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Abstract 

Background Chronic kidney disease (CKD) is a global health problem, affecting over 840 million individuals. CKD 
is linked to higher mortality and morbidity, partially mediated by higher cardiovascular risk and worsening kidney 
function. This study aimed to identify risk factors and develop risk prediction models for selected cardiorenal clinical 
outcomes in patients with non-diabetic CKD.

Methods The study included adults with non-diabetic CKD (stages 3 or 4) from the Optum® Clinformatics® Data 
Mart US healthcare claims database. Three outcomes were investigated: composite outcome of kidney failure/need 
for dialysis, hospitalization for heart failure, and worsening of CKD from baseline. Multivariable time-to-first-event 
risk prediction models were developed for each outcome using swarm intelligence methods. Model discrimination 
was demonstrated by stratifying cohorts into five risk groups and presenting the separation between Kaplan–Meier 
curves for these groups.

Results The prediction model for kidney failure/need for dialysis revealed stage 4 CKD (hazard ratio [HR] = 2.05, 95% 
confidence interval [CI] = 2.01–2.08), severely increased albuminuria-A3 (HR = 1.58, 95% CI = 1.45–1.72), metastatic 
solid tumor (HR = 1.58, 95% CI = 1.52–1.64), anemia (HR = 1.42, 95% CI = 1.41–1.44), and proteinuria (HR = 1.40, 95% 
CI = 1.36–1.43) as the strongest risk factors. History of heart failure (HR = 2.42, 95% CI = 2.37–2.48), use of loop diuret-
ics (HR = 1.65, 95% CI = 1.62–1.69), severely increased albuminuria-A3 (HR = 1.55, 95% CI = 1.33–1.80), atrial fibrillation 
or flutter (HR = 1.53, 95% CI = 1.50–1.56), and stage 4 CKD (HR = 1.48, 95% CI = 1.44–1.52) were the greatest risk factors 
for hospitalization for heart failure. Stage 4 CKD (HR = 2.90, 95% CI = 2.83–2.97), severely increased albuminuria-A3 
(HR = 2.30, 95% CI = 2.09–2.53), stage 3 CKD (HR = 1.74, 95% CI = 1.71–1.77), polycystic kidney disease (HR = 1.68, 95% 
CI = 1.60–1.76), and proteinuria (HR = 1.55, 95% CI = 1.50–1.60) were the main risk factors for worsening of CKD stage 
from baseline. Female gender and normal-to-mildly increased albuminuria-A1 were found to be associated with lower 
risk in all prediction models for patients with non-diabetic CKD stage 3 or 4.

Conclusions Risk prediction models to identify individuals with non-diabetic CKD at high risk of adverse cardiorenal 
outcomes have been developed using routinely collected data from a US healthcare claims database. The models 
may have potential for broad clinical applications in patient care.
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Background
Chronic kidney disease (CKD) is a major global health 
problem with numerous etiologies [1]. In 2016, CKD was 
the sixteenth leading cause of years of life lost worldwide, 
and it is expected to be the fifth leading cause of years of 
life lost worldwide by 2040 [2]. In 2017, 1.2 million peo-
ple died from CKD globally, with 697.5 million cases of 
all-stage CKD recorded and a global prevalence of 9.1% 
[3]. Furthermore, CKD resulted in 35.8 million disabil-
ity-adjusted life years, for which one-third of cases was 
attributed to diabetic nephropathy [3]. Although diabetes 
(types 1 and 2) is recognized as one of the leading causes 
of CKD, 50–70% of current CKD cases are estimated to 
have a non-diabetic cause [4].

CKD is linked to higher mortality and morbidity, par-
tially mediated by higher cardiovascular (CV) risk, and 
worsening kidney function [4, 5]. Patients with CKD are 
5–10 times more likely to die at earlier stages of disease 
from other causes than progress to end-stage kidney dis-
ease (ESKD) [4, 6]. A meta-analysis of > 1.5 million indi-
viduals from general, high-risk, and CKD populations 
showed that decreasing estimated glomerular filtration 
rate (eGFR) and increasing albuminuria, which define the 
severity of CKD, were associated with increases in mor-
tality from any cause, CV mortality, acute kidney injury 
incidence, and kidney disease progression [7]. Patients 
with CKD and low eGFR have an increased risk of major 
adverse CV events, specifically stroke, congestive heart 
failure (HF), fatal and nonfatal myocardial infarction, and 
sudden cardiac death at low eGFR [8]. Patients with CKD 
stages 3 or higher, denoted by an eGFR < 60 ml/min/1.73  m2, 
have been reported to have a 2- to-16-fold increased risk 
of major adverse CV events compared with those with 
eGFR > 60 ml/min/1.73  m2 [8].

Development and progression of non-diabetic CKD 
have been found to be associated with hypertension, with 
blood pressure control being a key point of intervention 
to decrease the risk of decline in renal function and CV 
mortality [9]. Current therapies include renin–angioten-
sin system inhibitors, sodium-glucose co-transporter-2 
inhibitors, and mineralocorticoid receptor antagonists. 
However, even though treatments such as dapagliflozin 
and ramipril are indicated in non-diabetic CKD, studies 
that have evaluated their effectiveness have been con-
ducted primarily on patients with diabetic CKD [10, 11].

There are some theories that outcomes for patients 
with non-diabetic CKD are different compared with 
patients with diabetic CKD; however, it is generally 

hypothesized that the benefits observed in the diabe-
tes-specific (types 1 and 2) studies extend to patients 
with a non-diabetic CKD etiology [12]. This suggests 
that there is not only a need for further innovative ther-
apies that will reduce cardiorenal risk for patients with 
non-diabetic CKD, but also for an improved under-
standing of risk factors and outcomes for patients with 
non-diabetic CKD.

Risk prediction models for worsening HF, as well as 
for progression of CKD in type 2 diabetes (T2D), have 
previously been published [13, 14]. A predictive model 
for progression of CKD to kidney failure, called the 
Kidney Failure Risk Equation [15], was developed for 
patients with CKD stages 3–5 using electronic health 
records from Canada (see also [16]). Kidney failure was 
defined [15] as need for dialysis or pre-emptive kidney 
transplantation. Two versions of the Kidney Failure 
Risk Equation are available; one includes eight variables 
[16, 17] and the other includes four variables [16, 18]. 
The eight-variable model includes age, sex, and rou-
tinely obtained laboratory tests: eGFR, albuminuria, 
serum calcium, serum phosphate, serum bicarbonate, 
and serum albumin. However, even large, nationwide 
administrative claims databases often do not contain 
laboratory data or have them available for only a part 
of the database members. This limits the application 
of the eight-variable Kidney Failure Risk Equation in 
observational studies using secondary data sources or 
in settings where the components of the equation can-
not principally be collected. In turn, the four-variable 
version of the Kidney Failure Risk Equation requires 
the urine albumin-to-creatinine ratio (UACR), which is 
not commonly tested in routine clinical practice [19].

Several risk prediction models have recently been 
developed for CKD or, more specifically, for CKD 
associated with T2D. Most of these were developed 
on selected cohorts that included several thousand 
patients with a predefined set of risk predictors [15, 20, 
21]. Some of these models used primary data, for exam-
ple from randomized clinical trials or observational 
studies, while others were developed using secondary 
data. To the best of our knowledge, no risk prediction 
models exist to date for cardiorenal outcomes in non-
diabetic CKD that are based on routinely collected data 
from more than 500,000 patients exploring thousands 
of potential predictors.

The paper reports the results of the real-world 
evidence Exploratory analysis oF LongItudinal 



Page 3 of 11Wanner et al. BMC Nephrology            (2025) 26:8  

patiEnt-level Data for non-diabEtic chRonic kidney dis-
ease in a United States (US) claims database (FLIEDER) 
study that aimed to characterize patient demograph-
ics, clinical characteristics, treatment patterns, and 
clinical outcomes [22]. This study demonstrated that 
patients with non-diabetic CKD are at high risk of seri-
ous clinical outcomes, including kidney failure/need 
for dialysis, hospitalization for HF (HHF), and progres-
sion of CKD stage from baseline [22]. Furthermore, 
the FLIEDER study aimed to develop risk prediction 
models for kidney failure/need for dialysis, HHF, and 
worsening of CKD stage from baseline, for patients 
with non-diabetic CKD based on the data collected in 
the US routine clinical practice and used to reimburse 
the healthcare costs. The risk prediction models will be 
given here.

Methods
Study design
The study design and patient selection criteria have been 
published previously [22]. The FLIEDER study included 
longitudinal individual-level data from the Optum® Clin-
formatics® Data Mart (Optum CDM), collected between 
January 1, 2008, and December 31, 2018. The Optum 
CDM is one of the largest population-based claims data-
bases and comprises 64 million patients from commer-
cial health plan and Medicare Advantage data spanning 
all 50 states in the US. Optum CDM laboratory data are 
collected from several large laboratory vendors and are 
available for approximately 30% of the database members. 
In this study, the patient data analyzed were de-identified, 
and only aggregate results from the analysis are reported. 
Therefore, ethics approval and informed consent were 
not required (details provided in the ethics approval and 
consent to participate section). For patient data to be eli-
gible for inclusion in the study cohort, individuals were 
required to be recorded as having non-diabetic moder-
ate-to-severe CKD (stages 3 or 4) identified by an eGFR 
of 15–59  ml/min/1.73   m2 and/or by the International 
Classification of Diseases (ICD) code and confirmed by 
a second eGFR value or the ICD code 90–365 days apart 
(index date). Individuals had to be ≥ 18 years old at index 
and must have had continuous enrollment in the insur-
ance plan at least 1  year prior to index date (baseline 
period). Further patient inclusion and exclusion criteria 
have been published previously (Table S1) [22].

Outcomes
Three primary outcomes were defined based on ICD-9/-
10 diagnosis and procedure codes, Current Procedural 
Terminology-4/Healthcare Common Procedure Coding 
System (CPT-4/HCPCS) procedure codes or laboratory 
values observed in the post-index period: 1) a composite 

measure of kidney failure/need for dialysis, 2) HHF, and 
3) worsening of CKD stage from baseline. The worsening 
of CKD stage from baseline was defined based on eGFR 
values in the follow-up period or an observed diagnosis 
code for a more advanced CKD stage, where eGFR values 
were prioritized over diagnosis codes, if both were avail-
able. A change of stage had to be confirmed at least once, 
except if the change occurred in the last available data 
point.

Statistical analysis
Risk prediction models
Data-driven time-to-first-event risk prediction models 
were developed to identify relevant risk factors and to 
estimate risk of clinical outcomes of interest. A detailed 
technical description of the methodological approach has 
been published previously [23]. The main analysis steps 
are outlined below.

Baseline patient data, including patient demographic 
characteristics (age, sex), clinical diagnoses, procedures, 
and laboratory values, represented more than 540,000 
variables, if any single code from the coding systems used 
to record information in the Optum CDM was consid-
ered a variable. For the data-driven analysis, variables 
were classified into several categories: single or aggre-
gated ICD-9/-10 codes represented a specific disease; 
medical procedures were identified by ICD-9/-10, CPT-4 
or HCPCS codes; and National Drug Codes were used 
to identify medications grouped by therapeutic classes. 
ICD-9/-10 codes for the same disease or procedure were 
merged. Laboratory data were not used to define risk 
factors for the data-driven analysis due to their limited 
availability in the Optum CDM (approximately 30% of 
database members). Except for demographic variables, 
each variable was assessed as present (yes/no) in the 
patient baseline period of 1  year. Variables with a fre-
quency of appearance in < 0.1% of patients in the study 
cohort were excluded. A multivariable Cox regression 
analysis was conducted to identify 200 variables with the 
highest hazard ratios (HRs) (top “progressive” risk factor 
candidates) and 100 variables with the lowest HRs (top 
“protective” risk factor candidates). This was carried out 
via bootstrapping by randomly selecting 100 variables 
and repeating the analysis 1000 times. The unequal num-
ber of progressive and protective risk factor candidates 
(200 vs 100) was dictated by a proportion of variables 
with the respective HRs in the overall set. The threshold 
of 300 variables was chosen based on the observed level 
of HRs and to secure reasonable computational time for 
the follow-up optimization procedure.

An ant colony optimization (ACO) method was uti-
lized to identify a set of 20 risk factors, a desirable maxi-
mum amount of risk factors in the final model, among 
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300 candidates by optimizing the Bayesian information 
criterion of the corresponding Cox regression model 
(Fig. 1). The premise behind ACO is to identify variables 
that produce “traces” with a high “pheromone level,” indi-
cating the greatest impact on the clinical outcome among 
all candidate variables. ACO mimics the behavior of ants 
who leave behind pheromone trails leading towards a 
food source for other ants [24]. After applying ACO, a 
free term α was calculated, corresponding to the yearly 
hazard of the reference group (no risk factors, age zero, 
male gender, unknown race, and unknown albuminuria 
category).

The obtained data-driven risk prediction models were 
adjusted based on subject matter expertise, resulting 
in the final models for three clinical outcomes of inter-
est. The chosen methodology allowed for the addition 
of well-known risk factors of cardiorenal outcomes in 
CKD into the predictive models. For example, albumi-
nuria category (A1–A3), as defined based on the labora-
tory UACR test value, is a known clinical parameter that 
modifies individual risk of cardiorenal outcomes in CKD. 
UACR laboratory test results were available for only 6% 
of patients in the study cohort and like other laboratory 
data, were not used in the data-driven analysis. However, 
the effect of the albuminuria category as a risk factor was 
measured and added to the models “manually.” The pos-
sibility of estimating individual risk of clinical outcomes 
was preserved for patients with no reported UACR (i.e., 
with no assigned albuminuria category).

Demonstrating model performance
To demonstrate final models’ performance, all patients in 
the cohort were stratified into five risk groups based on 
the quintiles of hazards for a given outcome as estimated 
by the respective model: very low, low, medium, high, 

and very high. Namely, each group comprised 20% of all 
patients (e.g., the 20% of patients with the lowest hazards 
were in the ‘very low’ group, and the 20% with the highest 
hazards were in the ‘very high’ group). To obtain a risk 
estimate for a given patient to experience the outcome, 
the patient’s baseline data were assessed for the presence 
or absence of the risk factors, and the risk was evaluated 
using the prediction model. Three Kaplan–Meier curves 
were built for the identified risk groups (Figs.  2B, 3B, 
S2B) using the respective outcome data in the database. 
Clear separation between the curves is an indicator of 
high discrimination of the model.

All analyses were performed using R (version 3.6.2). 
For survival analysis, the R packages survival (version 
3.1–11), rms (version 5.1–4), and muhaz (version 1.2.6.1) 
were used. ACO was directly implemented in R. The R 
package randomForest (version 4.6–14) was used for the 
random forest algorithm.

Results
Patients
The main study cohort of the FLIEDER study included 
504,924 patients with non-diabetic CKD stages 3 or 
4 (Fig. S1). Of these patients, 504,687 were available for 
clinical outcome analysis and had follow-up data. The 
baseline characteristics of the main cohort have been pub-
lished previously [22] (Table S2). At baseline, eGFR values 
were available for 313,367 patients (62%); median (inter-
quartile range) eGFR was 53.0 (47.1–57.0) ml/min/1.73  m2; 
and UACR was recorded for 30,793 patients (6%) of 
individuals, of whom 73%, 21%, and 6% had normal-to-
mildly increased A1 (< 30 mg/g), moderately increased A2 
(30– ≤ 300 mg/g), and severely increased A3 (> 300 mg/g) 
albuminuria, respectively [22].

Fig. 1 Outline of data-driven methodological approach used to develop risk prediction models
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Clinical outcomes
Results from the primary FLIEDER analysis are already 
published [22]. Briefly, over a median follow-up of 
744 days, 24% of patients experienced the composite pri-
mary outcome of kidney failure/need for dialysis, with 
an incidence rate of 10.3 events per 100 patient-years. 
Furthermore, approximately 11% of patients experienced 
the HHF outcome (incidence rate: 4.0 events per 100 

patient-years) and 11% of patients experienced the wors-
ening of CKD stage outcome (incidence rate: 4.4 events 
per 100 patient-years).

Predictive models
Kidney failure/need for dialysis
The risk prediction model for the kidney failure/need 
for dialysis outcome in non-diabetic CKD is shown 

Fig. 2 Kidney failure/need for dialysis in patients with non-diabetic CKD A) Risk prediction model; B) Kaplan–Meier plots for non-diabetic CKD 
population stratified across five risk categories. CI, confidence interval; CKD, chronic kidney disease; HR, hazard ratio
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in Fig.  2A. The five strongest risk factors identified 
were stage 4 CKD (HR = 2.05, 95% confidence inter-
val [CI] = 2.01–2.08), severely increased albuminu-
ria-A3 (HR = 1.58, 95% CI = 1.45–1.72), metastatic 
solid tumor (HR = 1.58, 95% CI = 1.52–1.64), ane-
mia (HR = 1.42, 95% CI = 1.41–1.44), and proteinuria 
(HR = 1.40, 95% CI = 1.36–1.43). The influential pro-
tective factors against development of kidney failure/
need for dialysis included female gender (HR = 0.75, 

95% CI = 0.74–0.76), normal-to-mildly increased albu-
minuria-A1 where categories were defined in Murton 
et  al. [25] (HR = 0.79, 95% CI = 0.76–0.82), screening 
for malignant neoplasms (HR = 0.83, 95% CI = 0.82–0.84), 
Asian (HR = 0.87, 95% CI = 0.83–0.91) and Hispanic 
(HR = 0.97, 95% CI = 0.94–1.00) race, where the ref-
erence group was unknown race. The Kaplan–Meier 
curves to display the model performance across different 
predicted risk groups are depicted in Fig. 2B, suggesting 

Fig. 3 HHF in patients with non-diabetic CKD stage 3 or 4 A) Risk prediction model; B) Kaplan–Meier plots for non-diabetic CKD population 
stratified across five risk categories. CI, confidence interval; CAD, coronary artery disease; CKD, chronic kidney disease; HHF, hospitalization for heart 
failure; HR, hazard ratio
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good model performance based on clear separation 
between the curves. The reference hazard rate α in the 
risk prediction model for kidney failure/need for dialysis 
is 0.063 per year.

HHF
The risk prediction model for the HHF outcome in non-
diabetic CKD is shown in Fig.  3A. According to the 
model, history of HF (HR = 2.42, 95% CI = 2.37–2.48), use 
of loop diuretics (HR = 1.65, 95% CI = 1.62–1.69), severely 
increased albuminuria-A3 (HR = 1.55, 95% CI = 1.33–1.80), 
atrial fibrillation or flutter (HR = 1.53, 95% CI = 1.50–1.56), 
and stage 4 CKD (HR = 1.48, 95% CI = 1.44–1.52) were 
the greatest risk factors that led to HHF. The influential 
protective factors against HHF included normal-to-mildly 
increased albuminuria-A1 (HR = 0.72, 95% CI = 0.67–0.77), 
screening for malignant neoplasms (HR = 0.77, 95% 
CI = 0.75–0.79), Asian (HR = 0.82, 95% CI = 0.76–0.89) 
and Hispanic (HR = 0.85, 95% CI = 0.81–0.89) race, where 
the reference group was unknown race, and female gen-
der (HR = 0.90, 95% CI = 0.88–0.91). Clear separation 
between the risk-stratified Kaplan–Meier curves suggests 
good performance of the model (Fig. 3B). The reference 
hazard rate α value for HHF is 0.033 per year.

Worsening of CKD stage from baseline
The risk prediction model for worsening of CKD stage 
outcome in non-diabetic CKD is shown in Fig. S2A; the 
risk-stratified Kaplan–Meier curves are depicted in Fig. 
S2B. For details see Supplementary Appendix.

Discussion
In this real-world evidence study of patients with non-
diabetic CKD, risk prediction models were successfully 
developed to estimate risk of three cardiorenal clini-
cal outcomes: kidney failure/need for dialysis, HHF, and 
worsening of non-diabetic CKD based on data collected 
in the US routine clinical practice and used for reim-
bursement purposes.

It is well recognized [15] that predictions based on 
eGFR and albuminuria laboratory tests alone may not be 
sufficiently powerful, and adding further parameters into 
risk prediction models may substantially improve quality 
of risk estimation. Models often need to be adjusted or 
newly developed depending on the setting in which they 
are going to be used. No unique model can fit the univer-
sal purpose of predicting individual risk of an outcome.

A well-known Kidney Failure Risk Equation [15] rep-
resents a high-performing model to predict kidney fail-
ure in patients with CKD stages 3–5. The model includes 
age, sex, and routinely obtained laboratory test results. 
However, access to administrative claims databases is 
often restricted among database members to only a few, 

and may not even contain laboratory data. For exam-
ple, in our study using the Optum CDM database, with 
approximately 30% of database members having avail-
able laboratory data, the number of patients with non-
diabetic CKD stage 3 or 4, for whom the laboratory tests 
from the Kidney Failure Risk Equation were performed 
and the results were recorded during the 1-year baseline 
period, was very low (approximately 400 patients out of 
more than 500,000 in the main study cohort). This makes 
application of the Kidney Failure Risk Equation unfeasi-
ble in observational studies using secondary data sources 
similar to the Optum CDM or in settings where the com-
ponents of the equation cannot be collected.

To the best of our knowledge, no risk prediction mod-
els exist for cardiorenal outcomes in non-diabetic CKD 
based on claims data collected in routine clinical practice 
and used for reimbursement purposes. Development of 
such models was the aim of the present study. Variables 
to define risk factors were classified into several catego-
ries representing a specific disease, medical procedure, 
or medication, and were assessed as present (yes/no) in 
the patient baseline period of 1  year. Laboratory data 
were not used to define risk factors in the data-driven 
part of the analysis due to their limited availability. How-
ever, the chosen methodology allowed for the addition 
of well-known risk factors for cardiorenal outcomes in 
CKD into the predictive models. For example, albuminu-
ria category (A1–A3), as defined based on the UACR lab 
test, was added to the models “manually”. The possibil-
ity of estimating individual risk of clinical outcomes was 
preserved for patients with no reported UACR (i.e., with 
no assigned albuminuria category). A similar approach 
could be used for adding further laboratory-based risk 
factors (e.g., those used in the Kidney Failure Risk Equa-
tion) and is the subject of future research.

In the newly developed risk prediction model for kid-
ney failure/need for dialysis in non-diabetic moderate-
to-severe CKD, a diagnosis code for stage 4 CKD and 
severely increased albuminuria-A3 by UACR measure-
ment were identified as the strongest predictors. These 
findings support previous literature that indicate that 
patients with CKD who have severely increased albumi-
nuria or fall within the KDIGO high-risk or very high-risk 
groups experience the highest burden of the disease [25].

Hypertension has been shown to be a predictive 
risk factor for the incidence and severity of HF, with 
albuminuria also being a strong risk factor for HHF 
[26–29]. This aligns with findings from our risk pre-
diction model for HHF in patients with non-diabetic 
CKD, where the three strongest risk factors were his-
tory of HF, loop diuretic use (used for the treatment 
of hypertension), and severely increased albuminuria-
A3. Research indicates that one or more incidences of 
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HHF in patients with CKD increases the risk of ESKD, 
CKD progression, and mortality resulting from altered 
renal hemodynamics or comorbid CV disease [30, 31]. 
Our risk prediction models showed that a history of HF 
was the strongest risk factor for HHF, and also a risk 
factor associated with kidney failure/need for dialysis, 
suggesting that treatment of HF could be important in 
improving cardiorenal outcomes in the non-diabetic 
CKD population.

In our study, the strongest risk factors leading to wors-
ening of CKD stage from baseline were a diagnosis code 
for stage 4 CKD, increased albuminuria (A2 or A3) by 
UACR measurement, other kidney diseases (i.e., polycys-
tic kidney disease, proteinuria, renal tubulo-interstitial 
disease, and nephritic syndrome), anemia, hypertension, 
and HF. This result is in line with previous research dem-
onstrating a link between CKD and cardiorenal events [3, 
4, 25, 31].

Most observed protective factors across the three pre-
diction models included female gender, normal-to-mildly 
increased albuminuria-A1, as well as Asian or Hispanic 
race. The findings about gender and race shall be vali-
dated further in a later study. The protective effect of the 
albuminuria-A1 can be explained by a lower risk of non-
diabetic CKD patients with UACR of A1 category experi-
encing severe clinical outcome as compared with patients 
with UACR of categories A2 or A3.

In this study, metastatic solid tumor was among the 
strongest risk factors for kidney failure/need for dialysis. 
Patients with solid tumors are at risk of developing acute 
kidney injury and CKD due to the nephrotoxicity asso-
ciated with many cancer therapies, and kidney disease 
may subsequently complicate cancer treatment [32]. This 
highlights the need for kidney monitoring in patients 
with solid tumors as well as early referral to a nephrology 
clinic. This study also found that screening for malignant 
neoplasms was associated with a reduction in the risk of 
kidney failure/need for dialysis and HHF. Studies suggest 
that individuals who attend cancer screenings have more 
trust in healthcare providers, a better relationship with 
their provider, and may be more proactive in managing 
their health [33]. Consequently, these individuals may be 
more likely to be appropriately monitored and screened 
for existing conditions, contributing to a reduced risk of 
poor clinical outcomes. Moreover, screening for malig-
nant neoplasms may have been performed if a patient 
showed signs of malignancy during a visit, and some 
screened patients may have subsequently developed can-
cer and died. Death as a competing risk would reduce 
the number of observed outcome events and the feature 
“screening for malignant neoplasms” would appear to be 
protective for the respective outcome.

Despite an upward trend in recognition of CKD burden 
and consequences on patient wellbeing, nearly 50% of 
patients with low eGFR remain undiagnosed with CKD 
[34]. In addition, there is insufficiency in UACR screen-
ing in clinical practice, despite severely increased albumi-
nuria being reported to be associated with a high burden 
of CKD [25]. A previously developed model for predict-
ing risk of CKD onset and its progression in individu-
als with T2D names albuminuria and eGFR as the most 
important risk factors; however, the predictive ability 
of the model was found to be modest [13]. The findings 
from the present study also highlight the need for CKD 
screening through eGFR and UACR testing, as stage 4 
CKD and/or severely increased albuminuria were iden-
tified as strong risk factors in all three prediction mod-
els in non-diabetic CKD. The risk factors for stage 3 or 
stage 4 CKD were defined by ICD-9/-10 codes. If eGFR 
measurements are available, the models can be applied to 
estimate the risk of the clinical outcomes by matching the 
eGFR value with the respective CKD stage and setting it 
as yes/no in the models accordingly.

Large volumes of individual patient data and advances 
in data analytics and technology have created unprec-
edented opportunities for emerging risk prediction 
models in various patient population and outcomes. The 
models might be implemented into electronic health 
records, enabling automatic calculation of patient risks 
during interactions with healthcare systems and encour-
aging treating physicians or patients to take action. Preci-
sion medicine applications with tailored treatments such 
as these may lead to improved clinical outcomes and 
higher quality of patient life.

This study generated real-world evidence on patients 
with non-diabetic CKD using one of the largest admin-
istrative claims databases in the US. Besides clinical char-
acteristics and rates of cardiorenal outcomes, three risk 
prediction models were developed containing risk fac-
tors that are collected routinely at the point of care of 
non-diabetic CKD patients. The generated results may 
be critical for healthcare quality improvement in clini-
cal practice, as well as in clinical research and health-
care decision-making [35, 36]. Furthermore, the models 
may be applied to individual risk calculation to provide 
patients with a better understanding of their disease. 
They may serve as bases for novel risk scores to predict 
worsening of kidney function or HF outcome in non-
diabetic CKD; in order to find an application area, these 
models shall be validated in external data sources.

Study strengths and limitations
Unlike many of the previously reported studies focus-
ing on diabetic CKD patients, this study focused on the 
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development of risk prediction models for kidney failure/
need for dialysis, HHF, and worsening of CKD stage in 
non-diabetic CKD stages 3 or 4. The study investigated 
a large patient cohort comprising more than 500,000 
patients treated in routine clinical practice in the US for 
whom the individual-level claims data used for reim-
bursement purposes were available.

Certain limitations of this study are relative to the data 
source, to the nature of the study, and to analytical meth-
ods. The study cohort was restricted to the US, and the 
source population was comprised of individuals in the 
Optum CDM database. Individuals enrolled in the Optum 
CDM database are largely representative of the insured 
US population in terms of age, sex, and region. Therefore, 
generalizability of the results of this study to the entire US 
population should be considered acceptable. However, 
it should be noted that data from uninsured patients is 
not available in Optum CDM, so these patients were not 
investigated. Furthermore, our study is limited to patient 
groups with access to the US healthcare system. Optum 
CDM laboratory data are collected from several large lab-
oratory vendors and are available for a fraction (approxi-
mately 30%) of the database members, as is common in 
many claims databases. Laboratory examinations done in 
a hospital setting or directly in the physician’s office are 
underrepresented. However, there is no reason to believe 
that selection bias is of concern because participation of 
laboratories in the Optum agreement is assumed to be 
random. Laboratory results for eGFR and UACR tests are 
the gold standard for defining CKD, although the major-
ity of patients in the study cohort were included based on 
ICD codes for CKD. While this approach has limitations, 
it has been shown that the code-based definition of CKD 
stages 3–4 using claims databases has a positive predic-
tive value of > 80% [37]; therefore, it can be assumed that 
the findings of the study are not dependent on the method 
used for defining CKD.

Considerable effort was made in our study to define a 
non-diabetic CKD cohort as close as possible to the exist-
ing clinical definition of the disease while accounting for 
the limitations of the available patient data in administra-
tive claims. “Target trial emulation” principles were fol-
lowed, and the definition of non-diabetic CKD from the 
main contemporary randomized clinical trials was used. 
These trials define CKD based on eGFR or eGFR plus 
UACR laboratory tests and often include patients with 
CKD of various etiologies. In this study, patients were 
defined with CKD stage 3 or 4 based on CKD diagnostic 
codes (ICD-10-CM N18.3X, N18.4) or eGFR laboratory 
values (G3, G4). Moreover, eGFR values were prioritized 
over diagnosis codes, if both were available. No ICD 
codes indicating specific kidney diseases from the ICD 
ontology were used to build the study cohort. However, 

additional kidney diseases (as per diagnostic codes) were 
reported for study patients during the baseline period.

The typical course of CKD progression from stage 1 to 
5 lasts more than 10 years. Because of limited patient fol-
low-up time in Optum CDM, with an average time in the 
database of approximately 3 years, full progression of CKD 
from stage 1 to kidney failure is not feasible to investigate. 
Therefore, this study focused on CKD progression begin-
ning with moderate to severe stages. Both incident and 
prevalent cases of CKD were included and, subsequently, 
patients may have had a different duration of disease when 
entering the study cohort. To build risk prediction models, 
patient data were used as recorded in the baseline period 
of 1 year prior to the index event of CKD stage 3 or 4 diag-
nosis. Therefore, some risk factors may have been meas-
ured 1 year prior to index date. This shall be accounted for 
when interpreting the results of the study.

There are existing models that predict worsening of 
CKD to ESKD or HHF, but these address patient popula-
tions that are different to non-diabetic CKD. Moreover, 
despite large volumes of emerging literature on risk pre-
diction models across different therapy areas and popu-
lation types, analytical techniques used for building the 
models often consider outcomes as binary events occur-
ring within a fixed time period, for instance 1 year, rather 
than applying time-to-event analysis. The latter takes 
censoring events and varying individual time under risk 
into account and is largely accepted as the method of 
choice in event-based clinical and observational studies. 
In the present study, a data-driven time-to-event-based 
approach accomplished by the optimization method and 
subject matter expertise was used to develop risk pre-
diction models. They predict individual risk for varying 
future time intervals that can be plugged into the model. 
One limitation of the used approach is that there is no 
opportunity to apply standard techniques to validate 
model performance. Well-known methods to estimate 
area-under-the-curve, sensitivity, and specificity are 
not easily applicable for the time-to-event analysis. The 
developed models demonstrated high discrimination 
ability to separate patient risk groups, although they need 
to be validated in other patient populations and datasets. 
This represents an important limitation and requires fur-
ther research.

Conclusions
Results of the study allow prediction of individual 
risk for adverse cardiorenal outcomes in non-diabetic 
CKD and support identification of patients with this 
disease at high risk of such outcomes. Stage 4 CKD, 
severely increased albuminuria-A3, history of HF, and 
use of loop diuretics were identified as the most influ-
ential risk factors within the three prediction models 
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for kidney failure/need for dialysis, HHF, and worsen-
ing of CKD stage from baseline. The most commonly 
observed protective factors across the three predic-
tion models included female gender, normal-to-mildly 
increased albuminuria-A1, as well as Asian or Hispanic 
race. The risk prediction models developed in this study 
have potential broad clinical applications in patient care 
because they include risk factors routinely collected by 
healthcare providers. The use of risk prediction models 
in clinical practice may aid healthcare decision-making 
and improve patient outcomes in the non-diabetic CKD 
population. The next steps would be to validate these 
models in external data sources.
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