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Abstract

Laboratory testing is an integral tool in the management of patient care in hospitals, particularly in 

intensive care units (ICUs). There exists an inherent trade-off in the selection and timing of lab 

tests between considerations of the expected utility in clinical decision-making of a given test at a 

specific time, and the associated cost or risk it poses to the patient. In this work, we introduce a 

framework that learns policies for ordering lab tests which optimizes for this trade-off. Our 

approach uses batch off-policy reinforcement learning with a composite reward function based on 

clinical imperatives, applied to data that include examples of clinicians ordering labs for patients. 

To this end, we develop and extend principles of Pareto optimality to improve the selection of 

actions based on multiple reward function components while respecting typical procedural 

considerations and prioritization of clinical goals in the ICU. Our experiments show that we can 

estimate a policy that reduces the frequency of lab tests and optimizes timing to minimize 

information redundancy. We also find that the estimated policies typically suggest ordering lab 

tests well ahead of critical onsets—such as mechanical ventilation or dialysis—that depend on the 

lab results. We evaluate our approach by quantifying how these policies may initiate earlier onset 

of treatment.
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1. Introduction

Precise, targeted patient monitoring is central to improving treatment in an ICU, allowing 

clinicians to detect changes in patient state and to intervene promptly and only when 

necessary. While basic physiological parameters that can be monitored bedside (e.g., heart 

rate) are recorded continually, those that require invasive or expensive laboratory tests (e.g., 

white blood cell counts) are more intermittently sampled. These lab tests are estimated to 

influence up to 70% percent of diagnoses or treatment decisions, and are often cited as the 

motivation for more costly downstream care [1, 2]. Recent medical reviews raise several 

concerns about the over-ordering of lab tests in the ICU [3]. Redundant testing can occur 
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when labs are ordered by multiple clinicians treating the same patient or when recurring 

orders are placed without reassessment of clinical necessity. Many of these orders occur at 

time intervals that are unlikely to include a clinically relevant change or when large panel 

testing is repeated to detect a change in a small subset of analyses [4]. This leads to inflation 

in costs of care and in the likelihood of false positives in diagnostics, and also causes 

unnecessary discomfort to the patient. Moreover, excessive phlebotomies (blood tests) can 

contribute to risk of hospital-acquired anaemia; around 95% of patients in the ICU have 

below normal haemoglobin levels by day 3 of admission and are in need of blood 

transfusions. It has been shown that phlebotomy accounts for almost half the variation in the 

amount of blood transfused [5].

With the disproportionate rise in lab costs relative to medical activity in recent years, there is 

a pressing need for a sustainable approach to test ordering. A variety of approaches have 

been considered to this end, including restrictions on the minimum time interval between 

tests or the total number of tests ordered per week. More data-driven approaches include an 

information theoretic framework to analyze the amount of novel information in each ICU lab 

test by computing conditional entropy and quantifying the decrease in novel information of a 

test over the first three days of an admission [6].

In a similar vein, a binary classifier was trained using fuzzy modeling to determine whether 

or not a given lab test contributes to information gain in the clinical management of patients 

with gastrointestinal bleeding [7]. An “informative” lab test is one in which there is 

significant change in the value of the tested parameter, or where values were beyond certain 

clinically defined thresholds; the results suggest a 50% reduction in lab tests compared with 

observed behaviour. More recent work looked at predicting the results of ferratin testing for 

iron deficiency from information in other labs performed concurrently [8]. The predictability 

of the measurement is inversely proportional to the novel information in the test. These past 

approaches underscore the high levels of redundancy that arise from current practice. 

However, there are many key clinical factors that have not been previously accounted for, 

such as the low-cost predictive information available from vital signs, causal connection of 

clinical interventions with test results, and the relative costs associated with ordering tests.

In this work, we introduce a reinforcement learning (RL) based method to tackle the 

problem of developing a policy to perform actionable lab testing in ICU patients. Our 

approach is two-fold: first, we build an interpretable model to forecast future patient states 

based on past observations, including uncertainty quantification. We adapt multi-output 

Gaussian processes (MOGPs; [9, 10]) to learn the patient state transition dynamics from a 

patient cohort including sparse and irregularly sampled medical time series data, and to 

predict future states of a given patient trajectory. Second, we model patient trajectories as a 

Markov decision process (MDP). This framework has been applied to the recommendation 

of treatment strategies for critical care patients in a variety of different settings, from 

recommending drug dosages to efficiently weaning patients from mechanical ventilation 

[11–13]. We design the state and reward functions of the MDP to incorporate relevant 

clinical information, such as the expected information gain, administered interventions, and 

costs of actions (here, ordering a lab test). A major challenge is designing a reward function 

that can trade off multiple, often opposing, objectives. There has been initial work on 
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extending the MDP framework to composite reward functions [14]. Specifically, fitted Q-

iteration (FQI) has been used to learn policies for multi-objective MDPs with vector-valued 

rewards, for the sequence of interventions in two-stage clinical antipsychotic trials [15]. A 

variation of Pareto domination was then used to generate a partial ordering of policies and 

extract all policies that are optimal for some scalarization function, leaving the choice of 

parameters of the scalarization function to decision makers.

Here, we look to translate these principles to the problem of lab test ordering. Specifically, 

we focus on blood tests relevant in the diagnosis of sepsis or acute renal failure, two 

common conditions associated with high mortality risk in the ICU: white blood cell count 

(WBC), blood lactate level, serum creatinine, and blood urea nitrogen (BUN). We present 

our methods within a flexible framework that can in principle be adapted to a patient cohort 

with different diagnoses or treatment objectives, influenced by a distinct set of lab results. 

Our proposed framework integrates prior work on off-policy RL and Pareto learning with 

practical clinical constraints to yield policies that are close to intuition demonstrated in 

historical data. We apply our framework to a publicly available database of ICU admissions, 

evaluating the estimated policy against the policy followed by clinicians using both 

importance sampling based estimators for off-policy policy evaluation and by comparing 

against multiple clinically inspired objectives, including onset of clinical treatment that was 

motivated by the lab results.

2. Methods

2.1. Cohort selection and preprocessing

We extract our cohort of interest from the MIMIC III database [16], which includes de-

identified critical care data from over 58,000 hospital admissions. From this database, we 

first select adult patients with at least one recorded measure for each of 20 vital signs and lab 

tests commonly ordered and reviewed by clinicians (for instance, results reported in a 

complete blood count or basic metabolic panel). We further filter patients by their length-of-

stay, keeping only those in the ICU for between one and twenty days, to obtain a final set of 

6,060 patients (Table 1).

Included in the 20 physiological traits we filter for are eight that are particularly predictive 

of the onset of severe sepsis, septic shock, or acute kidney failure. These traits are included 

in the SIRS (System Inflammatory Response Syndrome) and SOFA (Sequential Organ 

Failure Assessment) criteria [17]. The average daily measurements or lab test orders across 

the chosen cohort for these eight traits is highly variable (Figure 1). Of these eight traits, the 

first three are vitals measured using bedside monitoring systems for which approximately 

hourly measurements are recorded; the latter four are labs requiring phlebotomy and are 

typically measured just 2–3 times each day. We find the frequency of orders also varies 

across different labs, possibly due in part to differences in cost; for example, WBC (which is 

relatively inexpensive to test) is on average sampled slightly more often than lactate. In order 

to apply our proposed RL algorithm to this sparse, irregularly sampled dataset, we adapt the 

multi-output Gaussian process (MOGP) framework [10] to obtain hourly predictions of 

patient state with uncertainty quantified, on 17 of the 20 clinical traits. For three of the 
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vitals, namely the components of the Glasgow Coma Scale, we impute with the last recorded 

measurement.

2.2. MDP formulation

Each patient admission is modelled as an MDP with:

(1) a state space 𝒮, such that the patient physiological state at time t is given by 

st ∈ 𝒮;

(2) an action space 𝒜 from which the clinician’s action at is chosen;

(3) an unknown transition function 𝒫sa that determines the patient dynamics; and

(4) a reward function rt that constitutes the observed clinical feedback for this 

action.

The objective of the RL agent is to learn an optimal policy π∗ : 𝒮 𝒜 that maximizes the 

expected discounted accumulated reward over the course of an admission:

π∗ = argmax
π

𝔼 ∑
t = 0

T
γtrt ∣ π , where T is admission length, γ is the discount factor .

We start by describing the state space of our MDP for ordering lab tests. We first resample 

the raw time series using a multi-objective Gaussian process with a sampling period of one 

hour. The patient state at time t is defined by:

st = mt
SOFA, mt

vitals, mt
labs, yt

labs, Δt
labs ⊺

(1)

Here, mt denotes the predictive means and standard deviations respectively of each of the 

vitals and lab tests. For the predictive SOFA score mt
SOFA, we compute the value using its 

clinical definition, from the predictive means on five traits—mean BP, bilirubin, platelet, 

creatinine, FiO2—along with GCS and related medication history (e.g., dopamine). Vitals 

include any time-varying physiological traits that we consider when determining whether to 

order a lab test. Here, we look at four key physiological traits—heart rate, respiratory rate, 

temperature, and mean blood pressure—and four lab tests—creatinine, BUN, WBC, and 

lactate. The values yt are the last known measurements of each of the four labs, and Δt 

denotes the elapsed time since each was last ordered. This formulation results in a 21-

dimensional state space. Depending on the labs that we wish to learn recommendations for 

testing, the action space 𝒜 is a set of binary vectors whose 0/1 elements indicate whether or 

not to place an order for a specific lab. These actions can be written as at ∈ 𝒜 = {1, 0}L, 

where L is the number of labs. In our experiments, we learn policies for each of the four labs 

independently, such that L = 1, but this framework could be easily extended to jointly 

learning recommendations for multiple labs.
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In order for our RL agent to learn a meaningful policy, we need to design a reward function 

that provides positive feedback for the ordering of tests where necessary, while penalizing 

the over- or under-ordering of any given lab test. In particular, the agent should be 

encouraged to order labs when the physiological state of the patient is abnormal with high 

probability, based on estimates from the MOGP, or when a lab is predicted to be informative 

(in that the forecasted value is significantly different from the last known measurement) due 

to a sudden change in disease state. In addition, the agent should incur some penalty 

whenever a lab test is taken, decaying with elapsed time since the last measurement, to 

reflect the effective cost (both economic and in terms of discomfort to the patient) of the test. 

We formulate these ideas into a vector-valued reward function rt ∈ ℝd of the state and action 

at time t, as follows:

rt = rt
SOFA, rt

treat, rt
info, − rt

cost ⊺
(2)

Patient state: The first element, rSOFA, uses the recently introduced SOFA score for sepsis 

[18] which assesses severity of organ dysfunction in a potentially septic patient. Our use of 

SOFA is motivated by the fact that, in practice, sepsis is more often recognized from the 

associated organ failure than from direct detection of the infection itself [19]. The raw SOFA 

score ranges from 0 to 24, with a maximum of four points assigned each to symptom of 

failure in the respiratory system, nervous system, liver, kidneys, and blood coagulation. A 

change in SOFA score ≥ 2 is considered a critical index for sepsis [18]. We use this rule of 

thumb to design the first reward term as follows:

rt
SOFA = 𝟙at ≠ 0 ⋅ 𝟙 f ( ⋅ ) ≥ 2, where f ( ⋅ ) = mt

SOFA − mt − 1
SOFA . (3)

The raw score mt
SOFA at each time step t is evaluated using current patient labs and vitals 

[19].

Treatment onset: The second term is an indicator variable for rewards capturing whether 

or not there is some treatment or intervention initiated at the next time step, st+1:

rt
treat = 𝟙at ≠ 0 ⋅ ∑

i ∈ M
𝟙st + 1

(treatment i was given), (4)

where M denotes the set of disease-specific interventions of interest. Again, the reward term 

is positive if a lab is ordered; this is based on the rationale that, if a lab test is ordered and 

immediately followed by an intervention, the test is likely to have provided actionable 

information. Possible interventions include antibiotics, vasopressors, dialysis or ventilation.

Lab redundancy: The term rt
info denotes the feedback from taking one or more lab tests 

with novel information. We quantify this by using the mean absolute difference between the 
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last observed value and predictive mean from the MOGP as a proxy for the information 

available:

rt
info = ∑

ℓ = 1

L
max(0, g( ⋅ ) − cℓ) ⋅ 𝟙at[ℓ] = 1, where g( ⋅ ) =

mt
(ℓ) − yt

(ℓ)

σt
(ℓ) , (5)

where σt
ℓ is the normalization coefficient for lab ℓ and the parameter cℓ determines the 

minimum prediction error necessary to trigger a reward; in our experiments, this is set to the 

median prediction error for labs ordered in the training data. The larger the deviation from 

current forecasts, the higher the potential information gain, and in turn the reward if the lab 

is taken.

Lab cost: The last term in the reward function, rt
cost adds a penalty whenever any test is 

ordered to reflect the effective “cost” of taking the lab at time t.

rt
cost = ∑

ℓ = 1

L
exp −

Δt
(ℓ)

Γℓ
⋅ 𝟙at[ℓ] = 1, (6)

where Γℓ is a decay factor that controls the how fast the cost decays with the time Δt elapsed 

since the last measurement. In our experiments, we set Γℓ = 6 ∀ℓ ∈ L.

2.3. Learning optimal policies

Once we extract sequences of states, actions, and rewards from the ICU data, we can 

generate a dataset of one-step transition tuples of the form 

𝒟 = { st
n, at

n, st + 1
n , rt

n}, n = 1… ∣ 𝒟 ∣. These tuples can then be used to learn an estimate of 

the Q-function, Q : 𝒮 × 𝒜 ℝd—where d = 4 is the dimensionality of the reward function

—to map a given state-action pair to a vector of expected cumulative rewards. Each element 

in the Q-vector represents the estimated value of that state-action pair according to a 

different objective. We learn this Q-function using a variant of Fitted Q-iteration (FQI) with 

extremely randomized trees [13, 20]. FQI is a batch off-policy reinforcement learning 

algorithm that is well-suited to clinical applications where we have limited data and 

challenging state dynamics. The algorithm adapted here to handle vector-valued rewards is 

based on Pareto-optimal Fitted-Q [15].

In order to scale from the two-stage decision problem originally tackled to the much longer 

admission sequences here (≥ 24 time steps), we define a stricter pruning of actions: at each 

iteration we eliminate any dominated actions for a given state—those actions that are 

outperformed by alternatives for all elements of the Q-function—and retain only the set 

Π(s) = {a : ∄a′(∀d, Qd(s, a) < Qd(s, a′))} for each s. Actions are further filtered for 

consistency: we might consider feature consistency to be defined as rewards being linear in 

each feature space [15]. Here, we relax this idea to filter out only those actions from policies 
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that cannot be expressed by our nonlinear tree-based classifier. The function will still yield a 

non-deterministic policy (NDP) as, in most cases, there will not be a strictly optimal action 

that achieves the highest Qd for all d. We suggest one possible approach for reducing the 

NDP to give a single best action for any given state based on practical considerations in the 

next section.

3. Results

Following the extraction of our 6,060 admissions and resampling in hourly intervals using 

the forecasting MOGP, we partitioned the cohort into training and test sets of 3,636 and 

2,424 admissions respectively. This gave approximately 500,000 one-step transition tuples 

of the form 〈st, at, st+1, rt〉 in the training set, and over 350,000 in the test set. We then ran 

batched FQI with these samples for 200 iterations with discount factor γ = 0.9. Each 

iteration took

Algorithm 1

Multi-Objective Fitted Q-iteration with strict pruning (MO-FQI)

100,000 transitions, sampled from the training set, with probability inversely proportional to 

the frequency of the action in the tuple. The vector-valued outputs of estimated Q-function 

were then used to obtain a non-deterministic policy for each lab considered (Section 2.3). 

We chose to collapse this set to a practical deterministic policy as follows:
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Π(s) =
1, Qd(s, a = 0) < Qd(s, a = 1) + εd, ∀d

0, otherwise.
(7)

In particular, a lab should be taken (Π(s) = 1) only if the action is optimal, or estimated to 

outperform the alternative for all objectives in the Q-function. This strong condition for 

ordering a lab is motivated by the fact that one of our primary objectives here is to minimize 

unnecessary ordering; the variable εd allows us to relax this for certain objectives if desired. 

For example, if cost is a softer constraint, setting εcost > 0 is an intuitive way to specify this 

preference in the policy. In our experiments, we tuned εcost such that the total number of 

recommended orders of each lab approximates the number of actual orders in the training 

set.

With a deterministic set of optimal actions, we could train our final policy function 

π : 𝒮 A; again, we used extremely randomized trees. The estimated Gini feature 

importances of the policies learnt show that in the case of lactate the most important features 

are the mean and measured lactate, the time since last lactate measurement (Δ) and the 

SOFA score (Figure 2). These relative importance scores are expected: a change in SOFA 

score may indicate the onset of sepsis, and in turn warrant a lactate test to confirm a source 

of infection, fitting typical clinical protocol. For the other three policies (WBC, creatinine, 

BUN) again the time since last measurement of the respective lab tends be prominent in the 

policy, along with the Δ terms for the other two labs. This suggests an overlap in information 

in these tests: For example, abnormally high white blood cell count is a key criteria for 

sepsis; severe sepsis often cascades into renal failure, which is typically diagnosed by 

elevated BUN and creatinine levels [21].

Once we have trained our policy functions, an additional component is added to our final 

recommendations: we introduce a budget that suggests taking a lab at the end of every 24 

hour period for which our policy recommends no orders. This allows us to handle regions of 

very sparse recommendations by the policy function, and reflects clinical protocols that 

require minimum daily monitoring of key labs. In the policy for lactate orders in a typical 

patient admission, looking at the timing of the actual clinician orders, recommendations 

from our policy, and suggested orders from the budget framework, the actions are 

concentrated where lactate values are increasingly abnormal, or at sharp rises in SOFA score 

(Figure 3).

3.1. Off-Policy Evaluation

We evaluated the quality of our final policy recommendations in a number of ways. First, we 

implemented the per-step weighted importance sampling (PS-WIS) estimator to calculate the 

value of the policy πe to be evaluated:

VPS − WIS(πe) = ∑
i = 1

n
∑

t = 0

T − 1
γWIS
t ρt

(i)

∑i = 1
n ρt

(i) rt
(i), where ρt = ∏

j = 0

t − 1 πe(s j ∣ a j)
πb(s j ∣ a j)

,
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given data collected from behaviour policy πb [22]. The behaviour policy was found by 

training a regressor on real state-action pairs observed in the dataset. The discount factor was 

set to γWIS = 1.0, so all time steps contribute equally to the value of a trajectory.

We then compared estimates for our policy (MO-FQI) against the behaviour policy and a set 

of randomized policies as baselines. These randomized policies were designed to generate 

random decisions to order a lab, with probabilities p = {0.01, pemp, 0.5}, where pemp is the 

empirical probability of an order in the behaviour policy. For each p, we evaluated ten 

randomly generated policies and averaged performance over these. We observed that MO-

FQI outperforms the behaviour policy across all reward components, for all four labs (Figure 

4). Our policy also consistently approximately matches or outperforms other policies in 

terms of cost—note that lower cost is better—even with the inclusion of the slack variable 

εcost and the budget framework. Across the remaining objectives, MO-FQI outperforms the 

random policy in at least two of three components for all but lactate. This may be due in part 

to the relatively sparse orders for lactate resulting in higher variance value estimates.

In addition to evaluating using the per-step WIS estimator, we looked for more intuitive 

measures of how the final policy influences clinical practice. We computed three metrics 

here: (i) estimated reduction in total number of orders, (ii) mean information gain of orders 

taken, and (iii) time intervals between labs and subsequent treatment onsets.

In evaluating the total number of recommended orders, we first filter a sequence of 

recommended orders to the just the first (onset) of recommendations if there are no clinician 

orders between them. We argue that this is a fair comparison as subsequent 

recommendations are made without counterfactual state estimation, i.e., without assuming 

that the first recommendation was followed the clinician. Empirically, we find that the total 

number of recommendations is considerably reduced. For instance, in the case of 

recommending WBC orders, our final policy reports 12,358 orders in the test set, achieving 

a reduction of 44% from the number of true orders (22,172). In the case of lactate, for which 

clinicians’ orders are the least frequent (14,558), we still achieved a reduction of 27%.

We also compared the approximate information gain of the actions taken by the estimated 

policy, in comparison with the policy used in the collected data. To do this, we defined the 

information gain at a given time by looking at the difference between the approximated true 

value of the target lab, which we impute using the MOGP model given all the observed 

values, and the forecasted value, computed using only the values observed before the current 

time. The distribution of aggregate information gain for orders recommended by our policy 

and actual clinician’s orders in the test set shows higher mean information gain with MO-

FQI (Figure 5).

Lastly, we considered the time to onset of critical interventions, which we define to include 

initiation of vasopressors, antibiotics, mechanical ventilation or dialysis. We first obtained a 

sequence of treatment onset times for each test patient; for each of these time points, we 

traced back to the earliest observed or recommended order taking place within the past 48 

hours, and computed the time between these: Δt = ttreatment − torder. The distribution of time-

to-treatment for labs taken by the clinician in the true trajectory against that for 
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recommendations from our policy, for all four labs, shows that the recommended orders tend 

to happen earlier than the actual time of an order by the clinician—on average over an hour 

in advance for lactate, and more that four hours in advance for WBC, creatinine, and BUN 

(Figure 6).

4. Conclusion

In this work, we propose a reinforcement learning framework for decision support in the 

ICU that learns a compositional optimal treatment policy for the ordering of lab tests from 

sub-optimal histories. We do this by designing a multi-objective reward function that reflects 

clinical considerations when ordering labs, and adapting methods for multi-objective batch 

RL to learning extended sequences of Pareto-optimal actions. Our final policies are 

evaluated using importance-sampling based estimators for off-policy evaluation, metrics for 

improvements in cost, and reducing redundancy of orders. Our results suggest that there is 

considerable room for improvement on current ordering practices, and the framework 

introduced here can help recommend best practices and be used to evaluate deviations from 

these across care providers, driving us towards more efficient health care. Furthermore, the 

low risk of these types of interventions in patient health care reduces the barrier of testing 

and deploying clinician-in-the-loop machine learning-assisted patient care in ICU settings.
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Fig. 1. Mean number of recorded measurements per day, of chosen vitals and lab tests.
These eight traits are commonly used in computing clinical risk scores or diagnosing sepsis.
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Fig. 2. 
Feature importances over the 21-dimensional state space, for each of our four policies.
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Fig. 3. Demonstration of one test trajectory of recommending lactate orders.
The shaded green region denotes the range of normal lactate values (0.5–2 mmol/L).
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Fig. 4. 
Evaluating Vd(πe) for each reward component d, across policies for four labs. For 

randomized policies, error bars show standard deviations across 10 trials. The ( ) indicates 

the best performing policy for each reward component; for absolute cost, this corresponds to 

the lowest estimated value.
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Fig. 5. 
Evaluating Information Gain of clinician actions against MO-FQI across all labs: the 

mean information in labs ordered by clinicians is consistently outperformed by MO-FQI: 

0.69 vs 1.53 for WBC; 0.09 vs 0.18 for creatinine; 1.63 vs 3.39 for BUN; 0.19 vs 0.38 for 

lactate.
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Fig. 6. 
Evaluating Time to Treatment Onset of lab orders by the clinician against MO-FQI across 

all labs: the mean time intervals are as follows (Clinician vs MO-FQI): 9.1 vs 13.2 for WBC; 

7.9 vs 12.5 for creatinine; 8.0 vs 12.5 for BUN; 14.4 vs 15.9 for lactate.
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Table 1.

Total recordings, mean & standard deviation (SD) for covariates in selected cohort.

Covariate Count Mean SD

Respiratory Rate (RR) 1,046,364 20.1 5.7

Heart Rate (HR) 964,804 87.5 18.2

Mean Blood Pressure (Mean BP) 969,062 77.9 15.3

Temperature, °F 209,499 98.5 1.4

Creatinine 67,565 1.5 1.2

Blood Urea Nitrogen (BUN) 66,746 31.0 21.1

White Blood Cell Count (WBC) 59,777 11.6 6.2

Lactate 39,667 2.4 1.8
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