different classifiers using ridge regression as the feature selection approach.

Acc. Prec. Recall F1 (Weig.) F1 (Macro) ROC AUC

OHE

SVM 0.0099 0.0108 0.0097 0.0091 0.0481 0.0232
NB 0.0235 0.0232 0.0231 0.0138 0.0431 0.0270
MLP 0.0147 0.0146 0.0143 0.0154 0.0544 0.0252
KNN 0.0122 0.0132 0.0121 0.0124 0.0567 0.0267
RF 0.0090 0.0108 0.0098 0.0099 0.0690 0.0242
LR 0.0075 0.0085 0.0073 0.0084 0.0432 0.0258
DT 0.0118 0.0135 0.0113 0.0128 0.0538 0.0278

k-mers

SVM 0.0092 0.0106 0.0092 0.0087 0.0492 0.0237
NB 0.0230 0.0245 0.0231 0.0135 0.0439 0.0277
MLP 0.0137 0.0133 0.0136 0.0141 0.0552 0.0259
KNN 0.0130 0.0141 0.0131 0.0130 0.0614 0.0289
RF 0.0096 0.0117 0.0093 0.0106 0.0684 0.0249
LR 0.0075 0.0083 0.0079 0.0085 0.0438 0.0242
DT 0.0128 0.0147 0.0127 0.0139 0.0582 0.0274

PWM2Vec

SVM 0.0096 0.0096 0.0097 0.0094 0.0540 0.0261
NB 0.0205 0.0256 0.0205 0.0147 0.0382 0.0295
MLP 0.0150 0.0108 0.0156 0.0152 0.0656 0.0313
KNN 0.0145 0.0164 0.0144 0.0151 0.0666 0.0312
RF 0.0112 0.0131 0.0113 0.0121 0.0773 0.0288
LR 0.0081 0.0092 0.0087 0.0093 0.0403 0.0282
DT 0.0149 0.0169 0.0150 0.0162 0.0565 0.0311

Effect on Runtime

To evaluate the effect on runtime of the sequences, we used the best performing
classifier (random forest) and used different embedding methods to perform classifications
with increasing numbers of sequences. Figure 10 shows the runtimes for (a) OHE vs.
PWM2Vec and (b) k-mers vs. PWM2Vec. In both cases, we can see that PWM2Vec is better
in terms of runtime as we increase the number of sequences (on the x-axis).
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Figure 10. Runtime comparison for different embedding methods with increasing numbers of
sequences using the random forest classifier (best performing classifier). The figure is best seen
in color.

5.2. Clustering Results

For clustering, we used the same feature embeddings that we used for the classification
task. To get the optimal number of clusters, we used the elbow method [35]. This method,
for different numbers of clusters (ranging from 2 to 30), performed clustering to see the
trade-off between the runtime and the sum of squared error (distortion score). The optimal
number of clusters selected was nine (see Figure 11).
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Figure 11. The elbow method for optimal number of clusters.

For the purposes of clustering, we used the simple k-means algorithm. The results of
clustering on different embedding methods are shown in Table 6. We can see that PWM2Vec
was better in terms of silhouette coefficient and runtime, whereas the k-mer-based approach
was better in terms of Calinski–Harabasz score and Davies–Bouldin score.

Table 6. Internal clustering quality metrics for k-means. Best values are show in bold.

Evaluation Metrics

Methods Silhouette Coefficient Calinski–Harabasz Score Davies–Bouldin Score Runtime (s)

OHE 0.631 2210.343 1.354 177.54
k-mers 0.735 14,296.17 0.534 36.57
PWM2Vec 0.750 2563.547 1.314 23.67

5.3. Statistical Analysis

To measure the importance of amino acids corresponding to the class label, we used
the information gain (IG). The IG is defined as follows:

IG(Class, position) = H(Class)− H(Class|position) (8)

H = ∑
i∈Class

−pi log pi (9)

where H is the entropy, and pi is the probability of class i. Figure 12 shows the IG values
for different amino acids corresponding to the class labels (hosts). We can see that some
amino acids have higher IG values, which means that they play an important role in the
prediction of hosts. Here, we can conclude that many amino acids contribute to the host
specification, and less to SARS-CoV-2 variant specification [33], which was expected since
the genomic variability within the family Coronaviridae should be much higher. The IG
values for all amino acids are also available online for further analysis (https://github.
com/sarwanpasha/PWM2Vec/tree/main/IG%20values, accessed on 8 March 2022).

https://github.com/sarwanpasha/PWM2Vec/tree/main/IG%20values
https://github.com/sarwanpasha/PWM2Vec/tree/main/IG%20values
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Figure 12. Information gain for each amino acid position with respect to hosts.

When inspecting the IG values and how they are distributed more closely, in the range
from 0 to 1.30 with a mean (µ) of 0.373 and a standard deviation (σ) of 0.438, we can see that
29 positions are more than 2σ from this mean. In inspecting how these 29 high IG positions
are distributed along the length of the amino acid sequence, we see that they range from
734 to 3443, with a median position 1458, and µ ± σ = 1610± 747. Since the average
Coronaviridae spike sequence of our dataset has length ≈ 1500, this means that these high
IG values tend to concentrate in the latter half of the spike sequence, which corresponds
to the S2 subunit of the spike protein. In the case of SARS-CoV-2, the most studied of the
Coronaviridae, the S2 subunit is composed of five domains, namely, the fusion peptide
(FP), two heptad-repeat regions (HR1 and HR2), the transmembrane domain (TM), and the
cytoplasmic tail (CT), and they are responsible for mediating viral cell membrane fusion
and entry [20]. Each unit of this S2 subunit has been shown to play a key role in spike
protein fusion activities [20,21]. Since the typical Coronaviridae sequence has a similar
structure (see, e.g., https://www.uniprot.org/uniprot/P11224, accessed on 8 March 2022),
it is believed that the typical S2 subunit carries out similar functions. The fact that these S2
subunits play important roles could indicate why such a range of positions have high IG
values. A more complete study of this in terms of details of peptide structure would be an
interesting future study.

Since information gain does not give us the negative (or opposite) contribution of an
attribute (feature) corresponding to the class label (host names), we used other statistical
measures, such as Spearman correlation [82], to further evaluate the contributions of
features in the PWM2Vec-based feature vector. The Spearman correlation is computed
using the following expression:

ρ = 1−
6 ∑ d2

i
n(n2 − 1)

(10)

where ρ is the Spearman’s rank correlation coefficient, di is the difference between the two
ranks of each observation, and n is the total number of observations.

The Spearman correlation and corresponding p-values for PWM2Vec are given in
Figure 13. We can observe that most of the features contribute towards the prediction of
different hosts. Table 7 contains the comparisons of correlation values computed using
Spearman correlation for the different embedding methods. Here, we can observe that for
a lower dimensional and more compact approach for feature embedding (PWM2Vec), the
fraction of features having correlation values greater than the threshold (i.e., 0.3 and−0.3) is
greater than that fraction generated by OHE, and is comparable with those given for k-mers
(sometimes better also). This behavior shows that by using PWM2Vec, we were able to pre-
serve more information in a smaller feature vector and improve the runtimes of underlying
ML algorithms while giving better (sometimes comparable) predictive performance.

https://www.uniprot.org/uniprot/P11224
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Figure 13. Spearman correlation for PWM2Vec.

Table 7. Correlation values for different embedding approaches computed using Spearman corre-
lation. We show the count (No.) and fraction (frac.) of feature values greater than or less than the
threshold (0.3 or −0.3). The fractions were computed by taking the size of the embedding as the
denominator (69,900 for OHE, 8000 for k-mers, and 3490 for PWM2Vec).

Spearman Correlation

>0.3 <−0.3

Methods No. Frac. No. Frac.

OHE 664 0.007 971 0.011
k-mers 557 0.040 705 0.050
PWM2Vec 419 0.120 33 0.009

6. Conclusions

We proposed an approach called PWM2Vec to generate feature vector representations
for the host preferences of different coronaviruses using spike sequences only, which can be
used as input for different machine learning algorithms, such as classification and clustering.
We show that our approach is not only efficient for generating feature vectors as compared
to the popular method based on k-mers, but has comparable prediction accuracies and
a much shorter training runtime. This behavior was also observed after applying the
feature selection algorithm. We also provided some statistical analysis on the data and
feature vectors to show the importance of attributes towards the prediction of class labels
(hosts). This statistical analysis provided validation, from an independent point of view
(in terms of the fraction of features statistically correlated to the label), of the compactness
of our PWM2Vec embedding, compared to the baselines. In the future, we will focus on
collecting more data to evaluate the scalability of PWM2Vec. Using unsupervised methods
for dimensionality reduction is another future extension of this work. We would also like to
use deep learning models such as LSTM and GRU for classification purposes in the future.
The application of this to larger families of viruses could also be another interesting future
direction. Using information gain and correlations (e.g., Spearman correlation) to study the
structure of spike protein is another interesting future direction.
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