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Background and Purpose: Hypoxia is one of the basic characteristics of the physical
microenvironment of solid tumors. The relationship between radiotherapy and hypoxia is
complex. However, there is no radiosensitivity prediction model based on hypoxia genes.
We attempted to construct a radiosensitivity prediction model developed based on
hypoxia genes for lower-grade glioma (LGG) by using weighted correlation network
analysis (WGCNA) and least absolute shrinkage and selection operator (Lasso).

Methods: In this research, radiotherapy-related module genes were selected after
WGCNA. Then, Lasso was performed to select genes in patients who received
radiotherapy. Finally, 12 genes (AGK, ETV4, PARD6A, PTP4A2, RIOK3, SIGMAR1,
SLC34A2, SMURF1, STK33, TCEAL1, TFPI, and UROS) were included in the model. A
radiosensitivity-related risk score model was established based on the overall rate of The
Cancer Genome Atlas (TCGA) dataset in patients who received radiotherapy. The model
was validated in TCGA dataset and two Chinese Glioma Genome Atlas (CGGA) datasets.
A novel nomogram was developed to predict the overall survival of LGG patients.

Results: We developed and verified a radiosensitivity-related risk score model based on
hypoxia genes. The radiosensitivity-related risk score served as an independent
prognostic indicator. This radiosensitivity-related risk score model has prognostic
prediction ability. Moreover, a nomogram integrating risk score with age and tumor
grade was established to perform better for predicting 1-, 3-, and 5-year survival rates.

Conclusions:We developed and validated a radiosensitivity prediction model that can be
used by clinicians and researchers to predict patient survival rates and achieve
personalized treatment of LGG.
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INTRODUCTION

Lower-grade glioma (LGG) consists of diffuse low-grade and
intermediate-grade gliomas (World Health Organization grades
II and III) (1). For the first time, in theWHO 2016 classification of
gliomas, gliomas were defined based on the presence/absence of
isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion
(2). This is a transition from histological classification tomolecular
classification, and it provides strong support for the individualized
treatment of LGG patients.

Treatments for LGG usually include surgery, chemotherapy,
immunotherapy, and radiotherapy. One study showed that
radiotherapy can increase progression-free survival (PFS) and
improve the overall survival (OS) of LGG patients (3). A
nationwide analysis of LGG patients found that radiotherapy was
associated with improved survival outcomes (4). However, due to
individual differences, some patients showed radiation toxicity after
receiving radiotherapy. The radiosensitivity of tumors is the key
factor in determining the curative effect of radiotherapy. The
purpose of predicting the radiosensitivity of patients is to identify
the population sensitive to radiotherapy and maximize the
treatment benefit of radiotherapy. Thus, it is imperative to
exploit new treatments closely related to radiotherapy for LGG to
improve the prognosis.

The occurrence and development of tumors are related to the
excessive proliferation and reduced apoptosis of tumor cells. The
hypoxic microenvironment promoted the growth, infiltration,
and metastasis of tumor cells. Hypoxia is one of the basic
characteristics of the physical microenvironment of solid
tumors and can influence immune cell functions (5). Tumor
hypoxia and the resulting energy metabolism of tumor cells are
important features of cancer and also the driving force and basis
of cancer metastasis. Hypoxic conditions are considered to be a
feasible approach for targeted immunotherapy (6).

The relationship between radiotherapy and hypoxia is
complex. Radiotherapy is the targeted administration of X-rays
to destroy cancer cells and tumor tissue. It targets rapidly
proliferating tumor cells by inducing oxidative stress through
increased reactive oxygen species (ROS) (7). Hypoxia condition
is the main factor of tumor radiation resistance (8). Tumor cells
in hypoxic conditions thus attain aggressive phenotypes and
become resistant to chemo- and radiotherapies resulting in
higher mortality (9). In addition to the well-known protective
effect of hypoxia on the radiological responses of cells and tissues,
hypoxic conditions can also lead to altered gene expression
patterns, resulting in more or less genomic alterations in
different cell populations (10).

Lin et al. developed a hypoxia signature to evaluate and
predict prognosis in glioma, and this model reflected overall
immune response intensity in the glioma microenvironment
(11). Wang et al. developed a risk signature with five genes
that could serve as an independent factor for predicting the
prognosis of patients with glioblastoma (GBM) (12). Xiao et al.
explored a three-gene signature as a candidate prognostic
biomarker for LGG (13). Likewise, Li et al. developed a
radiosensitive gene signature by using coexpression and
ceRNA network analysis to select genes (14). However, a
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model for predicting the benefit of radiotherapy based on
hypoxia-related genes by using weighted correlation network
analysis (WGCNA) in LGGs has not been established.

In this study, WGCNA was used to screen the most relevant
radiotherapy module. This study aims to develop a radiotherapy
signature related to hypoxia-related genes to provide survival
and radiotherapy response prediction for LGG patients.
MATERIALS AND METHODS

Data Sources
LGG patients with clinical and gene expression files were
downloaded from a public database The Cancer Genome Atlas
(TCGA; http://cancergenome.nih.gov/) by using the R package
TCGA-Assembler (15). LGG patients with survival information
were procured from the UCSC Cancer Genomics Browser
(https://xenabrowser.net/datapages/) (16). We used OS and
PFS as endpoints and removed those without radiotherapy
information (n = 29) and survival information (n = 3).
Hypoxia-related genes were extracted from GeneCards (https://
www.genecards.org/). Genes with a common symbol name in
TCGA were selected. The flowchart is summarized in Figure 1.
Finally, we obtained 466 patients with 5,403 hypoxia-related
genes for analysis. Gene expression and clinical profiles of 443
LGG patients (CGGA693 dataset) (17, 18) and 182 LGG patients
(CGGA325 dataset) (19, 20) were downloaded as external
validation datasets from the Chinese Glioma Genome Atlas
(CGGA) dataset (http://www.cgga.org.cn/). The RNA-seq
transcriptome data were estimated as log2(x + 1) transformed.
The cleaned clinical data are summarized in Supplementary
Tables 1, 2.

Weighted Correlation Network Analysis
WGCNA can identify highly related genes in thousands of genes
and cluster them into modules and then was used to establish the
relationship between phenotypic traits and gene expression data.
By calculating the correlation degree between the gene module
and the external clinicopathological information, we can obtain
the module genes highly related to the clinicopathological
information and obtain the hub genes. WGCNA can be
implemented by R package WGCNA (21).

In our study, WGCNA was performed to discover
radiotherapy-related genes. We analyzed hypoxia-related genes
and clinical data, including OS status, PFS status, age, grade,
radiotherapy, and treatment response. First, hierarchical
clustering analysis was utilized to exclude the outliers.
Subsequently, the “pickSoftThreshold” function was performed
to estimate the value of the powers. The R-squared criterion was
set to 0.9. Pearson’s correlation matrices were used for all pairs of
genes, and the weighted adjacency matrix was constructed using
the power function. After the power was selected, the adjacency
matrix was converted to a topological overlap matrix (TOM).
Genes with similar expression profiles were classified into gene
modules, and hierarchical clustering was performed by the class
average method based on TOM. The minimum gene size in each
module was set as 30. To further analyze the modules, the
February 2022 | Volume 12 | Article 757686
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dissimilarity of module eigengenes was calculated, and some
modules were merged. The merged cutoff threshold was set to
0.2, which meant that modules with a similarity higher than 0.8
were merged into one module. Then, the correlations between
modules and clinical factors of LGG were investigated by using
Pearson’s correlation test. Finally, the genes of the most
significant radiotherapy-related module were chosen for
subsequent analysis.

Functional Enrichment Analysis
To obtain the function of genes in the radiotherapy-related
module, we performed the Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses by using
the R clusterprofiler (22). The GO analysis included biological
Frontiers in Oncology | www.frontiersin.org 3
processes (BPs), cellular component (CC), and molecular
function (MF).

Definition of Radiosensitivity and
Radiosensitivity Prediction Model
Inour study, radiosensitivity for the patientswasdefined in termsof
survival benefit (Supplementary Figure 1). 1) In patients who
received radiotherapy, patients in groupA had a better survival rate
than the patients in group B. Then patients in group A could be
defined as radiosensitive patients (RS group). 2) In patients who did
not receive radiotherapy, the survival rate of group A (RS group)
was not better (equal or worse) than that of the other group.

The radiosensitivity prediction model was constructed in the
patients who had received radiotherapy. Patients who received
FIGURE 1 | The flowchart of study design, patient selection, and gene selection.
February 2022 | Volume 12 | Article 757686
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radiotherapyprovidedmore information related to radiosensitivity.
We defined a radiosensitivity prediction model for the patients
satisfying both of the following criteria: the constructed
radiation sensitivity correlation model constructed can be used
to divide the population into a high-risk group and a low-risk
group. 1) In the radiotherapy patients, the survival rate of the
low-risk groupwas higher than that of the high-risk group. 2) There
was no significant difference in survival between the high- and low-
risk groups in the group that did not receive radiation therapy.
The low-risk group was defined as the RS group, and the high-
risk group was defined as the radioresistant (RR) group.
Therefore, the radiosensitivity model can select the patients
with better benefit from radiotherapy, while the results in the
population without radiotherapy can better show that the model
is related to radiosensitivity.

Radiosensitivity-Related Risk
Score Construction
A log-rank test was applied to assess the relationship between the
expression of genes in radiotherapy-related modules and the OS
of radiotherapy patients in TCGA. Whole LGG patients were
divided into the high- and low-expression level groups using the
median gene expression level as a cutoff point. The RNAs with
log−rank p < 0.05 in the radiotherapy patients and log-rank p >
0.05 in the non-radiotherapy patients were identified as
radiosensitivity−related RNAs. Then, the least absolute
shrinkage and selection operator (Lasso) regression was
performed to narrow the range of genes in patients who
received radiotherapy. The radiosensitivity-related risk score
was computed as follows:

Radiosensitivity − related risk score  =  S(bRNAn �  exprRNAn)

Radiosensitivity-Related Risk
Score Validation
The LGG patients were divided into the high- and low-risk
groups with the median radiosensitivity-related risk score as the
cutoff. The Kaplan–Meier method was used to plot survival
curves. Time-dependent receiver operating characteristic
(ROC) curve analysis was used to evaluate the prognostic
value. The radiosensitivity-related risk score was validated in
TCGA and two CGGA datasets.

The Radiosensitivity-Related Risk Score Is
an Independent Prognostic Indicator
Univariate and multivariate Cox proportional hazard regression
analyses were used to examine whether the radiosensitivity-
related risk score was an independent prognostic factor. The
forest plot was plotted to show the hazard ratio (HR) and
95% CIs.

Development and Validation of
the Nomogram
To evaluate the 1-, 3-, and 5-year survival probability for patients
with LGG, a nomogram model including all independent
prognostic factors was built for LGG patients in TCGA.
Frontiers in Oncology | www.frontiersin.org 4
The nomogram model was validated with the PFS of TCGA
and two CGGA datasets.

Analysis Method
All statistical analyses were performed using R software (4.0.2).
WGCNA was performed by using the “WGCNA” R package.
Lasso analysis was conducted by using the “glmnet” R package. A
bilateral p-value <0.05 was considered statistically significant.
RESULTS

Weighted Coexpression Network
Construction and Identification of
Radiotherapy-Related Modules
WGCNA was performed in TCGA-LGG dataset to determine the
coexpression network most highly associated with the
radiotherapy modules. The hclust function was used to
determine if there were any outliers (Supplementary Figure 2).
A total of 466 samples were in the clusters after removing 8
outliers in the samples based on the average linkage method.
When the soft threshold power value was b = 7 and the scale R2 =
0.84, the average connectivity of the RNA group was high, and the
connectivity between genes conformed to the scale-free network
distribution (Figures 2A, B). The scale-free topological fitting
index R-square was calculated to reach 0.84 (Figures 2C, D). Next,
the TOM was constructed (Figure 3A), and a topological
overlapping heatmap was depicted of the TOM including the
top 400 genes (Figure 3B). A total of 13 modules were identified
from the RNA coexpression network after merging modules with
a similarity higher than 0.8. The relationships between gene
modules and clinical traits are shown in a heatmap (Figure 4A).
Thus, the black module was considered to have the highest
correlation with radiotherapy (r = 0.69, p < 0.001) and was
considered a “radiotherapy-related module” (Figure 4B).

Functional Analysis of Genes
Radiotherapy-Related Module
GO analysis was performed to analyze the function of the
radiotherapy-related module (Figure 4C). We discovered that
the radiotherapy-related module was functionally associated
with responding to oxygen levels, responding to decreased
oxygen levels, and responding to hypoxia, cardiac chamber
morphogenesis, cardiac chamber development, regulation of
mRNA stability, and regulation of RNA stability. CCs include
the transcription repressor complex, nuclear speck, transcription
regulation complex, and methyltransferase complex.

Construction of Radiosensitivity-Related
Signature
We selected modules related to radiotherapy for further analysis. A
total of 231 genes were subjected to the log-rank test in radiotherapy
patients and non-radiotherapy patients. Thirty-six radiosensitivity
−related genes were identified in the univariate analysis.
Subsequently, the Lasso Cox regression model was used to
identify the most robust markers for prognosis (Figures 5A, B).
February 2022 | Volume 12 | Article 757686
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Finally, 12 genes (AGK, ETV4, PARD6A, PTP4A2, RIOK3,
SIGMAR1, SLC34A2, SMURF1, STK33, TCEAL1, TFPI, and
UROS) were included in the model. The radiosensitivity-related
risk scores were calculated based on the linear combination of the
expression levels of genes multiplied by the corresponding Lasso
coefficients. The radiosensitivity-related risk score was as follows:
radiosensitivity-related risk score = 0.16864 * AGK + 0.14242 *
ETV4 − 0.14386 * PARD6A + 0.00584 * PTP4A2 − 0.09746 * RIOK3
− 0.23212 * SIGMAR1 + 0.07849 * SLC34A2 + 0.18813 * SMURF1 +
0.04491 * STK33 − 0.4922 * TCEAL1 + 0.01536 * TFPI − 0.4694
* UROS.

Then, the patients with LGG in TCGA dataset were divided
into the high-risk (n = 233) or low-risk groups (n = 233)
according to the median risk score. The Kaplan–Meier
analysis revealed that OS time was significantly increased in
the low-risk group compared with the high-risk group in
patients who received radiotherapy (p < 0.001, Figure 5C).
There was no difference in OS between the high-risk group
and low-risk group in patients who did not receive
radiotherapy (p = 0.54, Figure 5D). The low-risk group was
Frontiers in Oncology | www.frontiersin.org 5
defined as an RS group, and the high-risk group was defined as
an RR group. The risk score distribution of each patient in
TCGA is shown in Figure 5E.

Then, ROC analysis was used to evaluate the predictive
efficiency of the radiosensitivity-related risk score model in the
1-, 3-, and 5-year survival rates (1-year area under the curve
(AUC): 0.935 (0.904–0.967); 3-year AUC: 0.856 (0.778–0.933); 5-
year AUC: 0.787 (0.704–0.87), Figure 5F).

Validation of Radiosensitivity Model in
Validation Sets
A radiosensitivity model was validated in TCGA with PFS as
the endpoint. The Kaplan–Meier plots indicated that patients
in the RR group exhibited worse PFS than patients in the RS
group in patients who received radiotherapy (p < 0.001,
Figure 6B). Time-dependent ROC analysis results showed
that the AUCs of the radiosensitivity model were 0.74, 0.676,
and 0.732 at survival times of 1, 3, and 5 years, respectively
(Figure 6C). Plots of risk score distribution are shown in
Figures 6A, D, G.
A B

C D

FIGURE 2 | Selection of weighted value b. (A) Determine the weighted value b that satisfies the law of scale-free networks. (B) Determine the soft threshold based
on the network connectivity. (C) b = 7, the connection degree of each node in the network histogram distribution. (D) The scale-free topology test.
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Patients in the CGGA693 and CGGA325 datasets were
divided into the RS group and RR group based on the median
risk score in each dataset. The Kaplan–Meier analysis showed
that patients in the RS group had a more favorable outcome than
patients in the RR group in patients who received radiotherapy
(CGGA693, p < 0.001; CGGA325, p < 0.001; Figures 6E, H).
These results indicated the accuracy of the radiosensitivity-
related signature in predicting the outcomes of LGG patients.
ROC curves were used to evaluate the predictive accuracy for 1-,
3-, and 5-year survival. AUC values revealed the high predictive
value of the radiosensitivity-related risk score for LGG patients
(CGGA693: 1-year AUC: 0.636 (0.527–0.746); 3-year AUC:
0.655 (0.587–0.732); 5-year AUC: 0.643 (0.572–0.713);
CGGA325: 1-year AUC: 0.696 (0.567–0.862); 3-year AUC:
0.745 (0.644–0.845); 5-year AUC: 0.731 (0.639–0.823),
Figures 6F, I).
Frontiers in Oncology | www.frontiersin.org 6
The Radiosensitivity-Related Risk Score Is
an Independent Prognostic Factor
Then, univariate and multivariable Cox regression analyses
were conducted to evaluate whether the radiosensitivity-
related risk score is an independent prognostic factor for
LGG. The results indicated that factors such as risk score and
grade were significantly correlated with patient survival in both
TCGA dataset and two CGGA datasets. Age (HR: 1.054, 95%
CI: 1.038–1.071, p < 0.001), tumor grade (HR: 2.715, 95% CI:
1.736–4.247, p < 0.001), and risk score (HR: 2.712, 95% CI:
1.763–4.171, p < 0.001) were significantly associated with OS.
The univariate analysis indicated that a high-risk score was
significantly correlated with poor OS. The multivariate Cox
regression results showed that the radiosensitivity-related risk
score was an independent prognostic factor for LGG patients
after adjusting for clinical factors such as age, sex, tumor grade,
race, and IDH1. When OS was used as an endpoint, the HR was
A

B

FIGURE 3 | Weighted correlation network analysis. (A) Clustering dendrogram of genes based on topological overlapping. (B) Network heatmap of the whole genes.
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2.029 (95% CI: 1.407–3.448, p < 0.001, Figure 7A). When PFS
was used as an endpoint, the HR was 2.170 (HR: 2.170, 95% CI:
1.526–3.086, p < 0.001, Figure 7B). In CGGA datasets, we
adjusted for clinical factors such as age, sex, tumor grade, race,
IDH2, and X1p19q2, and the multivariate Cox regression
results also demonstrated that the radiosensitivity-related risk
score was an independent prognostic factor for LGG
(CGGA693: HR: 1.730, 95% CI: 1.215–2.463, p = 0.003;
Figure 7C). Unfortunately, the multivariate Cox regression
result was not significant in the CGGA325 dataset
(CGGA325: HR: 1.609, 95% CI: 0.902–2.871, p = 0.112;
Figure 7D). We consider that there are too few patients in
the CGGA325 database.
Frontiers in Oncology | www.frontiersin.org 7
Construction and Validation of Nomogram
Age, tumor grade, and risk score were listed as candidate
indicators for nomogram construction. Then, an optimal
nomogram was established combining age, tumor grade, and
risk score to predict a certain clinical outcome (Figure 8A).
Figure 8B shows that AUCs of the nomogram for 1-, 3-, and 5-
year OS were 0.947 (0.915–0.978), 0.888 (0.83–0.946), and 0.850
(0.779–0.922), respectively, which were better than those of the
models with a single risk score model. Figure 8C demonstrates
that AUCs of the nomogram for 1-, 3-, and 5-year PFS were 0.74
(0.665–0.815), 0.676 (0.601–0.750), and 0.732 (0.638–0.826),
respectively. We also used two CGGA datasets to verify a
nomogram model. Figure 8D demonstrates that the AUCs of
A

B C

FIGURE 4 | Identification of significant modules. (A) Module trait relationship heatmap. (B) Scatterplot of gene significance for radiotherapy (y-axis) vs. module
membership (x-axis) in the black module. (C) GO enrichment analysis of genes in radiotherapy module. BP, biological process; MF, molecular function; CC, cellular
component; GO, Gene Ontology.
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A B

C D

E F

FIGURE 5 | Construction of the radiosensitivity-related risk score model. (A) The solution paths of the Lasso. (B) The partial log-likelihood profiles of the Lasso.
(C) Kaplan–Meier curves for the RS group and RR group in patients with radiotherapy and patients who did not receive radiotherapy. RR, radioresistant group; RS,
radiosensitive group. (D) Kaplan–Meier curves for the RS group and RR group in patients who did not receive radiotherapy. RR, radioresistant group; RS,
radiosensitive group. (E) Risk score distribution of each patient in TCGA (OS). (F) Time-dependent ROC curve analysis of the radiosensitivity-related risk score in
TCGA (OS). OS, overall survival; TCGA, The Cancer Genome Atlas; ROC, receiver operating characteristic.
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nomogram at 1, 3, and 5 years were 0.64 (95% CI: 0.542–0.739),
0.669 (95% CI: 0.602–0.736), and 0.64 (95% CI: 0.569–0.711),
respectively, for CGGA693. Figure 8E demonstrates that the
AUCs of nomogram at 1, 3, and 5 years were 0.740 (95% CI:
0.608–0.872), 0.787 (95% CI: 0.694–0.88), and 0.79 (95% CI:
0.707–0.872), respectively, for CGGA325. The nomogram model
for the prognostic model displayed superior predictive
performance as compared with the risk score in the CGGA325.
Frontiers in Oncology | www.frontiersin.org 9
DISCUSSION

LGG is one of the leading causes of cancer-related death worldwide.
The treatments of LGG include surgery, chemotherapy, and
radiotherapy. Radiotherapy may not be appropriate for all patients
due to its toxicity.Thus, it is important todevelop risk scores basedon
genetic and clinical characteristics to help determine which patients
would benefit the most from radiation therapy.
A B C

D E F

G H I

FIGURE 6 | Validation of the radiosensitivity-related risk score model. (A) Risk score distribution of each patient in TCGA (PFS). (B) Kaplan–Meier curves for the RS
group and RR group in patients with radiotherapy from TCGA (PFS). (C) Time-dependent ROC curve analysis of the radiosensitivity-related risk score in TCGA (PFS).
(D) Risk score distribution of each patient in the CGGA693. (E) Kaplan–Meier curves for the RS group and RR group in patients with radiotherapy from CGGA693.
(F) Time-dependent ROC curve analysis of the radiosensitivity-related risk score in the CGGA693. (G) Risk score distribution of each patient in the CGGA325.
(H) Kaplan–Meier curves for the RS group and RR group in patients with radiotherapy from CGGA325. (I) Time-dependent ROC curve analysis of the
radiosensitivity-related risk score in the CGGA325. TCGA, The Cancer Genome Atlas; PFS, progression-free survival; RS, radiosensitive; RR, radioresistant; ROC,
receiver operating characteristic.
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Hypoxia is a marker of the tumor microenvironment and plays
an important role in tumor occurrence, development, metastasis,
and metabolism (23). The relationship between hypoxia and
radiotherapy is complex. ROS are essential for destroying tumor
cells by ionizing radiation. Under hypoxia, oxygen reduction
interferes with ROS produced by ionizing radiation, and tumor
cells have developed various mechanisms for evading apoptosis
mediated by HIF-1 (24). Tumor hypoxia is a serious problem for
radiotherapy because radiosensitivity is gradually limited when
partial oxygen pressure in the tumor is low (25).

In this study, 6,327 hypoxia-related genes were downloaded
from the GeneCards website. We identified genes of the
radiotherapy-related model by WGCNA. Further log-rank tests
and Lasso Cox regression analyses were performed to identify 12
genes in patients who received radiotherapy. A radiosensitivity-
related risk score model was established based on the OS of TCGA
dataset in patientswho received radiotherapy.Then, thismodelwas
validated based on the PFS of TCGA dataset and two CGGA
datasets. This radiosensitivity-related risk score model has
prognostic prediction ability and is an independent prognostic
indicator in LGG.

Of the 12 model genes, PARD6A, RIOK3, SIGMAR1, TCEAL1,
and UROS expression levels were positively correlated with
favorable outcomes, whereas AGK, ETV4, PTP4A2, SLC34A2,
SMURF1, STK33, RCN1, SPP1, RPN2, and ATP2A2 expression
levels were associated with adverse outcomes. AGK (acylglycerol
kinase) is a lipid kinase. The AGK-PTEN axis is a key pathway that
coordinates the glycolysis and the function of CD8+ T cells (26).
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There have beenmany researchfindings thatAGK is overexpressed
inmany cancers, such as gastric cancer (27) and cervical squamous
cell cancer (28). In glioma, the expression level of AGK was
identified as an independent prognostic factor and associated
with the poor prognosis (29). ETV4 (ETS Translocation Variant
4) is one of an ETS family transcription factor and is aberrantly
expressed in a variety of human tumors such as prostate cancer (30)
and non-small cell lung cancer (31). ETV4 plays a wide role in the
regulation of hypoxic genes (32). The RAS-RAF-MEK-ERK
(MAPK) signaling pathway and PI3K/Akt signaling can activate
ETV4 expression in cancer (33). PTP4A2 (protein tyrosine
phosphatase 4A2) is associated with the overall and disease-free
survival of breast cancer (34). Du et al. found that high PTP4A2
expression is associated with ROS-induced cell death, which may
contribute to cancer patient survival and response to radiotherapy
(35). RIOK3 expression is increased during hypoxic exposure and
increases cell migration and invasion in cancer (36). High RIOK3
levels in gliomas contribute to proliferation, migration, and
invasion of glioma cells (37). SLC34A2 (solute carrier family 34
member A2) is a member of the SLC34 family and is usually
overexpressed in glioma tissues and cell lines. SLC34A2
knockdown exhibited suppressive effects on cell proliferation and
migration/invasion (38). SMURF1 is involved in the regulation of
cellular processes, including autophagy, growth, and cellmigration.
Chang et al. proved that SMURF1 was associated with glioma cell
migration (39). STK33 (serine/threonine kinase 33) is a serine/
threonine kinase and plays an important role in cancer cell
proliferation (40). TFPI (tissue factor pathway inhibitor) has been
A B

C D

FIGURE 7 | Forest plots of multivariate Cox regression. (A) Forest plots of multivariate Cox regression in TCGA (OS). (B) Forest plots of multivariate Cox regression
in TCGA (PFS). (C) Forest plots of multivariate Cox regression in CGGA693. (D) Forest plots of multivariate Cox regression in CGGA325. A, astrocytoma; OA,
oligoastrocytoma; O, oligodendroglioma; TCGA, The Cancer Genome Atlas; OS, overall survival; PFS, progression-free survival.
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associated with radiosensitivity or radiosensitivity in previous
studies (41). However, we were unable to find a report about the
relationship between LGG and PARD6A (partitioning defective 6
homolog alpha), SIGMAR1 (sigma non-opioid intracellular
receptor 1), TCEAL1 (transcription elongation factor A-like 1)
and UROS (uroporphyrinogen synthase) genes.

A novel nomogram model integrating risk score with age and
tumor grade was developed to predict the OS of LGG patients.
We also validated the nomogram model in two CGGA datasets.
According to the radiosensitivity-related risk score and
nomogram, clinicians can be able to identify a group of
patients who can benefit better from radiotherapy and then
Frontiers in Oncology | www.frontiersin.org 11
can predict the 1-, 3-, and 5-year OS of LGG. Nomograms
could provide probabilistic predictions for individual patients. In
our study, we constructed a nomogram that can predict the OS in
LGG patients. The survival rates in CGGA datasets indicate that
the nomogram had a good predictive performance. At the same
time, the nomogram model that integrated risk score with age
and tumor grade had better predictive performance than the
model constructed by a radiosensitivity-related risk score factor.

Much work thus far has focused on the relationship
between hypoxia and radiotherapy in tumors. Hypoxia is an
important characteristic of the tumor microenvironment, and it
is closely related to the occurrence and development of tumors.
A

CB

ED

FIGURE 8 | Construction and validation of nomogram model. (A) Nomogram model for predicting the probability of 1-, 3-, and 5-year OS in LGGs. (B) Time-
dependent ROC curve analyses of the nomogram model in TCGA (OS). (C) Time-dependent ROC curve analyses of the nomogram model in TCGA (PFS). (D) Time-
dependent ROC curve analyses of the nomogram model in the CGGA693. (E) Time-dependent ROC curve analyses of the nomogram model in the CGGA325. OS,
overall survival; LGGs, lower-grade gliomas; ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas; PFS, progression-free survival.
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Several hypoxia genes have been used to develop gene expression
signatures for evaluating tumor prognosis. Liu et al. identified low
hypoxia status and high immune status as factors for gastric
cancer patients’ OS and developed a hypoxia-immune-based gene
signature (42). A hypoxia risk model was developed in TCGA and
validated in CGGA to reflect overall immune response intensity in
the glioma microenvironment (11). The hypoxia-related signature
was also developed and validated in breast cancer (43) and lung
adenocarcinoma (44). To our knowledge, this is the first study to
construct a model to predict radiotherapy sensitivity from hypoxia
genes from the perspective of radiotherapy.

Our study provides new insights into the individualized
treatment for LGG. The main strength of this study is that the
WGCNA method was used to construct a radiosensitivity-related
model in LGG patients. WGCNA can use all genes to identify the
gene set of interest, and it can be associated with the sample
phenotype. At the same time, WGCNA can also be applied to
small samples (21).Considering the importance of hypoxia genes in
the tumor microenvironment, we selected hypoxia genes to be
included in the study. We focused on radiotherapy, so we used
WGCNA to select the gene module most related to radiotherapy.
Then Lasso Cox was used to select genes. Finally, a radiosensitivity-
related model based on hypoxia genes was developed in TCGA
dataset and validated in CGGA datasets. The radiosensitivity-
related model can identify LGG patients most likely to benefit
from radiotherapy. However, a limitation of our study is that this
was a retrospective study, and the models should be further
confirmed by prospective studies. From the perspective of clinical
treatment, the risk score we constructed can select the people who
benefit from radiotherapy, so as to improve the effect of
radiotherapy. On the other hand, we can develop a test kit
according to the risk score for clinical application.

In conclusion, the radiosensitivity-related score was
demonstrated to be an independent prognostic factor for LGG
patients. Patients with LGG can be divided into the RS and RR
groups by radiosensitivity-related score. The patients in the RS
group were more likely to benefit from radiotherapy. This model
can be used by clinicians and researchers to predict patient survival
rates and achieve personalized treatment of LGG.
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