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Abstract. Transcriptional activity of acetylcholine 
receptor subunit genes was investigated in innervated 
and denervated chick skeletal muscle. The sciatic 
nerve of 3-d-old White Leghorn chicks was sectioned 
unilaterally; after various intervals, nuclei were iso- 
lated from operated and sham-operated animals, and 
run-on assays performed. Nuclei were incubated with 
32p-UTP,  and total RNA was extracted and hybridized 
onto filters containing an excess of subunit-specific 
DNA. Specific transcripts were detected by autoradiog- 
raphy and quantitated densitometrically. A sharp in- 
crease in transcriptional activity was observed to begin 
~1/2 d after the operation and peak 1 d later when 

transcriptional rates reached approximately seven-, 
six-, and fivefold control levels for the ct-, &, and 
3,-subunit genes, respectively. The specificity of the 
effect was ascertained by normalization to total RNA 
synthesis and by the demonstration that several non- 
receptor genes respond differently to denervation. 

These results suggest that a denervation signal 
reaches the genome to induce receptor expression. In 
addition, since the increase in mRNA levels 
significantly exceeds what can be accounted for by in- 
creased gene activity, posttranscriptional effects are 
suggested. 

W 
HEN a skeletal muscle is denervated, chemosensi- 
tivity-i.e.,  responsiveness to the neurotransmitter 
acetylcholine-spreads from the neuromuscular 

endplate over the entire plasma membrane (Axelsson and 
Thesleff, 1959; Miledi, 1960). This is the result of an in- 
crease in the number of acetylcholine receptors (AChRs) ~ 
displayed on the fiber surface (Miledi and Potter, 1971; Berg 
et al., 1972). The rise in receptor levels is accounted for by 
an increase in de novo synthesis (Brockes and Hall, 1975; 
Devreotes and Fambrough, 1976). Recent investigations 
have shown that the increase in receptor synthesis rate is 
probably a consequence of increased levels of mRNAs cod- 
ing for receptor subunits (Merlie et al., 1984; Klarsfeld and 
Changeux, 1985; Goldman et al., 1985; Shieh et al., 1987, 
1988; Evans et al., 1987; Moss et al., 1987). That these 
increases are likely to result from transcriptional activation 
has been shown by Shieh et al. (1987) who used genomic 
probes and found that the appearance of a putative c~-subunit 
mRNA precursor precedes the increase in the level of mature 
message. 

To establish directly that AChR genes are activated as a re- 
sult of denervation, we have carried out run-on experiments 
with nuclei isolated from innervated and denervated chick 
muscle. Here we report findings that confirm the validity of 
Fambrough's suggestion, inspired almost two decades ago by 
experiments with metabolic inhibitors, that "the neuronal 
regulation of acetylcholine sensitivity probably involves reg- 
ulation of gene activity in muscle fibers" (Fambrough, 1970). 

1. Abbreviation used in this paper: AChR, acetylcholine receptor. 

Materials and Methods 

Chicken Operation 
Unilateral section of the sciatic nerve was performed as described previ- 
ously (Shieh et al., 1988); in all instances, both proximal and distal nerve 
stumps were ligated to prevent reinnervation. 

Probe Preparation 
For the nuclear run-on experiments, the PstI fragment of pC25.1Bgl (Wang 
et al., 1988), which contains 1.4 kb of u-subunit genomic sequence includ- 
ing exons I and II, was inserted into the polylinker of Ml3mpl0 in both 
orientations. The Hindlll-EcoRI fragment of pL3, a plasmid containing 4.8 
kb of the 5' portion of the 5-subunit gene including exons I through IV, and 
the HindlII-Pstl fragment of pB5, a plasmid containing 0.5 kb of the 5' re- 
gion of the'),-subunit gene including exon [, each were cloned into M13mpl0 
and Ml3mpll. Single-stranded DNA was prepared as described in the 
Ml3mp7 Cloning/Dideoxy Sequencing Manual (Bethesda Research Labo- 
ratories, Bethesda, MD). Plasmids containing full-length cDNAs of chicken 
~-actin and chicken ~-tubulin in the pBR322 vector (Cleveland et al., 1980) 
were linearized with Hindl[l and Bglll, respectively. 

For nuclease protection assays, pot7, which comprises exon VII of the 
ot-subunit (224 nt with 75-nt and 100-nt flanking sequences attached; re- 
ferred to as "pexon2" in Shieh et al., 1987); p2, which contains portions 
of the 5' untranslated sequence and exon I of the &subunit; and pB5, which 
comprises 3,-subunit exon I and flanking sequences, were cloned into Blue- 
script SK + (Stratagene, La Jolla, CA; a plasmid vector which contains tran- 
scriptional promoters for T3 and T7). The recombinant plasmids were lin- 
earized with appropriate restriction enzymes, and riboprobes synthesized 
by in vitro transcription. 

Isolation of Nuclei and Elongation of 
Nascent Transcripts 
Nuclei were purified and assayed for transcriptional activity by adapting the 
methods of Schibler et al. (1983). Briefly, calf muscles were dissected free 
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of bone and connective tissue and homogenized with a motor-driven tissue 
grinder (B pestle; Thomas Scientific, Philadelphia, PA) in 0.3 M sucrose 
in buffer A with 1 mM PMSE The homogenate was filtered twice through 
a double layer of cheese-cloth to remove residual connective tissue, layered 
over a cushion of 30% sucrose in buffer A, and spun for 10 rain at 2,500 
rpm in a centrifuge (RT 6000B; Du Pont Co. Diagnostic & BioReseareh 
Systems, Wilmington, DE). The crude nuclei were resuspended in 0.1% 
NP-40 in buffer A, left for 5 rain on ice, and recentrifuged. The resulting 
pellets were resuspended in 5 ml nuclei storage buffer, centrifuged (Eppen- 
dorf centrifuges made by Brinkmann Instruments, Inc., Westhury, NY) for 
30 s, and resuspended in storage buffer containing 100 U/ml RNasin (Pro- 
mega Biotec, Madison, WI). Nuclei were either used immediately or ali- 
quotted, frozen in liquid nitrogen, and stored for up to 6 mo without loss 
of activity. For run-on assays, 32p-UTP at 600 Ci/mmol was used. In a 
modification of the protocol of Schibler et al. (1983), RNAse treatment was 
omitted, and incubations were carried out in the absence of heparin sulfate 
at 26°C for 30 rain, with 4 mM MgC1 added. Nascent transcripts were 
purified as described by Nepveu and Marcu (1986) using centrifugation 
through a G-50 spun column followed by TCA precipitation. Samples were 
then exposed to 0.2 M NaOH (10 min; ice bath), followed by quenching with 
Hepes and ethanol precipitation. For hybridization, radioactively elongated 
transcripts were dissolved in small volumes of hybridization buffer, and ali- 
quots containing 2 x 106 cpm were incubated in small culture dishes with 
sections of nitrocellulose filters containing probe DNA samples at l0/tg/slot. 

Isolation of RNA and Nuclease Protection Analysis 

Total RNA was isolated from tissue frozen in liquid nitrogen by extraction 
with guanidinium isothiocyanate/phenol (Protter et al., 1982) and subjected 
to solution hybridization and nuclease protection analysis. Total transcript 
was measured by TCA precipitation followed by liquid scintillation count- 
ing. The proportion of individual components (primary transcript; splicing 
intermediate; mature mRNA) was deduced using electrophoresis, autoradi- 
ography, and densitometric quantitation as described previously (Shich et 
al., 1988). 

Receptor Assay 

Total AChR content in skeletal muscle was quantitated by J25I-t~-bungaro- 
toxin as described (Shieh et al., 1988), cxcept that filtration over glass fiber 
disks (GF/C; Whatman Inc., Clifton, N J) was substituted for adsorption to 
DEAE-cellulose. 

Results and Discussion 

Young Whi te  Leghorn  chicks (2-3  d after hatching) were 
subjected to unilateral section of the sciatic nerve. After 
varying intervals, animals  were killed and muscle  nuclei  ana- 
lyzed for receptor gene transcript ional  activity. Examples of 
results of  such run-on  assays are shown in Fig. 1 a. Elonga- 
t ion of  sense transcripts (i.e.,  subuni t  m R N A  precursors) is 
significantly enhanced after the operation. This activity was 
moni tored for the or-, &, and 7-subuni t  genes for several days 
after denervation.  Timecourses  are displayed in Fig. 1 b. A 
sharp increase in transcript ional  activity is observed to begin 
,x,1/2 d after denervat ion and peak dur ing the second post- 
operative day when transcript ional  rates reach approxi- 
mately seven-, six-, and fivefold control levels for the or-, &, 
and 7-subuni t  genes, respectively. Relative rates drop to 
about half-maximal  levels by the fourth day after the opera- 
tion. In contrast,  t ranscript ion of the fl- tubulin gene is not  
significantly affected, while that of /3-act in  is actually re- 
duced. It is noteworthy that antisense transcript ion of recep- 
tor genes, which proceeds at 25-35  % of sense transcript ion 
in innervated muscle,  is also increased upon denervat ion al- 
though only about  twofold for ct and 6, and less than 1.5-fold 
for 7. 

Figure 1. Nuclear run-on analysis. (a) Transcript elongation was assayed in nuclei isolated from operated (D) and control (N) muscle at 
several timepoints after denervation. 107 nuclei were used in each run-on incubation, and 2 x 106 cpm of 32p-labeled RNA for each hy- 
bridization. Results shown are those obtained with a-, 5-, and 7-subunit-specific sequences derived from both coding and noncoding 
strands, with the vector alone (mpl0), and with probes specific for/$-tubulin and fl-actin. Numbers refer to days after denervation, except 
in the case of/3-tubulin and/3-actin, which were assayed after 9 h, 4 d, and 1 wk (first, second, and third column, respectively). (b) 
Timecourse of transcriptional activity of the coding strands of the t~- (A), 5- (B), and 7- (C) subunit gene and of fl-tubulin (D, e) and 
/~-actin (/9, o). Each receptor subunit panel contains between 1 and 5 independent measurements per timepoint that are presented as mean 
and SEM of relative activity (experimental divided by control); in the case of the c~-subunit the transcriptional activity of the control declined 
by approximately a factor of 2 over a 1-wk period after the operation. Control data in D represent averages of two experiments. 
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l~gure 2. Timecourse of s-sub- 
unit gene expression. (a) Elec- 
trophoretic analysis of RNase 
digests. Nuclease protection 
analysis was performed as 
described in Materials and 
Methods, with 30 #g of total 
RNA and an excess of 10-fold 
or greater of radiolabeled ri- 
boprobe. Transcription was 
monitored over a 1-wk period 
after denervation (P, probe; 
N, nondenervated control; the 
numbers under the remaining 
lanes indicate days after de- 
nervation). Three types of 
transcript can be discerned: p, 
primary; i, splicing interme- 
diate; m, mature mRNA. (b) 

Denervation responses ( D / N  - 1; where D and N refer to values obtained in denervated and control muscles, respectively) are normalized 
to the maximal value attained and plotted as a function of time after denervation for transcript elongation activity (zx, from Fig. 1 a), levels 
of splicing intermediate (A) and mature mRNA (o), and AChR density (o). Data points represent averages of 2-5 experiments. 

To correlate transcriptional activity with message levels, 
we determined ot-subunit mRNA concentration using nu- 
clease protection analysis (Fig. 2 a). Within 48 h, message 
levels rose about 400-fold, from 0.4 fmol to 0.17 pmol/g tis- 
sue. The rise in the level of a putative splicing intermediate 
(i in Fig. 2 a; see also Shieh et al., 1987) from undetectable 
to >10 fmol/g tissue follows transcriptional activation and 
narrowly precedes the increase in mature mRNA (Fig. 2 b). 
On the third day, transcriptional activity and precursor levels 
drop sharply, and the concentration of mature ot-subunit level 
begins to decline. Upon denervation, mRNA levels for the 
/~- and 3,-subunits also become elevated by about two orders 
of magnitude to reach 0.06 pmol/g tissue each; they begin to 
drop after 3 d and reach ,025-40 % of maximum 1 wk after 
the operation (data not shown). Changes in receptor density 
(from 5 to 125 pmol/g tissue) follow changes in mRNA con- 
centration. 

It has long been suspected that the pronounced induction 
of AChR after denervation of skeletal muscle is controlled 
at the genome level (Fambrough, 1979). Our observations 
now indicate that receptor upregulation after denervation of 
skeletal muscle is, indeed, at least partly caused by enhanced 
transcriptional activity of receptor subunit genes. The in- 
crease in receptor gene activity is a specific effect, since it 
is evident after normalization to total RNA synthesis. In ad- 
dition, none of several control genes (fl-actin, ~tubulin, 
glyceraldehyde-3-phosphate dehydrogenase) is similarly af- 
fected by denervation. In fact, ~actin transcription is sup- 
pressed in agreement with the recent finding that denervation 
diminishes total skeletal actin mRNA in chick muscle 
(Shimizu et al., 1988). 

Since, for the three AChR subunit genes investigated, tran- 
scriptional activation is only on the order of five-to sevenfold 
while mRNA levels increase to a much larger extent, a post- 
transcriptional contribution is suggested. One such mecha- 
nism would be decelerated message turnover. Variations in 
mRNA half-life by more than an order of magnitude are not 
uncommon in eucaryotic gene expression control (see chap- 
ter 12 in Darnell et al., 1986); mRNA stabilization could 

therefore easily provide for the share of receptor message in- 
crease (10- to 50-fold) that is not accounted for by transcrip- 
tional activation. Yet other mechanisms are conceivable: a 
block to elongation (either due to premature chain termina- 
tion or pausing, at sites downstream of the gene regions cov- 
ered by the run-on probes), which in control tissue results 
in low transcript levels, might be released after denervation 
and thereby raise mRNA concentrations. This mode of regu- 
lation is well documented for the protooncogenes c-myc 
(Bentley and Groudine, 1986; Nepveu and Marcu, 1986) and 
c-myb (Bender et al., 1987). 

Contrary to the expectation that denervation may bring 
about a specific "denervated" steady state maintained by a 
characteristic set of receptor gene transcription rates, a 
significant fraction of the transcriptional activity is transient. 
This is not only seen in the reduction of specific transcript 
elongation on day 3 after denervation, but, more strikingly, 
in the rapid loss of the putative u-subunit splicing intermedi- 
ate (Fig. 2, a and b). The fall in transcriptional activity is 
unlikely to be a result of reinnervation, which was mechani- 
cally prevented by nerve stump ligation. Perhaps transient 
stimulation reflects a denervation-triggered wave of general 
RNA polymerase II activity (as described for the rat extensor 
digitorum longus and soleus muscles by Held, 1978) su- 
perimposed on the more permanent receptor-specific eleva- 
tion in transcription rates. 

To our knowledge, the increase in transcriptional activity 
of the or- and dt-subunit genes observed 9 h after the operation 
is the earliest receptor-related response to denervation yet 
recorded. Unfortunately, this period is still too long to permit 
conclusions regarding the underlying mechanisms. In partic- 
ular the distinction between de novo synthesis and activa- 
tion/inhibition of a regulatory factor is not yet possible. 
More work will be necessary to delineate all events that lead 
to the increase of receptor messages after denervation. 
Nevertheless we can now state with confidence that a dener- 
vation signal reaches the genome and that it is appropriate 
to study its targets and mode of action. 
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