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Abstract: Flying safely in complex urban environments is a challenge for unmanned aerial vehicles
because path planning in urban environments with many narrow passages and few dynamic flight
obstacles is difficult. The path planning problem is decomposed into global path planning and
local path adjustment in this paper. First, a branch-selected rapidly-exploring random tree (BS-RRT)
algorithm is proposed to solve the global path planning problem in environments with narrow
passages. A cyclic pruning algorithm is proposed to shorten the length of the planned path. Second,
the GM(1,1) model is improved with optimized background value named RMGM(1,1) to predict
the flight path of dynamic obstacles. Herein, the local path adjustment is made by analyzing the
prediction results. BS-RRT demonstrated a faster convergence speed and higher stability in narrow
passage environments when compared with RRT, RRT-Connect, P-RRT, 1-0 Bg-RRT, and RRT∗. In
addition, the path planned by BS-RRT through the use of the cyclic pruning algorithm was the
shortest. The prediction error of RMGM(1,1) was compared with those of ECGM(1,1), PCGM(1,1),
GM(1,1), MGM(1,1), and GDF. The trajectory predicted by RMGM(1,1) was closer to the actual
trajectory. Finally, we use the two methods to realize path planning in urban environments.

Keywords: unmanned aerial vehicles; narrow passages; path planning; pruning; trajectory prediction

1. Introduction

Unmanned aerial vehicles (UAVs) have gradually spread from military to civilian use
and can be used in different areas, such as climate detection [1], environmental research [2],
intelligent transportation [3], and rescue and search operations [4], by embedding various
devices. For UAVs, performing missions in complex urban environments is more difficult
than open space missions. Two main influencing factors are noted. First, path planning is
difficult because the space is divided by buildings.

Second, the uncertainty of the trajectory of dynamic flight obstacles affects the safety
of UAVs. Herein, path planning in a complex environment can be divided into global path
generation and local path adjustment. The goal of global path planning is to plan the most
efficient path in the shortest time in the overall static space, and local path adjustment is
used to avoid threatening dynamic flight obstacles. Path planning for UAVs in complex
environment is promising for future development.

Many narrow passages are found in urban environment, and multiple divided spaces
may be connected by several narrow passages. Performing global path planning in narrow
passages that have a smaller volume than the overall space is difficult. The calculation
of path planning algorithm based on graph search is complicated [5–7]. The artificial
potential field method [8] easily falls into local shocks and fails at path planning. Swarm
intelligence [9,10] and neural networks [11,12] require long iterations or training. The
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sampling-based rapidly-exploring random tree (RRT) algorithm has shown outstand-
ing performance.

RRT [13] was proposed for path planning with non-completion constraints of vehicle
dynamics/kinematics. RRTs, which are efficient in solving complex spatial path solving
problems, have no preprocessing. In addition, the RRT algorithm is simple to implement.
For algorithms that are based on graph search, RRT calculations, which are also applicable
to swarm intelligence and neural network algorithms, are simpler. However, the random-
ness of RRT enables the algorithm to generate more useless branch nodes, and they may
spend considerable time in identifying and passing through unknown narrow passages.

Local path adjustment depends on the known trajectory information of dynamic flight
obstacles. Therefore, a high-precision prediction model is a guarantee for UAVs to avoid
dynamic obstacles. Regression analysis prediction model aims to make predictions by ana-
lyzing the functional relationship between observation data and statistical methods [14,15].
The autoregressive moving average model uses a mathematical model to approximately
describe the data series generated by the object with the change in time [16,17]. The Markov
prediction model uses the method of probability theory to study the change law of random
events to predict the future state [18,19].

The neural network uses the steepest descent method to adjust the weights and
thresholds through the back propagation of errors to predict the future trend [20,21].
Considering that more data will be processed, the time consumption when building the
model is usually high. However, the grey prediction model [22] takes small data as the
research object, and it has a relatively simple processing method for the original data. This
model has high prediction accuracy. Related prediction models have been used in various
aspects [23–25]. GM(1,1) is used as the representative model of the grey prediction model,
which is especially suitable for this kind of forecasting. The contributions of this paper are
presented as follows:

• In this paper, a BS-RRT algorithm is proposed to solve the global path planning
problem. The algorithm converges quickly in the urban environment with narrow
passages, and the algorithm has remarkable stability.

• To optimize the BS-RRT path further, a cyclic pruning algorithm is proposed to opti-
mize the global programming path, and the effectiveness of the algorithm increases
with the path’s tortuous degree.

• Local path adjustment depends on the prediction model. To improve the accuracy of
the prediction model, this paper improves the calculation of the background value of
the GM(1,1) model. At the same time, combined with the idea of metabolism, (the new
method is presented to optimize the GM(1,1) model in this paper), which improves
the prediction accuracy of the model greatly.

• This paper provides a feasible path planning scheme for UAV flight in a complex
environment.

2. Related Work

Thus far, RRTs have been widely used to solve path planning problems in many fields.
However, RRTs grow themselves incrementally by random sampling point. Meanwhile, in
the case of narrow passages in urban space, the small volume of narrow passages leads to
a lower probability of random sampling points being generated in the narrow passageway
compared with the volume of the overall space, which costs more time to sample wide
open areas before passing the narrow passage. One solution is to vary the randomness of
the sampling points, which means that sampling points occur with different probabilities
in various areas. According to the exploration results of the RRT algorithm in Yershova,
A. [26], the sampling area of the sampling point is limited.

Jaillet, L. et al. [27] used adaptive sampling to adjust the sampling interval dynamically
according to the current situation. In [28], the author adjusted the probability of random
points appearing at the end point to guide the growth of RRT. The algorithm has high
efficiency in the environment with a narrow passage, but the efficiency of the algorithm
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drops with the increase of the complexity of the environment. In [29], the algorithm grows
in a favorable direction without collision by controlling the probabilistic diffusion and
analyzing the results of the diffusion algorithm.

In [30], the author used the utility-oriented model to guide the random tree to allocate
more computing resources in complex areas. Another approach is to generate multiple
exploration trees simultaneously in space to deal with the narrow channel problem. In [31],
the author proposed that two growing trees grow from the starting point and the end point.
In [32], the author proposed an incremental path planning method that has obvious effect
on solving local paths. In [33], the author proposed a parallel algorithm (C-FOREST) that is
used to query the shortest path and grow multiple search trees simultaneously in parallel.

In [34], the authors extended the bidirectional tree to a multi-tree framework where
any possible samples can be stored, and new trees are constructed. The aforementioned
works have made some progress in RRT path planning. However, RRT expansion and
connection is still a difficult problem for complex environments, and the time difference
of each completion of path planning is large. Thus, the stability of the algorithm is low.
The RRT algorithm reduces local re-sampling to a certain extent by changing the sampling
strategy, which is prone to local oscillations before it passes through narrow passages,
thereby, wasting certain computing resources.

In many cases, the whole space will be filled faster by the expansion of multiple
trees, whereas the path search of narrow passage takes more sampling time. In this paper,
BS-RRT is proposed to solve the problems of long time required to plan the global path of
narrow passage; meanwhile, it has small time fluctuations in each planning. The initial
RRT expansion is guided by a greedy mind to continuously expand toward the end point,
which avoids wasting excessive computing resources in spacious space. Branch selection
is conducted to pass the narrow passages when BS-RRT runs into obstacles. The optimal
branch leaf node is selected as the root node to greed grow until connected to the end.
Loop pruning is used to optimize the global path when connected from start to end.

When the global path is planned, the UAV needs to avoid local dynamic flight obstacles
during the flight, thereby, changing the local path. The local path adjustment of UAV
depends on the prediction results of the future trajectory of dynamic flight obstacles. the
grey prediction model is suitable for predicting the trajectory of dynamic flight obstacles.
The accuracy of background value estimation affects the accuracy of the model [35,36].
In [37], the author improved the accuracy and adaptability of the model by combining
particle swarm optimization with the TWGM(1,1) algorithm to optimize the order and
background value coefficient.

In [38], the GM (1,1) model was optimized using the Lagrange mean value theorem
and interpolation coefficient method, and a background value that was correlated with the
new variable K was constructed. Meanwhile, the accuracy of the model was improved
by adding parameters. In [39], the author used an exponential curve, power function
curve, polynomial curve, and interpolation function to optimize the background value,
and the simulation results showed that these methods improved the accuracy of the model
very well. In [40], the author improved the accuracy of the model by using piecewise
cubic interpolation splines to reconstruct the background values while maintaining the
monotonicity of the accumulated data.

In [41], the author used particle swarm optimization to optimize the development
coefficient of the grey model, optimized the initial value of GM(1,1), and introduced the
sliding window to improve the accuracy of the model. However, most models have low
accuracy of long-term prediction performance because they do not consider the principle
of new information priority. Swarm intelligence algorithm takes a long time to optimize
the model. Runge phenomenon [42] may occur in the optimization method of high-order
interpolation, which may affect the accuracy of the model.

In this paper, the GM(1,1) model is combined with the idea of metabolism, the principle
of new information is fully considered priority, and the length selection of the model is
discussed. At the same time, the 1-AGO dynamic sequence prediction model is combined
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with the Romberg quadrature formula to recalculate the background value to improve
the prediction accuracy of the model. The results of the predictive model are used by
the UAV as a reference to adjust the local path. In this paper, the global path planning
algorithm is combined with the prediction model to realize the autonomous flight of UAV
in complex environment.

The remainder of this paper is organized as follows. In Section 3, we explain the
principle of the BS-RRT algorithm and cyclic pruning algorithm, the optimization method
of RMGM(1,1), and the scheme of local path adjustment. In Section 4, we compare the
performance of BS-RRT and the cyclic pruning algorithm with RRT, RRT-Connect, P-RRT,
1-0 Bg-RRT [28], and RRT∗ through simulation experiments in a narrow passage, and we
compare the prediction accuracy of RMGM(1,1) with ECGM(1,1), PCGM(1,1), GM(1,1),
MGM(1,1), and GDF. Moreover, we verify the feasibility of the local path adjustment
scheme. In Section 5, we present the summary and conclusions.

3. Principles of Path Planning in Complex Environment

The goal of path planning is to plan the most effective path in a short time. First, we
briefly introduced the original RRT path planning algorithm. The principle of the improved
algorithm BS-RRT and cyclic pruning algorithm for global path planning are described in
detail in Section 3.1. Second, when the global path planning is finished, the UAV needs
to predict the future trajectory of the captured dynamic flight obstacles in the process of
flying along the trajectory.

We use the optimized RMGM(1,1) model to complete the prediction of the future
flight trajectory of dynamic flight obstacles. The modeling process and error analysis of
GM(1,1) and the modeling principle of RMGM(1,1) are introduced in Section 3.2. Finally,
in Section 3.3, we describe a local path adjustment scheme that makes the path adjustment
according to the predicted results of Section 3.2. We use a combination of global path
planning and a local path adjustment scheme to achieve autonomous flight of the UAV.

3.1. Global Path Planning
3.1.1. Principle of RRT

The RRT constructs a tree-like data structure to incrementally explore unknown space
by randomly sampling points. Figure 1 shows the schematic of the RRT extension. First, a
random node is generated with random coordinate in space. Second, the tree is traversed
by RRT to find the node closest to the sampling point. Third, a new node of one step along
the direction that this node points to the sampling point. Finally, whether collision occurs
from the nearest node to the new node is verified. Collision validation determines whether
new nodes can be inserted into the tree. The above process is repeated until the algorithm
finds a path that connects the starting point and the point goal.

Figure 1. Principle of RRT extension.

3.1.2. Principle of BS-RRT

The expansion process of BS-RRT is divided into three parts. First, the expanded
tree grows greedily along the direction of the end point. Second, when the expanding
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tree encounters an obstacle, it branches and grows to pass the obstacle. Finally, after the
expanded tree passes the obstacle, the leaf node of the branch with the closest Euclidean
distance to the end point among the branches is selected to grow again greedily. These
three steps are circulated, in turn, to finally generate a path connecting the starting point
and the goal point.

• Greedy growth
In the initial phase, the sampling strategy is changed to speed up the tree expansion,
and the sampling point for each sampling coincides with the goal point. In Figure 2,
the BS-RRT continues to expand toward the goal point. The algorithm goes to the next
stage when the BS-RRT fails to grow.

Figure 2. Greedy growth.

• Branch growth
When the greedy growth stops, the BS-RRT tree will enter the branch growth stage to
avoid obstacles. Point A in Figure 3a represents that point A failed to extend the next
greedy point, and thus the point enters the branch, and point A is set as the root point
of the branch. The line from the root point to the goal point divides the space into left
and right regions. In the left region, the sampling point gradually moves away from
the goal point in a clockwise trend each time, and the sampling stops until point C is
expanded successfully. The sampling point in the right region gradually moves away
from the goal point counterclockwise each sampling, the sampling stops until point B
is extended successfully. In Figure 3b, points B and C cannot grow greedily because
obstacles are observed in the direction from point B and C to the goal point. Hence,
they continue to branch.
The sampling point from point C to the direction of the goal point moves clockwise
away from the goal point for each sampling until point E is expanded successfully.
Similarly, the sampling point from point B points to the direction of the goal point
moves counterclockwise away from the goal point each sampling until point D is
expanded successfully. At this point, points E and D can grow greedily, and branch
growth ends. Notably, in the branching stage, the length of the extension of all nodes
is equal to the initial step size.
Other branch nodes only expand one child node in addition to the original root point A.
In the regions divided by root point A, the sampling point will only shift the sampling
clockwise in the left region or counterclockwise sampling on the right, such as points
C and E expand clockwise, meanwhile, points B and D expand counterclockwise. The
branch growth in the corresponding region deviated to the direction of the goal point
pointing to the leaf point to stop until the sampling point.
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(a)
(b)

Figure 3. (a) shows the first branch growth. The point A is the root node, the point C and the point B
are the leaf nodes; (b) shows the second branch growth. The point C and the point B are the root
nodes, the point E and the point D are the leaf nodes.

• Branch selection
When the branches stop growing, this indicates that BS-RRT has passed the barrier
and enters the branch selection stage. If one branch fails to grow, then another branch
will be selected directly. The overall BS-RRT algorithm will fail when both branches
fail. The algorithm selects the branch with a short Euclidean distance from the goal
point when the branches grow successfully. The selected leaf point of the branch as
the starting point goes to the first step of greedy growth.

3.1.3. Cyclic Pruning Algorithm

The aim of cyclic pruning algorithm is to optimize the path generated by BS-RRT,
and the shortest path from the start point to the end point will be obtained accordingly.
The generated path will be pruned twice by a cyclic pruning algorithm. Each point in the
path from the start point to the end point is denoted from 1 to n. The first pruning will
significantly reduce the number of unnecessary nodes as well as the path length, and the
second pruning will shorten the path length while keeping the number of nodes unchanged.

• The first pruning
We define the following set: set V={v1,v2,v3,..., vn−1}, set P={p1, p2, p3,..., pn−1}, and
empty set U. Set V traverses every point in the path from the start point to the n− 1th
point, set P traverses each point in the path from the end point nth to the third point
in reverse, and the point in the set records the coordinate information of every point in
the path. Based on the above definition, the point connecting to itself will be avoided.
The first pruning of the path is performed as follows. First, we determine whether the
point vi in the set V is connected to any point in set P. If the point vi and the point pj
can be connected with no obstacle, then the points from vi to vn−j+1 are deleted from
the set V, the points from pn−i+1 to pj are deleted from the set P as well. Meanwhile,
the points vi and pj are added to set U.
Repeat the above process until the set V is empty, point p1 will be added to the set U
if the point p1 is not in the set U. The set U is the final result set after the first pruning.
An example is shown in Figure 4 to describe the process of the first pruning in detail.
There are seven points in the path generated by BS-RRT, where the hollow circles
represent points that are not in sets V and P, dashed lines represent two points fail
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to connect due to the existence of obstacles, and solid lines represent two points can
be connected directly. Thus, set V = {v1,v2,v3,v4,v5} and set P = {p1,p2,p3,p4,p5} can be
constructed. The first pruning operation is divided into three-steps in Figure 4.
First, in determining whether the point pj in the set P can be connected to point v1, the
initial value of j, j is set as 1. Figure 4I shows that point v1 and p5 can be connected
directly. Then, points v1 and v2 are deleted from set V, point p5 is deleted from set P,
and point v1 and p5 are added to set U.
Second, we determine whether the point pj in the set P can be connected to point v3
in turn, and point v3 and p2 can be connected directly as shown in Figure 4II. Points
v3, v4, and v5 are deleted from set V, points p2, p3, and p4 are deleted from set P, and
points v3 and p2 are added to set U.
Finally, the set V is empty in Figure 4III, the point p1 will be added to the set U if p1
is not in the set U. Thus, the set U = {v1,p5,v3,p2,p1}. All of points in the set V can be
connected in turn, and the first pruning is finished.

Figure 4. First pruning of the path, (I) shows the point v1 and the point p5 are connected successfully;
(II) shows the point v3 and the point p2 are connected successfully; (III) shows no point can connect
successfully.

• The second pruning
Assume that there are m points in the set U after the first pruning, we define the
following sets, set C = {c1,c2,c3,..., cm}, set Z = {z1,z2,z3,..., zm−2}. The points in set C
represent the points in set U starting from um to u1. The points in set Z represent the
points in set U starting from point um to point u3. The missing points u1 and u2 in set
Z ensures that the connection of the last two points is not on the same line segment.
The second pruning operation is performed as follows. Determining whether the first
point z1 in the set Z can be connected to the midpoint of the two points in the set C,
that is, the midpoint of ci and ci+1 connecting zi−1. If the connection is successful, then
the midpoint of ci and ci+1—namely node ci+0.5—will replace the point ci in set C.
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Point zi+1 will be determined in turn. After all the points in the point set Z are tested,
the points in the set C forms the final path, and the cyclic pruning algorithm ends.
An example is shown in Figure 5 to describe the process of the second pruning in
detail. There are five points in the set U, the hollow circles represent points that are
not in sets Z, dashed lines represent the failed connection between two points, and
solid lines represent successful connections between two points. Set C = {c1,c2,c3,c4,c5}
and set Z = {z1,z2,z3} are constructed accordingly.
Similarly, the second pruning operation is divided into three steps in Figure 5. First,
node z1 is connected to node c2.5 successfully, and then point c2.5 is added to the set C
to replace point c2. Second, point c3.5 will not add to the set C because point z2 failed
to connect to point c3.5. Finally, point c4.5 will replace point c4 in the set C because
point z3 can be connected to node c4.5 with no obstacle. The cyclic pruning algorithm
ends and the set C is the final pruning result.

Figure 5. Second pruning of the path, (I) shows the point z1 and the point c2.5 are connected
successfully; (II) shows the point z2 and the point c3.5 fail to connect; (III) shows the point z3 and the
point c4.5 are connected successfully.

3.2. Trajectory Prediction of Dynamic Obstacles

We assume that the coordinate sequence of a dynamic obstacle is P(k) = (x(k), y(k), z(k)),
k = 1, 2, ..., n. x(k), y(k) and z(k) are coordinates for the X, Y, and Z axes at time k. The
map is constructed in the first quadrant to make the values of the coordinate sequence
non-negative. Three sets of data sequences (x(1), x(2), ..., x(n)), (y(1), y(2), ..., y(n)), and
(z(1), z(2), ..., z(n)) are obtained by splitting the original coordinate sequence P(k). Three
predicted values x̂(n + 1), ŷ(n + 1), and ẑ(n + 1) are obtained by building a predic-
tion model for the three sets data series respectively, and the predicted coordinates
p̂(n + 1) = (x̂(n + 1), ŷ(n + 1), ẑ(n + 1) are obtained.
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In this part, the X axis coordinate sequence (x(1), x(2), ..., x(n)) is used as an example
to demonstrate the main modeling steps of the GM(1,1) model, and then the error of the
model is analyzed. We combine the first-order cumulative dynamic sequence prediction
model and Romberg’s numerical integration formula to recalculate the background value
to reduce the error of the model. We also rebuild the model with the idea of metabolism.

3.2.1. Principle and Error Analysis of GM(1,1) Modeling

• Modeling of Grey Model GM(1,1)
Let the original non-negative sequence data be

X(0) =
(

x(0)(1), x(0)(2), . . . , x(0)(n)
)

. (1)

From Equation (1), x(0)(k) = x(k), and digital (0) indicates that the initial data
sequence. The X(1) is given as follows

X(1) = {x(1)(1), x(1)(2), ..., x(1)(n)}. (2)

where
x(1)(k) =

k

∑
i=0

x(0)(k) = x(1)(k− 1) + x(0)(k), k = 1, 2, · · · , n. (3)

Equation (3) is first-order accumulated generation operating (1-AGO) series of X(0).
From Equation (3), we suppose that sequence X(1) meets the following first-order
grad forecasting differential equation

dx(1)(t)
dt

+ ax(1)(t) = b. (4)

The solution of Equation (4) with the initial condition x̂(1)(1) = x(1)(1) is presented
as follows

x̂(1)(k + 1) =
(

x(0)(1)− b
a

)
e−ak +

b
a

, k = 1, 2, 3, . . . , n. (5)

Thus, we obtained the following grey prediction equation

x̂(0)(k + 1) = x̂(1)(k + 1)− x̂(1)(k) (6)

= (1− ea)

(
x(0)(1)− b

a

)
e−ak, k = 1, 2, 3, . . . , n.

Here, k = n, x̂(1)(n + 1) is the predicted coordinate on the X axis. To obtain the pre-
diction model of the raw data sequence, we need to determine the grey development
coefficient a and the grey control parameter b in Equation (4). For this purpose, we per-
formed the integral accumulation on both sides of Equation (4) for every contiguous
interval, and then we can obtain

x(1)(k + 1) + a
∫ k+1

k
x(1)(t)dt = b. (7)

Let the background value be

z(1)(k + 1) =
∫ k+1

k
x(1)(t)dt. (8)

Consequently, to estimate the values of a and b, we must use some methods to estimate
the background value z(1)(k+ 1). We yield the estimated background value z(1)(k+ 1)
as follows

z(1)(k + 1) =
1
2
[x(1)(k) + x(1)(k + 1)]. (9)
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The method of solving a, b parameters is expressed as

α̂ = (a, b)T =
(

BTB
)−1

BTY, (10)

B =


−z(1)(2) 1
−z(1)(3) 1

...
...

−z(1)(n) 1

, Y =


x(0)(2)
x(0)(3)

...
x(0)(n)

. (11)

• Error analysis
Equation (8) shows that the classical GM(1,1) model uses the average of adjacent
values to estimate the background value z(1)(k). Its geometric meaning is that the
trapezoidal area, which is based on the edge of exponential curve x(1)(t), has been
replaced by the area of straight ladder. This method has significant error when the
1-AGO data sequence varies greatly. As shown in Figure 6, ∆S is the error existing in
the model.

Figure 6. Reasons for GM(1,1) model error.

According to the error analysis results, the curve x(1)(t) has fitting by first-order
accumulation (1-AGO) dynamic sequence prediction model [43], and the trapezoidal
area, which is based on the edge of the exponential curve x(1)(t), was recalculated by
the Romberg numerical integration formula. Meanwhile, the optimized model was
constructed by combining the idea of metabolism, named RMGM(1,1).

3.2.2. Principle of RMGM(1,1) Modeling

In this part, the X axis coordinate sequence (x(1), x(2), ..., x(n)) is used as an example
in the same way to describe the principles of the 1-AGO dynamic sequence prediction
model briefly and Romberg’s numerical integration formula, as well as the construction of
the RMGM(1,1) model.

• 1-AGO dynamic sequence prediction model [43]
Assume that Equations (1) and (2) meet the following law: If x(0)(k) has the form of
homogeneous exponential growth x(0)(k)=cea(k−1), then the 1-AGO sequence is in the
form of non-homogeneous exponential sequence (i.e., Equation (12)) and vice versa.

x(1)(k) = Aeα(k−1) + B, k = 1, 2, · · · , n. (12)

The solving formula of each parameter is expressed as follows
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α = ln
x(0)(k)

x(0)(k− 1)
, (13)

A =
x(0)(k)(

x(0)(k)
x(0)(k−1)

)k−1(
1− x(0)(k−1)

x(0)(k)

) , (14)

B = x(0)(k1)− A = x(0)(k1)−
x(0)(k)(

x(0)(k)
x(0)(k−1)

)k−1(
1− x(0)(k−1)

x(0)(k)

) . (15)

Equation (12) is called the 1-AGO dynamic sequence prediction model.
• Romberg quadrature formula

The Romberg quadrature formula is also called the successively divided and semi-
accelerated method. As an extrapolation algorithm, this formula improves the accu-
racy of the result of integration without increasing the amount of calculation. The
Romberg quadrature formula has a more accurate integral approximate value by the
weighted average of the approximate values of the trapezoidal formula.
The initial parameter is set at k = 1, and the integral is calculated roughly as

r1,1 =
b− a

2
[ f (a) + f (b)]. (16)

The value of the next position is calculated as

rk+1,1 =
1
2

[
rk,1 +

b− a
2k−1

M

∑
n=1

f
(

a + (2n− 1)
b− a

2k

)]
, M = 2k−1. (17)

A recursive formula is used for the calculation

rk+1,m =
4m−1rk+1,m−1 − rk,m−1

4m−1 − 1
. (18)

If the difference between rk+1,k+1 and rk,k meets the predetermined accuracy ε, then
the calculation stops. Otherwise, k goes up by 1, and then we proceed to Equation (17).

R =



r1,1
r2,1 r2,2
r3,1 r3,2 r3,3
r4,1 r4,2 r4,3 r4,4
r5,1 r5,2 r5,3 r5,4 r5,5

...
...

...
...

...
. . .


. (19)

The Romberg algorithm is expressed as the lower triangular matrix of Equation (18),
and it can be extended infinitely downward and backward. The optimal approxi-
mate solution for a definite integral is rk,k, which is the lower right item calculated
in Equation (19). The calculation of the Romberg quadrature formula recurs in
Equations (17) and (18).

• Building a metabolic model
In the traditional modeling process, the prediction accuracy of the model is reduced
continuously as the system status changes by selecting a fixed length of the original
data to build a model. Therefore, the higher prediction accuracy of the model should be
ensured by updating the modeling data. This process of building a model is dynamic.
The new data will be added to the modeling data sequence, and the oldest data in the
modeling data will be deleted to reconstruct the model when a new data appears, the
length of the modeling data of the construction of model remains unchanged. The
optimal length of the modeling data will be discussed in the experiment.

• Construction of RMGM (1,1) model
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The RMGM(1,1) model reduces error by calculating the area of curve of the 1-AGO
dynamic sequence model in each interval by using the Romberg quadrature formula.
Step 1 : Select a fixed-length raw data sequence x(0)(k) and calculate 1-AGO sequence
x(1)(k), k = 1, 2, 3, ..., n.
Step 2 : Let a = 1, b = 2, locate the interval [a, b], combine Equations (13)–(15) in this
interval, and calculate the required parameters α, A, and B of Equation (12) to obtain
the formula f (k) = x(1)(k) = Aeα(k−1) + B.
Step 3 : Calculate r of the integral area of the interval [a, b] in accordance with
Equations (16)–(18). The ordinate value of the background value curve required
by Equations (16)–(18) is given by Step 2, Let z(1)(k) = r.
Step 4 : if b < n, then proceed to Step 2, and let a and b increase by 1. The sequence
of the background values z(1)(k) is obtained until b = n.
Step 5 : The time response function is obtained by combining Equations (7)–(10).
Step 6 : Newly generated data are added to the original data sequence x(0)(k), and the
first old data are deleted at the same time. A new data sequence x(0)(k) is generated
by keeping the length unchanged, and then return to Step 1.

The predicted value x̂(n + 1), ŷ(n + 1), and ẑ(n + 1) is obtained by establishing the
RMGM(1,1) model in three coordinate series (x(1), x(2), ..., x(n)), (y(1), y(2), ..., y(n)), and
(z(1), z(2), ..., z(n)). The prediction coordinates p̂(n + 1) = (x̂(n + 1),ŷ(n + 1), ẑ(n + 1) are
obtained accordingly.

3.3. Local Path Adjustment

The local path of the UAV is adjusted according to the prediction results of the
dynamic flight obstacle in the previous step. Path alignment schemes are divided into
two approaches. First, the UAV tries to keep to the original planned flight path when
it encounters threats, that is, the UAV only changes its speed. At this point, the path of
the dynamic obstacle is not coincident from that of the UAV, and they will collide at the
intersection point. The UAV makes a local deviation to avoid dynamic obstacles when the
deceleration strategy is not feasible. This means that the path of the UAV and dynamic
obstacle are coincident, and many points are closer and threatening on both of the paths.
The UAV returns to the original path when it eludes the dynamic obstacles successfully.

In Figure 7, the space is divided into two regions by making vertical lines perpendic-
ular to the trajectory of the UAV according to the collision position. The dynamic flight
obstacle in Region 1 is called the co-directional obstacle, and the dynamic flight obstacle
in Region 2 is called the contralateral obstacle. The coordinates of 1 s indicate where the
UAV has arrived in the path, and the coordinates of 2 s in the path represent where the
UAV is going to be. According to the results of the prediction model, the UAV will collide
with the dynamic flight obstacle at the position of 2 s. The coordinate of 2’s is added to
the path instead of the coordinate of 2 s after the local path is adjusted. According to the
different flight trajectories of dynamic flight obstacles, we analyze four collision situations
and suggest a local path adjustment strategy for each collision.

• In Figure 7a, the UAV verifies whether the adoption of a deceleration strategy is
feasible, that is, the coordinate of 2’s is added to the original path instead of the
coordinate of 2 s. R refers to the distance recorded between the UAV and the obstacle
in every second. R should be greater than the sum of the radius of the envelopment
circle of UAV and dynamic flight obstacle if no collision occurs. The path of the
codirectional obstacle is not coincident with the path of the UAV and the R value is
far greater than the sum of the radius of the envelope circle of UAV and the dynamic
flight obstacle at 2’s. Therefore, the UAV will adopt this strategy wherein the position
at 2’s replaces the position at 2 s.

• In Figure 7b, the path of the dynamic obstacle is coincident of the UAV. If the deceler-
ation strategy is adopted, then the R value is less than the sum of the radius of the
envelope circle of the UAV and the dynamic flight obstacle, and the collision will still
occur. A decentralized strategy is adopted, the position at the 2 s is offset at the 2’s
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while keeping R greater than the sum of the radius of the envelope circle of the UAV
and the dynamic flight obstacle. The UAV returns to the original path at 3 s after
avoiding the dynamic obstacle. For the opposite dynamic obstacle, verifying whether
the deceleration strategy is feasible first is necessary.

• In Figure 7c, if the deceleration strategy is adopted, then R is greater than the sum of
the radius of the UAV and the dynamic flight obstacle envelope circle at the 2’s, and
the position at the 2’s instead of the position at the 2 s add the path. Hence, obstacle
avoidance is successful.

• In Figure 7d, the path of the UAV and dynamic obstacle are coincident, and R will be
less than the sum of the radius of the enveloping circle of UAV and dynamic flight
obstacle if the deceleration strategy is adopted. Thus, the decentralized strategy is
carried out. The position at the 2’s is the offset position, thereby, making the R value
greater than the sum of the radius of the envelopment circle of the UAV and the
dynamic flight obstacle. The UAV returns to the original path at 3 s after successful
obstacle avoidance.

(a) (b)

(c) (d)

Figure 7. R refers to the distance recorded between the UAV and the obstacle in every second. (a,b) show the obstacle
avoidance of UAV when the obstacle is co-directional; (c,d) show the obstacle avoidance of UAV when the obstacle is
contralateral.
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4. Experiments and Discussions

In this section, simulation experiments are carried out on an IntelCPU2.8G 16 GB
memory computer using a MATLAB-R2016B environment. UAVs are low-energy IoT
devices, which can save energy through effective energy management methods [44,45].
Energy saving can also be achieved by reducing unnecessary maneuver of UAVs. The three
dimensional space is transformed into two dimensional plane to avoid the change of UAVs
in vertical direction [46] in this paper. This section is divided into three parts.

In the first part, three different maps were created with the size 800 × 800 (Figure 8).
The start and goal point coordinates were set to (50,50) and (750,750), respectively. The step
size of BS-RRT and narrow passage width were set to 30. The global path was generated in
a map with narrow passages by the BS-RRT algorithm. Then, the cyclic pruning algorithm
was used to optimize the generated global path. We validate the performance of BS-RRT
algorithm and cyclic pruning algorithm by comparing BS-RRT with RRT, RRT-Connect,
P-RRT, 1-0 Bg-RRT [28], and RRT∗. We set P = 0.5 in P-RRT. For the RRT∗ algorithm, the
earliest time to finish the feasible path planning was set as the criterion.

In the second part, we predicted the trajectories of dynamic flight obstacles by using
RMGM(1,1) models to prepare for local path adjustments. The accuracy of the RMGM(1,1)
model was compared with other models. First, the ECGM(1,1) model of exponential curve
optimization, PCGM(1,1) model of polynomial curve optimization in [39], and original
GM(1,1) model were compared with RMGM(1,1). Second, the metabolic MGM(1,1) and
GDF [47] were compared with RMGM(1,1). Third, the local path adjustment scheme was
implemented according to the prediction results of the RMGM(1,1) model.

In this section, the dynamic flight obstacle was set as the same model as the UAV, and
the radius of the envelope ball is 0.5. Considering the unforeseeable factors in the actual
UAV flight and the errors caused by the prediction model, the setting of the R value was
generally greater than the sum of the radius of the envelope circle between the UAV and the
dynamic obstacle, and R was set to 2. Some of the necessary parameters are summarized
in Table 1.

Table 1. The main parameters in the experiment.

Experiment Parameters

Runtime environment
IntelCPU2.8G 16 GB memory computer

using MATLAB-R2016B
Map size 800 × 800

Number of maps 3
Start point in the map (50,50)
Goal point in the map (750,750)
Narrow passage width 30

Envelope sphere radius of UA V and
dynamic flight obstacle 0.5

Narrow passage width 30
Distance R 2
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(a) Map 1 (b) Map 2

(c) Map 3

Figure 8. Three different maps with narrow passages. Map 2 has five more narrow passages than Map 1, and the narrow
passage in Map 3 is longer than that in Map 2.

4.1. BS-RRT and the Circular Pruning Algorithm

More detailed data on Figure 9 are documented in Table 2. The narrow passages in
Figure 9c are few and short. The path generated by the BS-RRT algorithm was close to the
optimal path before pruning, and a path length reduction of 5.606% was achieved after
pruning by using the cyclic pruning algorithm. As shown in Figure 9f,i, the number and
length of narrow channels increased, and the path generated by the BS-RRT algorithm
was more tortuous and different from the optimal path. The effect of the cyclic pruning
algorithm is obvious, and the path reductions were 24.898% and 17.077%.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Planning results of BS-RRT and cyclic pruning algorithms in the three maps. The blue line
refers to the path of the BS-RRT algorithm, the red line represents the backtracking path after BS-RRT
connects the starting point and the end point, and the green line corresponds to the final path after
cyclic pruning. (a,d,g) show the running results of BS-RRT algorithm in three maps; (b,e,h) show
the backtracking path of BS-RRT algorithm in three maps; (c,f,i) show the final path generated after
pruning in three maps.

Table 2. Comparison of path changes before and after pruning with cyclic pruning algorithms.

Figure Before Pruning After Pruning Percentage Reduction

Figure 9c 1054.345 995.238 5.606%
Figure 9f 2369.049 1779.210 24.898%
Figure 9i 1505.181 1248.134 17.077%

In Figure 10, RRT, RRT-Connect, P-RRT, 1-0 Bg-RRT, and RRT∗ carry out global path
planning in Maps 1, 2, and 3. The final backtracking paths are relatively tortuous when the
number of narrow passages increases.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 10. (a–c) show the path planning results of RRT in three maps; (d–f) are the path planning
results of RRT-Connect in three maps; (g–i) are the path planning results of P-RRT in three maps;
(j–l) are the path planning results of 1-0 Bg-RRT in three maps; and (m–o) are the path planning
results of RRT∗ in three maps. The red line corresponds to the final path.

In Figure 11a–c, each run time is recorded for BS-RRT, RRT, RRT-Connect, P-RRT, 1-0
Bg-RRT, and RRT∗ of path planning in Maps 1, 2, and 3 in 50 experiments. Intuitively, except
for BS-RRT, the stability of the other algorithms is poor, and the time fluctuates greatly
with respect to the path planning of each experiment. Moreover, as shown in Figure 11b,
when the narrow passages increase, the path planning time of the five algorithms extends
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significantly, except for BS-RRT, and the fluctuation range of the algorithm planning time
is larger than that of BS-RRT.

In Figure 11d, the average path length of 50 times the path planning of the six algo-
rithms is recorded. The paths planned by the BS-RRT algorithm are all optimal. Table 3 is
drawn based on computer simulation results. According to Table 3, in terms of the average
planning time, the BS-RRT algorithm had the fastest convergence rate. In the three maps,
the convergence times were 0.722, 1.159, and 0.757 s. With the increase in the number
of narrow passages, the convergence time of BS-RRT rises slightly, and the length of the
narrow passages does not affect the convergence time of the algorithm. The convergence
time of the other algorithms varies greatly with the increase in the number of narrow
passages.

In Map 2, the mean convergence times of RRT, RRT-Connect, P-RRT, 1-0 Bg-RRT,
and RRT∗ were 20.02, 9.152, 33.216, 21.898, and 42.886 s. In terms of the maximum time
difference of the algorithm, the time fluctuations of BS-RRT algorithm were the least among
the three maps, which were 0.097, 0.162, and 0.136 s. Similarly, the volatility of other
algorithms increased with the increase in the number of narrow passages. The maximum
fluctuation times of the path planning with other algorithms in Map 2 were 34.189, 18.563,
91.061, 28.304, and 89.655s. Although the 1-0 Bg-RRT planning path was more efficient
in the state space with a narrow passage, the efficiency of the algorithm decreased with
the increase of the number of narrow passages. In terms of the average planned path
length, the path was optimized by the circular pruning algorithm to be the shortest in the
three maps.

(a) (b)

(c) (d)

Figure 11. (a–c) show the run time for each of the 50 experiments for BS-RRT, RRT, RRT-Connect, P-RRT, 1-0 Bg-RRT, and
RRT∗ in the three maps; (d) shows the average path length of 50 experiments using the six algorithms.
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Table 3. Time data from 50 experiments for the six algorithms.

Map Algorithm Average Planning
Time/s

Maximum Time
Difference/s

Average Path
Length

Map 1 BS-RRT 0.722 0.097 994.858
RRT 2.905 13.324 1374.577

RRT-Connect 1.121 2.449 1146.323
P-RRT 1.466 4.621 1225.728

1-0 Bg-RRT 1.304 2.628 1033.617
RRT∗ 3.951 9.050 1068.216

Map 2 BS-RRT 1.159 0.162 1787.360
RRT 20.020 34.189 2439.182

RRT-Connect 9.152 18.563 2396.566
P-RRT 33.216 91.061 2433.546

1-0 Bg-RRT 21.898 28.304 1920.761
RRT∗ 42.886 89.655 1807.956

Map 3 BS-RRT 0.757 0.136 1242.084
RRT 2.127 13.274 1486.449

RRT-Connect 1.270 3.126 1457.493
P-RRT 1.567 12.392 1429.350

1-0 Bg-RRT 1.008 3.768 1298.581
RRT∗ 3.115 19.911 1274.754

Table 4 records the time taken for BS-RRT to plan 50 times in the four maps shown in
Figure 12. The convergence time and fluctuation of the algorithm slightly increased when
the number of obstacles gradually rose, and the maximum fluctuation was 0.2754 s. The
average convergence times of the algorithm in the four maps were 0.8169, 0.8556, 0.9452,
and 0.9456 s. These results indicate that, in ordinary maps, BS-RRT also maintains good
convergence speed and stability.

Table 4. Time data from 50 experiments for BS-RRT algorithms in common maps.

Figure Maximum
Time Difference/s

Minimum
Planning Time/s

Average
Planning Time/s

Maximum
Planning Time/s

Figure 12a 0.1277 0.7388 0.8169 0.8665
Figure 12b 0.1367 0.7632 0.8556 0.8999
Figure 12c 0.1530 0.8429 0.9452 0.9959
Figure 12d 0.2754 0.8387 0.9456 1.1141

Table 5 records the detailed data of the path changes before and after pruning using
the circular pruning algorithm in the four maps in Figure 12. The path length and the
tortuous degree generated by BS-RRT increased with the number of obstacles. In Figure 12c,
the zigzag degree of the path was the largest when the obstacle was 50, and the pruning
effect, which was reduced by 11.46%, was the most obvious. As shown in Figure 12a, the
path generated by BS-RRT was close to the optimal path with a low tortuous degree, and
the path length was reduced by 5.33% after pruning. In Figure 12b,d, the path tortuous
degree is similar in the two figures, and the path length decreased by 9.37% and 9.75%,
respectively.
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(a) (b)

(c) (d)

Figure 12. Path planning of the BS-RRT algorithm in common maps and there are 5, 20, 50 and 100 obstacles in (a–d)
respectively.

Table 5. Comparison of path changes before and after pruning with cyclic pruning algorithms.

Figure Before Pruning After Pruning Percentage Reduction

Figure 12a 1105.35 1046.38 5.33%
Figure 12b 1168.98 1059.44 9.37%
Figure 12c 1199.60 1062.18 11.46%
Figure 12d 1228.31 1108.53 9.75%

4.2. RMGM(1,1) Model Accuracy Comparison

To intuitively express the accuracy of the model, we define the following formula.
Three axes of coordinates are split to build the original data sequence

P(0)(k) = (X(0)(k), Y(0)(k), Z(0)(k)). (20)
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where 
Axisx : X(0) =

{
x(0)(k)

}
Axisy : Y(0) =

{
y(0)(k)

}
Axisz : Z(0) =

{
z(0)(k)

} , k = 1, 2, ..., n. (21)

The coordinates obtained by the prediction of the three coordinate sequences are the
fitting values

P̂(k + t) =
(

X̂(0)(k + t), Ŷ(0)(k + t), Ẑ(0)(k + t)
)

. (22)

where 
Axisx : X̂(0) =

{
x̂(0)(k + t)

}
Axisy : Ŷ(0) =

{
ŷ(0)(k + t)

}
Axisz : Ẑ(0) =

{
ẑ(0)(k + t)

} , t = 1, 2, ..., m. (23)

To evaluate the accuracy of the prediction effect of the model, we define the compound
position error as

Ep =
√

E2
x + E2

y + E2
z . (24)

Ex, Ey, Ez are the position errors in the three directions and are defined as follows
Ex = |X̂− X|
Ey = |Ŷ−Y|
Ez = |Ẑ− Z|

. (25)

X̂, Ŷ, and Ẑ are the coordinate components of the three directions calculated by the
model and are the three directions of the corresponding real coordinates for the moving tar-
get 

Emax =
N

max
1

(
Ep
)

Emin =
N

min
1

(
Ep
)

Eeq =
N
∑
1

(
Ep
) . (26)

The model length n determines the metabolic rate and accuracy of the model. Thus,
discussing the model length n is necessary. According to [48,49], the length of the model is
usually between 3 and 5. In Figure 13, we predict 20 sets of coordinates and calculate the
error by comparing them with the real coordinates. The red dot is closest to the origin, and
the prediction error is the smallest when the model length is 3. Therefore, we chose the
model length of n = 3 as the optimal parameter value.

The X axis in Figure 14 shows the real-time position of the moving object in the X
direction. Similarly, the Y and Z axes represent the real-time position of the moving object
in the Y and Z directions, respectively. The trajectories predicted by RMGM, ECGM, PCGM,
and GM, as well as the actual trajectories of moving objects, are shown in Figure 14. Except
for the red curve that represents RMGM, the other curves have large deviations from the
real trajectory. To show the trajectory prediction accuracy of the different methods clearly,
Figure 15 depicts the combined position errors calculated by RMGM, ECGM, PCGM,
and GM.

Yellow, red, green, and blue bars represent the RMGM, ECGM, PCGM, and GM errors,
respectively. The errors of RMGM are far less than those of the other models. Table 6 is
drawn according to the computer simulation results, According to Table 6, the composite
position errors calculated by RMGM were much smaller than those of the other models.
The average errors of ECGM, PCGM, and GM were 120.17-, 120.32-, and 121.38-times that
of RMGM, respectively.
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Figure 13. The error between the predicted and the actual coordinates at n = 3, 4, and 5.
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Figure 14. Predicted trajectories of the GM, ECGM, PCGM, and RMGM models.
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Table 6. Composite position error.

Method Emin Eeq Emax

RMGM 0.0002 0.0112 0.1238
ECGM 0.4897 1.3459 2.6561
PCGM 0.4985 1.3476 2.6816

GM 0.5676 1.3595 2.5258

In Figure 16, we compare the trajectory prediction performance of RMGM, GDF, and
MGM models, and the prediction trajectories of the three models are close to the real
trajectory. Distinguishing the advantages from the disadvantages in the trajectory diagram
is difficult. In Figures 17 and 18, the fitting position errors of the three models can be
shown clearly. Furthermore, the errors of RMGM are the minimum. In Figure 17, the
variation trend of the RMGM error is opposite to that of GDF. The error of the GDF model
increased when the background value error was small because the GDF used an error
correction term to reduce the model error.

Moreover, given that the error correction term is a prediction model, the variation
trend of the GDF model’s error was hysteretic compared with the RMGM. In Figure 18,
considering that the RMGM model only optimized the background value error in the
modeling process, the error followed the same trend as that of the MGM model. Figure 19
and Table 7 show a comparison of the compound position errors calculated by the three
methods. The average synthetic position errors of MGM, GDF, and RMGM were 0.03437,
0.02435, and 0.00273, respectively. The average position errors of MGM and GDF models
were 12.59 times and 8.92 times the RMGM models, respectively. Clearly, RMGM had
better trajectory prediction performance than MGM and GDF.
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Figure 16. Trajectory prediction of the GDF, MGM, and RMGM models.
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Figure 17. Combined position errors of GDF and RMGM.
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Figure 18. Combined position errors of MGM and RMGM.
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Figure 19. Comparison of the prediction errors of GDF, MGM, and RMGM.

Table 7. Comparison of the composite position error calculated by three methods.

Method Emin Eeq Emax

MGM 0.01531 0.03437 0.11419
GDF 0.01163 0.02435 0.09092

RMGM 0.00005 0.00273 0.01587

4.3. Local Path Adjustment

In Figure 20, The local path adjustment strategy is demonstrated on an 80 × 80 size
map. In Figure 20c, the local path adjustment of the same direction obstacle and the
opposite obstacle are classified into one category because they have the same deceleration
strategy, and the local adjustment of the opposite obstacle is taken as an example.

Table 8 records the coordinate information of the UAV and the dynamic flying obstacle
in Figure 20a at every moment. The coordinate of the next moment about the dynamic
flying obstacle was recorded by using the RMGM(1,1) model. R1 refers to the distance
between the predicted coordinates of the dynamic flying obstacle and the UAV in the next
moment. R2 is the distance between the dynamic flying obstacle and UAV after the UAV
adopts the deceleration strategy in the next moment.

The adjusted coordinates indicated that the original coordinates at the next moment
are replaced by the adjusted coordinates. R3 refers to the distance between the coordinates
of the dynamic flying obstacle and coordinates after the UAV adopts a change strategy. The
safe distance of R1, R2, and R was 2. According to the prediction results, R1 was 1.2 when
the UAV flies to the coordinates at 2 s, that is, collision occurred between the UAV and the
dynamic flying obstacle at 3 s.
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First, a deceleration strategy was validated. R2 was 0 if the UAV adopted the decel-
eration strategy, suggesting that the path of the UAV coincided with the trajectory of the
dynamic obstacle. A decentralized strategy was adopted instead of the deceleration strat-
egy. The distance between the offset coordinates of the UAV and the predicted coordinates
of the dynamic flight obstacle was greater than 2. Thus, the coordinate (36, 40) in the path
was replaced by the coordinate (37.2, 38). R3 was 2.3 at 3 s, and the obstacle avoidance was
successful.

(a) (b)

(c)

Figure 20. Dynamic flight obstacles are represented as blue triangles, the red circle is the UAV, and
the number of the corresponding color is the coordinate point of the corresponding time. (a,b) show
the local path adjustment for the opposite and codirectional obstacles, respectively. (c) shows the
deceleration strategy of the UAV.

The coordinate information of the UAV and dynamic flight obstacle in Figure 20b at
each moment is recorded in Table 9. R1 was 0.2 at 3 s, suggesting that a collision between
the UAV and dynamic flight obstacle occur at 4 s. First, the feasibility of a deceleration
strategy was verified. R2 was 0 if the UAV adopted the deceleration strategy. Thus, a
decentralized strategy was adopted, and the coordinates (43.8, 38) were added to the path
of the UAV instead of (44, 40) at 4 s. R3 was 2.3 when the UAV flew to the coordinates (43.8,
38) at 4 s, and the obstacle avoidance was successful.

The coordinate information of teh UAV and dynamic flight obstacle in Figure 20c
at each moment is recorded in Table 10. Considering that the trajectories of UAVs and
dynamic flying obstacles are not coincident, the UAV only needs to avoid dynamic flight
obstacles by adopting a deceleration strategy. Oncoming obstacles are used as an example.
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Collision occureed at 3 s when R1 was 1. The feasibility of the deceleration strategy was
verified. R2 was 4.02 at 3 s when the deceleration strategy was carried out. Hence, t
no collisions occurred at 3 s. Then, the coordinates were added into the path after the
deceleration strategy, and the obstacle avoidance was successful.

Table 8. Coordinate information of the local path adjustment in Figure 20a.

Time UAV
Coordinates

Obstacle
Coordinates

Prediction
Coordinates R1 R2 Adjusted

Coordinate R3

1 s (20,40) (52,40) (45,40) 17
2 s (28,40) (44,40) (37.2,40) 1.2 0 (37.2,38) 2.3
3 s (36,40) (36,40) (29.4,40) 14.6
4 s (44,40) (28,40) (21.8,40) 30.2
5 s (52,40) (20,40) (14.3,40)

Table 9. Coordinate information of the local path adjustment in Figure 20b.

Time UAV
Coordinates

Obstacle
Coordinates

Prediction
Coordinates R1 R2 Adjusted

Coordinate R3

1 s (20,40) (7,40) (23.6,40) 4.4
2 s (28,40) (23,40) (32.2,40) 3.8
3 s (36,40) (32,40) (43.8,40) 0.2 0 (43.8,38) 2.3
4 s (44,40) (44,40) (59.2,40) 7.2
5 s (52,40) (60,40) (112,40)

Table 10. Coordinate information of the local path adjustment in Figure 20c.

Time UAV
Coordinates

Obstacle
Coordinates

Prediction
Coordinates R1 R2 Adjusted

Coordinate R3

1 s (20,40) (39.5,28.6) (37.7,34.3) 11.25
2 s (28,40) (37.7,34.3) (35.9,41) 1 4.02 (32,40)
3 s (36,40) (36,40) (34.3,46.6) 11.73
4 s (44,40) (33.6,46.4) (31.4,53.8) 24.80
5 s (52,40) (32.6,53.8) (31.6,62.3)

5. Conclusions

In this paper, we presented an autonomous flight scheme of UAVs in complex urban
environments. This scheme is a composite method that includes global path generation
and local path adjustment. In the global path planning, we presented a branching selection
RRT(BS-RRT) algorithm to plan the path in urban environment with many narrow passages.
The experimental results showed that BS-RRT could plan global paths quickly by branching
selection continually. BS-RRT converged faster in narrow passage environments compared
with RRT, RRT-Connect, P-RRT, 1-0 Bg-RRT, and RRT∗.

The BS-RRT still maintained a fast convergence speed and high stability in the ordinary
map with different numbers of obstacles after many experiments. We also proposed a
cyclic pruning algorithm to optimize the path generated by BS-RRT. The simulation results
show that the cyclic pruning algorithm shortened the path, and the path after pruning
could reach the optimal path. The effect of the cyclic pruning algorithm was enhanced
with the increase in the tortuous degree of the path. Forecasting and decision making were
included in the local path adjustment scheme, and the RMGM(1,1) model was proposed to
predict the trajectory of the dynamic flight obstacles.

The real-time performance of the RMGM(1,1) model was guaranteed by constantly
adding new coordinates and eliminating old coordinates. The optimal model length was
selected to improve the prediction accuracy. Then, RMGM(1,1) was compared with the
other trajectory prediction methods (e.g., GM(1,1), ECGM(1,1), PCGM(1,1), MGM(1,1),
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and GDF) in the computer simulation. The simulation results show that the trajectory
prediction performance of RMGM was superior to the other models. The decision of
the UAV was based on the prediction results of the RMGM model. The decision section
contained two path adjustment strategies.

If the coordinate position after deceleration was far from the trajectory of the dynamic
flight obstacle, then the deceleration strategy was feasible. The use of the deceleration
strategy was preferred when the trajectory of the dynamic flight obstacle did not coincide
with the path of the UAV. The decentralized strategy was used when the trajectory of
the dynamic flight obstacle coincided with the path of the UAV. The results of the predic-
tion model are the premise for both kinds of decision making. The experimental results
demonstrated the effectiveness of the local path adjustment scheme.
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