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Predictors of limited early response to anti‑vascular endothelial 
growth factor therapy in neovascular age‑related macular 
degeneration with machine learning feature importance
Scott W. Perkins1, Anna K. Wu2,3, Rishi P. Singh3

Abstract:
PURPOSE: Patients with neovascular age‑related macular degeneration (nAMD) have varying responses to 
anti‑vascular endothelial growth factor injections. Limited early response (LER) after three monthly loading 
doses is associated with poor long‑term vision outcomes. This study predicts LER in nAMD and uses feature 
importance analysis to explain how baseline variables influence predicted LER risk.

METHODS: Baseline age, best visual acuity (BVA), central subfield thickness (CST), and baseline and 3 months 
intraretinal fluid (IRF) and subretinal fluid (SRF) for 286 eyes were collected in a retrospective clinical chart 
review. At month 3, LER was defined as the presence of fluid, while early response (ER) was the absence thereof. 
Decision tree classification and feature importance methods determined the influence of baseline age, BVA, 
CST, IRF, and SRF, on predicted LER risk.

RESULTS: One hundred and sixty‑seven eyes were LERs and 119 were ERs. The algorithm achieved area 
under the curve = 0.66 in predicting LER. Baseline SRF was most important for predicting LER while age, 
BVA, CST, and IRF were somewhat less important. Nonlinear trends were observed between baseline variables 
and predicted LER risk. Zones of increased predicted LER risk were identified, including age <74 years, and 
CST <290 or >350 µm, IRF >750 nL, and SRF >150 nL.

CONCLUSION: These findings explain baseline variable importance for predicting LER and show SRF to be the 
most important. The nonlinear impact of baseline variables on predicted risk is shown, increasing understanding 
of LER and aiding clinicians in assessing personalized LER risk.
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Introduction

Age‑related macular degeneration (AMD) is a 
common progressive retinal disease‑causing 

irreversible vision loss.[1] An end‑stage form 
of AMD is neovascular age‑related macular 
degeneration  (nAMD), characterized by 
retinal hypoxia, choroidal neovascularization 
and vascular permeability driven by vascular 
endothelial growth factor  (VEGF). These 
factors lead to the accumulation of intraretinal 
fluid  (IRF) and subretinal fluid  (SRF), causing 
subsequent visual impairment. While nAMD 
accounts for approximately 10% of AMD cases, 

it causes approximately 90% of cases of legal 
blindness associated with this condition.[2]

Anti‑VEGF injections are first‑line therapy 
for nAMD, typically initiated with a loading 
dose of three monthly injections.[3‑6] However, 
response to anti‑VEGF varies, as limited early 
response  (LER), defined as early residual 
fluid presence after the loading period, has 
been associated with poor long‑term visual 
gains compared to those without fluid.[7,8] It is 
difficult for clinicians to predict which patients 
will respond well to treatment, so increasing 
understanding of how to predict LER would be 
clinically useful.
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Machine learning  (ML) methods have become increasingly 
prevalent in medicine and ophthalmology due to their ability to 
use clinical data to classify disease states and predict prognosis, 
but many methods are not easily understandable due to their 
complexity.[9‑11] A recent study by Ajana et al. predicted progression 
to advanced AMD using baseline genetic, clinical, lifestyle data, 
and ML techniques.[12] This study aims to predict LER in nAMD 
with ML and uses feature importance analysis to explain how 
the algorithm functions. This promises to increase understanding 
of how baseline variables influence predicted LER risk and aid 
clinicians in personalized assessment of nAMD prognosis.

Methods

Design and participants
Approval was received from the Institutional Review 
Board for a retrospective non‑randomized cohort study. 
The study was performed in accordance with good clinical 
practice  (International Conference on Harmonization of 
Technical Requirements of Pharmaceuticals for Human 
Use  [ICH] E6) and the Health Insurance Portability and 
Accountability Act. As an anonymized retrospective study, 
informed consent was not required.

Individuals older than 18 years with a documented diagnosis 
of nAMD between January 1, 2012, and March 1, 2018, were 
queried from the electronic medical record. Inclusion criteria 
were: Patients who had their first anti‑VEGF injection at the 
institution without prior nAMD treatment, follow‑up for at 
least 1 year after the first injection, and available OCT data 
every 3 months from baseline to 1  year. Exclusion criteria 
were: Concurrent maculopathies, unreadable OCT scans at any 
time point, or absence of fluid at baseline. In cases of bilateral 
nAMD, the first treated eye was included.

Collected variables
Baseline age, central subfield thickness (CST), and best visual 
acuity  (BVA) were collected from patient charts. BVA was 
converted from Snellen units to Early Treatment Diabetic 
Retinopathy Study  (ETDRS) letters using the formula 
ETDRS = 85 + 50 (log10(Snellen)). OCTs taken at baseline 
and 3  months by Cirrus High‑Definition Spectral Domain 
OCT (V.9.5.1, Carl Zeiss Meditech, Dublin CA) were analyzed 
by Notal OCT Analyzer (Notal Vision Ltd., Tel Aviv, Israel), a 
validated ML algorithm that automatically quantifies IRF and 
SRF in nAMD.[13,14] LER was defined as the presence of IRF 
and/or SRF at month 3 whereas early response (ER) was defined 
as the absence of fluid. This was in concordance with previous 
studies and in light of previous studies which correlated early 
residual fluid with poor long‑term BVA outcomes.[7,8]

Development of machine learning algorithm
To predict LER status from baseline age, BVA, CST, IRF, and 
SRF, baseline variables were min‑max scaled (0‑1), and LER 
status at month 3 was one‑hot encoded. An extreme gradient 
boosted decision trees (XGBoost) model was developed and 
evaluated using Pandas 1.1.3, Numpy 1.19.2, Sklearn 1.0.1, 

Matplotlib 3.3.2, XGBoost 1.3.3, Seaborn 0.11.0, Shap 0.40.0, 
and Python 3.8.5. Class weights were balanced to correct 
for slight imbalance in the data. Predictive performance was 
measured with 10‑fold cross‑validation.

Feature importance analysis
Kernel density estimation calculated density plots of baseline 
variables for the entire cohort as well as subgroups of LERs 
and ERs. Feature importance values from the XGBoost 
model output were assessed, including mean decrease in 
Gini impurity  (MDI), gain, coverage, and weight feature 
importance. Shapley additive explanation (SHAP) values were 
calculated for baseline variables of each sample.

Results

Machine learning predicts month 3 limited early response 
from baseline
One hundred and sixty‑seven eyes were true LERs and 119 
were ERs, showing only a mild class imbalance correctable by 
class weight balancing in the XGBoost model. The XGBoost 
model predicted LER status from baseline variables with 
area under the receiver operating characteristic curve (AUC) 
=0.66, accuracy = 0.62, precision = 0.68, recall = 0.65, and 
F1 = 0.66 [Figure 1a and Table 1]. AUC varied from 0.49 to 
0.86 for the 10 cross‑validation splits [Figure 1a].

Regions of similarity and divergence between baseline 
density plots of limited early responses and early 
responses
The estimated true distributions of baseline variables given 
infinite random sampling are visualized by kernel density 
estimation  [Figure 1b‑f and Figure 2]. The age distribution 
of LERs was slightly left‑shifted compared to ERs, with 
LERs having greater density below 85 years and ERs having 
greater density above 85 years [Figure 1b]. The LER and ER 
distributions of BVA had similar left‑skewed shapes, while ERs 
had greater density from 55 to 75 ETDRS letters and LERs 
had greater density from 15 to 55 ETDRS letters [Figure 1c]. 
The CST distributions of LERs and ERs had similar shapes 
with slight right skew, while ERs had slightly greater density 
from 250 to 375 µm and LERs had slightly greater density for 
the ranges 375–475 and above 520 µm [Figure 1d]. The LER 
and ER distributions of IRF both had greatest density close 
to zero nL, although the ER distribution had greater density 
close to zero than LERs, and LERs had greater density above 
1450 nL  [Figure 1e]. Similar to IRF, SRF distributions for 
LERs and ERs had greatest density near 0 nL, ERs had greater 
density near zero, and LERs had greater density for the ranges 
250–1500 nL and greater than 2000 nL [Figure 1f].

Table 1: Performance metrics of XGBoost prediction of 
limited early response
Accuracy Precision Recall AUC F1
0.62 0.68 0.65 0.66 0.66
AUC: Area under the receiver operating characteristic curve
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Feature importance of baseline variables for limited early 
response prediction
Feature importance metrics of the XGBoost models show 
the roles played by baseline variables in the model’s 
performance  [Figure  3 and Table  2]. MDI measures how 
much a variable increases the model’s predictive ability 
overall. SRF had a MDI of 0.25, the largest of any baseline 
variable [Figure 3a and Table 2]. While SRF had the greatest 
MDI, IRF had the least MDI [Figure 3a and Table 2].

Information gain describes how much an individual decision 
improves the model’s predictive power, and gain feature 
importance is the average gain of all decisions which use a 

given variable.[15] Similarly, coverage is defined as the total 
number of samples affected by a decision in the model. 
Coverage feature importance is the average coverage of all 
decisions involving a given variable.

Besides having the greatest MDI, SRF also had the 
greatest gain feature importance and coverage feature 
importance [Figure 3b, c and Table 2]. Both MDI and gain 
feature importance decreased consistently in the following 
order: SRF, Age, BVA, CST, and IRF [Figure 3d and Table 2]. 
SRF, CST, and IRF had similar coverage feature importance 
values (40.67, 40.00, and 39.76, respectively) and BVA had 
the least coverage importance [Figure 3c and Table 2].

Figure 1: Predictive accuracy of XGBoost conferred by divergence in LER versus ER variable distributions. (a) 10-fold cross-validated ROC curve; 
(b-f) Baseline kernel estimated density functions of LER and ER subgroups. LER: Limited early response, ER: Early response, ROC: Receiver operating 
characteristic
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Figure 2: Baseline variable distributions and kernel estimation of probability density functions of entire cohort (a), LER subgroup (b), and ER subgroup 
(c). LER: Limited early response, ER: Early response
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Weight feature importance, defined as the number 
of decisions in the XGBoost model which involve a 
given variable, can indicate relationship complexity as 
complex relationships can require more decisions to 
model [Figure 3d]. Similar to coverage importance, BVA 
has the lowest weight feature importance – 42 units lower 
than the next feature – and a relatively simple relationship 
with predicted LER risk where BVA  <20 ETDRS letters 
decreased LER risk and BVA  >20 had only a marginal 
impact on LER risk [Figures 3d and 4c]. The high weight 
importance of age likely reflects fluctuations in SHAP 
values from 74 to 86 years which may be artifacts of this 
dataset [Figures 3d and 4b].

Nonlinear impact of baseline variables on predicted 
limited early response risk
SHAP values showed that baseline variables influenced 
predicted LER risk with nonlinear relationships. A positive 
SHAP value indicates an increase in predicted LER risk for 
a given baseline feature value, while a negative SHAP value 
indicates decreased risk  [Figure  4]. SRF had the greatest 
positive impact on risk, while age had the greatest negative 

impact on risk, as evidenced by the highest and lowest SHAP 
values, respectively [Figure 4a].

CST, IRF, and BVA influenced risk both positively and 
negatively, and to a lesser extent than SRF and age [Figure 4a]. 
Overall, SHAP values suggest that age consistently increases 
predicted LER risk below 74  years, and predicted LER 
risk as a result of age decreases as age increases from 74 to 
90  years  [Figure  4b]. Above 90  years, risk is consistently 
decreased by age  [Figure  4b]. Baseline BVA  <20 ETDRS 
letters decreased predicted LER risk, and there was only a 
marginal impact on risk above 20 letters [Figure 4c]. Baseline 
CST tended to increase risk below 290 or above 350 µm 
and decreased risk for the range 290–350 µm  [Figure  4d]. 
Baseline IRF had no clear trend for 0‑100 nL, decreased risk 
for 100–600 nL, and increased risk above 750 nL [Figure 4e]. 
Having SRF close to zero decreased predicted LER risk, but 
risk increased for SRF >150 nL [Figure 4f].

Discussion

Many previous ML models predicting ophthalmic outcomes 
have been difficult to interpret.[16,17] This study is novel in 
using feature importance and SHAPs to understand predictors 
of ophthalmic disease. In addition, previous studies of clinical 
and anatomic predictors of nAMD prognosis have not 
investigated the possibility of nonlinear relationships between 
variables.[18‑20] Therefore, the relationships between baseline 
variables and predicted LER risk reported in this study are novel.

The model’s AUC of 0.66 showed that the study variables 
contribute to LER prediction, but that other variables are involved 
as well [Figure 1a]. Previous ML studies predicting outcomes in 
ophthalmic diseases have achieved AUC ranging from 0.68 to 

Table 2: Feature importance values of XGBoost model
Feature 
name

Mean decrease 
in impurity

Weight 
importance

Gain 
importance

Coverage 
importance

Age 0.22 77 2.51 38.00
BVA 0.20 10 2.23 32.51
CST 0.17 52 1.91 40.00
IRF 0.16 52 1.76 39.76
SRF 0.25 65 2.81 40.67
BVA: Best visual acuity, CST: Central subfield thickness, IRF: Intraretinal 
fluid, SRF: Subretinal fluid

Figure 3: Feature importance of baseline variables in XGBoost prediction of LER by mean decrease in Gini impurity (a), information gain (b), coverage 
(c), and weight (d). LER: Limited early response
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0.79,[10,11,21] while higher performance has been achieved with 
large datasets and/or deep learning approaches.[7,12,16] The present 
study is remarkable in achieving moderate performance with 
only a limited number of baseline features.

The high gain importance of SRF shows that decisions 
involving SRF on average contribute to the model’s predictive 
power than decisions involving other variables [Figure 3b]. 
Since SRF also has the highest coverage importance, decisions 
involving SRF affect the classification of more samples on 
average than decisions involving other variables [Figure 3c]. 
As a whole, feature importance values indicate that SRF 
contributes most to the prediction of LER risk, while age, BVA, 
CST, and IRF contribute to a slightly lesser degree [Figure 3]. 
The relative importance of baseline variables in LER has 
not been previously assessed in the literature. In addition, 
previous studies have solely used Gini impurity as a feature 
importance metric, while this study uses multiple measures to 
gain a nuanced understanding of feature importance in LER 
prediction.[9,11]

The lack of decreased predicted LER risk at high BVA is similar 
to a large nAMD study in which patients with high baseline 
BVA were at greater risk for vision loss, although this study did 
not consider a threshold above which risk of a robust response 
was less [Figure 4c].[9,22] Furthermore, another study found no 
significant difference between mean baseline BVA of LERs and 
ERs, but did not investigate whether a nonlinear relationship 
between BVA and LER risk was present in the data.[7] Similarly, 
a complementary study and forthcoming manuscript using 
the same patient cohort and data as this study did not find a 
significant difference between change in BVA from baseline 
to 3 months for LER compared to ER patients but also did 
not investigate the possibility of a nonlinear relationship or 
interactions with other variables influencing LER risk.[23] 
Therefore, these results increase the understanding of potential 
relationships between BVA and predicted LER risk.

The observed trend of decreased predicted LER risk with 
increased age contrasts with the previously discovered positive 
correlation between age and poor BVA outcomes, although 
research has shown that BVA and fluid outcomes are not 
always linked, so it is possible that different pathological 
characteristics in older patients could result in decreased LER 
risk but not increased BVA outcomes long‑term compared 
to younger patients [Figure 4b].[9,20,24,25] Forms of AMD that 
present earlier in life could target the deep capillary plexus, 
thought to be most involved in venous drainage, leading 
to increased LER risk without the contribution of other 
mechanisms to vision loss such as geographic atrophy that 
could be more prevalent in older patients.[26] Further research 
is needed to clarify these complex relationships.

The nonlinear impact of CST on predicted LER risk was 
similar to a relationship observed by Jaffe et al. A thinner or 
thicker retina was correlated with poor VA outcomes, while 
retinas with intermediate thickness tended to have better 
VA outcomes [Figure 4d].[27] In this study, increased risk at 
very high CST could be explained by increased retinal fluid, 
making residual fluid at 3 months more likely, while lower 
CST could indicate the thinning of functional retinal tissue 
due to geographic atrophy, suggesting a more pathologic state 
and increased LER risk. While the entirety of the lower CST 
range identified  (<290 µm) does not constitute abnormally 
thin CST, the overall baseline CST values in this cohort are 
inflated  [Figure  2a], likely due to the presence of baseline 
retinal fluid.[28] Therefore, thinning of functional tissue due to 
geographic atrophy could still be present despite apparently 
normal CST.

The nonlinear impact of IRF on predicted LER risk may arise 
from a phenomenon discussed by Jaffe et al., whereby IRF 
could arise by multiple mechanisms, including VEGF‑mediated 
neovascularization and non‑VEGF‑mediated apoptosis and 
necrotic cell death [Figure 4e].[27] Very large amounts of IRF 

Figure 4: Shapley additive explanations of feature impact on predicted LER risk. LER: Limited early response
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may arise from multiple simultaneous mechanisms, leading 
to LER when only the VEGF‑mediated IRF source‑not all 
sources‑is targeted by anti‑VEGF. In contrast, intermediate 
IRF levels may arise from VEGF‑mediated mechanisms alone, 
increasing the likelihood of a robust anti‑VEGF response. The 
lack of a consistent risk trend conferred by low IRF levels may 
result from a mixed population of patients for this range, some 
of whom present with a mild form of nAMD which responds 
well to anti‑VEGF, and others who have a poorer prognosis but 
present with little IRF due to an earlier stage in the development 
of the disease at baseline.

In contrast to IRF, predicted LER risk increased consistently 
but nonlinearly as SRF increased [Figure 4f]. Therefore, SRF 
may arise predominantly from VEGF‑mediated mechanisms 
and confer LER risk simply by overwhelming the capacity of 
the retinal venous system to drain fluid throughout the loading 
dose. Previous research found that baseline retinal fluid can 
be associated with poor long‑term outcomes, but the impact 
of the quantity of baseline fluid on predicted LER probability 
has not been previously investigated with ML, rendering the 
nonlinear relationship in this study novel.[7]

Strengths of this study include being the first to assess 
baseline variable importance and nonlinear relationships for 
predicting LER risk. Limitations include the relatively small 
cohort size and the fact that interactions between variables 
remain poorly understood. In future work, predictive accuracy 
may be improved by the inclusion of features representing 
fluid location, which have previously contributed to ML 
assessment of ophthalmic disease.[10] In addition, this 
real‑world study used BVA instead of best‑corrected visual 
acuity (BCVA), which is the metric most often used in clinical 
trials to assess visual outcomes. However, this is an inherent 
limitation to real‑world practice, as BCVA is not routinely 
assessed at all clinical visits. In addition, a larger patient 
cohort may enable the use of deep learning methodology to 
improve accuracy.[16]

Conclusion

By considering variable importance and nonlinear relationships, 
this study promotes nuanced consideration of LER in nAMD, 
which could lead to individualized predictions of LER risk for 
personalized medicine. If LER risk, which is correlated with 
poor long‑term outcomes, can be predicted, then clinicians may 
recommend proactive dosing regimens and closer follow‑up 
for high‑risk patients. Further investigation of the clinical 
features, predictive factors, and implications of LER may 
enable the establishment of clinical recommendations for 
patients with LER.
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