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A B S T R A C T   

The sudden COVID-19 pandemic has caused a serious global concern due to infections and mortality rates. It is a 
hazardous disease that has recently become the biggest crisis in the modern era. Due to the limitation of test kits 
and the need for screening and rapid diagnosis of patients, it is essential to perform a self-operating detection 
model as a fast recognition system to detect COVID-19 infection and prevent the spread among the people. In this 
paper, we propose a novel technique called Fast COVID-19 Detector (FCOD) to have a fast detection of COVID-19 
using X-ray images. The FCOD is a deep learning model based on the Inception architecture that uses 17 
depthwise separable convolution layers to detect COVID-19. Depthwise separable convolution layers decrease 
the computation costs, time, and they can have a reducing role in the number of parameters compared to the 
standard convolution layers. To evaluate FCOD, we used covid-chestxray-dataset, which contains 940 publicly 
available typical chest X-ray images. Our results show that FCOD can provide accuracy, F1-score, and AUC of 
96%, 96%, and 0.95%, respectively in classifying COVID-19 during 0.014 s for each case. The proposed model 
can be employed as a supportive decision-making system to assist radiologists in clinics and hospitals to screen 
patients immediately.   

1. Introduction 

The coronavirus illness (COVID-19) is a universal pandemic that was 
found in December 2019 by a Chinese doctor in Wuhan, China [1]. 
Below the electron microscopes, the shape of these viruses is similar to 
the solar corona; accordingly, the researchists called them CoV [2]. The 
coronavirus family can cause serious infections and diseases like Middle 
East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory 
Syndrome (SARS-CoV). On Feb 2020, the World Health Organization 
(WHO) called the pandemic COVID-19 because of the type of virus [3]. It 
has led to more than forty million infections and over one million deaths 
globally (up to Oct 20, 2020). 

The sputum’s assay via polymerase chain reaction (RT-PCR) is one of 
Coronaviruses recognition’s principal standards, but RT-PCR is a time- 
consuming process for the patients to identify COVID-19 [4]. Accord
ingly, medical imaging modalities, like Computed Tomography (CT) and 
Chest X-ray (CXR), can be a significant task in checking positive 
COVID-19 infections, specifically about pregnant women on the way and 
children [5,6]. Volumetric CT thorax images have been studied in some 
previous researches for recognizing COVID-19 [5,7]. The main limita
tion of using the CT method is high cost and time-consuming [8]. In 
contrast, X-ray systems are accessible in most clinics and hospitals, 

which are used to generate 2-dimensional visualization images of the 
patient’s rib cage. 

Usually, the CXR manner is a premier option, which helps the radi
ologists to identify the chest pathology. According to the COVID-19 
condition, the CXR manner is being utilized to detect COVID-19 [5,9]. 
Hence, the focus of this study is entirely on the use of X-ray imaging to 
potentially detect COVID-19 patients. 

Fig. 1 shows a COVID-19 patient case with pneumonia chest X-ray 
images for a week is given. The patient, when using CT, may get more 
amount of radiation compared to the X-ray. Hence, in some cases, it is 
suggested to utilize X-ray imagery [8,10]. Computer-Aided Diagnosis 
(CAD) systems have been extended to overcome this limitation and help 
physicians to identify suspected diseases of vital organs in X-ray images 
automatically [11,12]. These systems, which are chiefly supported by 
the fast and advanced of computer technology (like CPU, GPU, and, 
TPU) are used to operate the medical vision computing algorithms, 
containing image enhancement, classification, segmentation, and tumor 
detection tasks [13–15]. In several medical fields, Artificial intelligence 
(AI) methods like a deep neural network and machine learning turn to 
the core of the superior CAD applications. In recent years, deep learning 
methods have encouraged the results to perform radiological tasks by 
automated examining multi-modal medical images [16–18]. Deep 
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learning techniques are one of the robust neural network structures. In 
an intuitional way been used in several practical applications in several 
practical usages, such as image segmentation and classification [19]. 
The use of machine learning techniques in the medical area for auto
mated analysis has gained a new reputation by developing an assistive 
tool for clinicians [20–24]. Deep learning technique, which is one of the 
modern research fields of AI, provides the development of end-to-end 
methods to attain promised outcomes applying input information, in 
the absence of handy feature exploitation [25,26]. However, deep 
learning methods have been strongly used in various challenges like skin 
disease classification [27,28], arrhythmia identification [29–31], brain 
damages classification [32], breast cancer recognition [33,34], fundus 
image segmentation [35], pneumonia detection from chest X-ray images 
[36], and segmentation of the lung [37,38]. 

The rapid development of COVID-19 outbreaks necessitates the 
development of automated detection algorithms based on AI methods. 
Due to the limited number of radiologists in different areas, it is chal
lenging to provide specialist clinicians for each hospital. Also, accurate, 
fast, and simple AI algorithms can address this issue and present prac
tical assistance for the patients. Radiologist’s wide experience in this 
area plays a key role; in radiology, the AI equipment may help to gain a 
precise diagnosis [39]. Besides, AI programs may be valuable in 
reducing the disadvantages such as an inadequate quantity of possible 
RT-PCR test kits and test costs. In this paper, we proposed a fast and 
accurate deep learning model for the detection of COVID-19 from X-ray 
images. Notwithstanding overlapping features, the proposed intelligent 
network can classify COVID-19 and normal cases into different classes. 
Early detection in the case of COVID-19 plays an essential role in the 
handling of the disease. Currently, the detection is made for patients by a 
set of laboratory experiments. These experiments are a time-consuming 
process and need commercial kits. Also, researchers affirm that merging 
laboratory outcomes with clinical image characteristics can be used in 
the early detection of COVID-19 [40–42]. Radiologic data, such as im
ages collected from COVID-19 cases, include valuable data for diag
nostic and treatment. Some analyses have found differences in chest 
X-ray and CT images since the onset of COVID-19 symptoms [43]. 
Hence, alternative methods of detection are essential in the case of 
COVID-19. 

The Inception network is known as one of the Deep Convolutional 
Neural Network (DCNN) models with high capacity and high perfor
mance in the classification task. The primary Inception model was one of 
the most popular learning architectures for image processing tasks [44]. 
The proposed model in this research is based on the Inception structure. 
However, our innovation is that the middle layers change fundamen
tally, which is a new robust classification model. 1 

Accordingly, this study will present a new robust framework of deep 
learning classifiers as a high-level assistive implement to help the radi
ologists. It can automatically detect COVID-19 in X-ray images in clinics 
and hospitals. The overall contributions of this paper are reviewed in the 
following:  

• Designing a new framework based on deep learning assists of COVID- 
19 detection.  

• Analyzing the suggested classifier architecture to classify COVID-19 
virus via using chest X-ray images to achieve a lower cost process and 
prediction time.  

• Reporting the results of the proposed DCNN classifier model.  
• The proposed framework supports researchers in developing high- 

level artificial intelligence methods for CAD devices to prevent the 
spread of the COVID-19 virus. 

The rest of this paper is organized as follows: Section 2 gives a review 
of related works. System architecture, which contains the proposed 
model, is presented in section 3. We analyze the results of the suggested 
algorithm in section 4. The conclusion and discussion are given in the 
last section. 

2. Related works 

Many types of researches focus on COVID-19 diagnosis. In most 
studies, deep neural network methods are applied to chest X-ray models 
to recognize contagious and accurate results. 

A DCNN model based on pre-trained transfer architectures 
(ResNet50 [45], InceptionV3 [44], and Inception-ResNetV2 [46]) that 
can predict the coronavirus infection from chest X-ray images, is pro
posed in Ref. [47]. The presented CNN based model showed excellent 
prediction performance and accuracy from a small sample of X-ray im
ages classified into two classes, COVID-19 and normal cases. Moreover, 
to dominate the inadequate information and training time, a transfer 
learning manner is used by the ImageNet dataset [48]. The outcomes 
confirmed the superiority accuracy in pairs of the training and testing 
grade of the ResNet50 model. 

Abbas et al. proposed a new CNN model based on class decomposi
tion and transfer learning to get better performance of the X-ray image 
classification on pre-trained models [49]. The presented structure is 
called DeTraC and includes three stages. In the first stage, local feature 
extraction is performed by using ImageNet pre-trained CNN. In the 
second stage, a stochastic gradient descent (SGD) optimization approach 
is utilized for training. Finally, the class combination layer is adjusted 
for the image’s ultimate classification by employing error-correction 

criteria related to a softmax layer. The ResNet18 [45] pre-trained 
ImageNet architecture is applied, and the results show an accuracy of 
95.12% on chest X-ray images. 

Wand et al. introduced a DCNN called COVID-Net, which can detect 

Fig. 1. Chest X-ray images of a 50-year-old COVID-19 patient case over a week.  

1 Edgar Lorente, COVID-19 pneumonia - evolution over a week, http 
s://radiopaedia.org. 
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COVID-19 patients from CXR images [50]. This architecture design in
cludes two parts: a human-machine collaborative design approach and a 
machine-driven design exploration part. A lightweight residual 
projection-expansion-projection-extension (PEPX) design pattern is used 
in this architecture. Also, an explain ability-driven examination is 
executed for decision validation. The model results presented high 
sensitivity and precision of 87.1% and 96.4%, respectively, for the 
COVID-19 cases. 

Hemdan et al. proposed a structure to classifying COVID-19 disease 
from chest X-ray images containing seven image classifiers named 
COVIDX-Net with high performance and accuracy of 90% for the Den
seNet201 and VGG19 classifiers [51]. Hassanien et al. presented a 
classification method to detect COVID-19 in lung X-ray images that 
utilize multi-level thresholding and a SVM [52]. Their algorithm was 
tested on 40 contrast-enhanced lung X-ray images. Their classification 
method gained a sensitivity of 95.76%, a specificity of 99.7%, and an 
accuracy of 97.48%. 

Zhang et al. proposed a novel deep anomaly detection method 
formed on CXR images for the screening of COVID-19 [53]. This pro
posed network includes some parts. The high-level features of images 
were extracted and then used as the input. The classification part is 
utilized for the image classification and is composed of a hidden con
volutional layer of 100-neurons. The scalar anomaly scores are gener
ated in the anomaly detection part (COVID-19 cases). The suggested 
architecture attained the false positive rate. The results illustrated a 
specificity and sensitivity of 70.65% and 96.00%, respectively. 

3. Materials and methods 

3.1. Data set 

In this study, we have used a publicly available dataset that exists in 
the GitHub repository,2 which has been collected by Ref. [54]. This 
dataset includes X-ray images of patients infected with COVID-19, SARS, 
Pneumocystis, and other types of pneumonia. We just analyzed the 940 
COVID-19 and Non-COVID-19 X-ray cases and divided them into two 
parts, 80% for the training and 20% for testing the model. In Fig. 2 some 
examples of the dataset are shown. The statistical characteristics (mean, 
minimum, and maximum) of the dataset’s images are tabulated in 

Table 1. 

3.2. Data augmentation 

Data augmentation is a popular operation applied in deep learning, 
which enlargement the amount of available training/testing data [55]. 
In this work, due to the lack of the required number of available samples, 
data augmentation techniques were accomplished by Image
DataGenerator in the training task. The transformations function 
applied random rotation in the range of 20◦, width and height shift 
operations in the range of 0.2 pixels, zooming operation in the range of 
0.8 and 1.2, and horizontal flips. ImageDataGenerator has finally pro
duced 3760 images for the training phase of the proposed model. Data 
augmentation improves and enhances the network’s ability to learn. 
Data augmentation is an effective method to prohibit network over
fitting by increasing the number of training samples [56]. 

3.3. Depthwise separable convolutions layers 

CNN’s can automatically extract features, and cause the network to 
accomplish processing with high performance. Due to the high number 
of parameters, CNN has some restrictions on the computation cost, and 
the network overfitting. These limitations of CNN can be improved by 
using depthwise separable convolution that has been used in a neural 
network as early as 2014 [57]. 

Depthwise separable convolutions decrease computation cost, time, 
and the number of parameters. They use convolutional neural processes 
while improving the representational performance. Depthwise sepa
rable convolution layers are decreasing the number of parameters 
needed to operate at a given step, and they are more successful in image 
classification algorithms in achieving superior models. 

Standard convolution executes the channel-wise and spatial-wise 
computation in one step. However, our proposed network is based on 
depthwise separable convolution, a standard 3 × 3 convolution layer 
divided into a 3 × 3 depthwise convolution and a 1 × 1 pointwise 
convolution. Depthwise separable convolution layer divided the 
computation into two steps: depthwise convolution and pointwise 
convolution. Depthwise convolution uses a convolutional filter per input 
channel, and pointwise convolution is utilized to mix the resulting 
output channels. Fig. 3 shows the comparison of standard convolution 
and depthwise separable convolution. 

Suppose that K is a standard convolutional filter which size is W×

W× M× N, and F is an input feature map which size is Df × Df × M. By 
applying a standard convolution on an input feature map produces an 
output feature map O which size is Df × Df × N, 

Ok,l,n =
∑

i,j,m
Ki,j,m,n⋅Fk+i− 1,l+j− 1,m (1) 

In depthwise separable convolution, this computation is divided into 
two levels. The first level uses a 3 × 3 depthwise convolution K̂ to input 
channel, 

Ôk,l,m =
∑

i,j
K̂ i,j,m,n⋅Fk+i− 1,l+j− 1,m (2) 

Fig. 2. Some examples from dataset. The first row are normal cases, and the 
second are COVID-19 cases. 

Table 1 
The statistical mean, minimum, and maximum of width and height of the 
dataset’s classes.  

Type Images 
count  

Min 
Width  

Max 
width  

Min 
height  

Max 
height  

Covid 435 137 4300 156 4300 
Non- 

Covid 
505 224 224 224 224 

Mean – 180.5 2262 190 2262  

2 https://github.com/ieee8023/covid-chestxray-dataset. 
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The second level exerts 1 × 1 pointwise convolution K, in order to 
merge the total output, 

Ok,l,n =
∑

m
Km,n ⋅Ôk− 1,l− 1,m (3) 

Pointwise convolution and depthwise convolution have distinct tasks 
in producing new features: the first one is used for obtaining channel- 
wise correlations, while the second one is used for obtaining spatial 
correlations. 

3.4. Activation function 

Rectified Linear Unit (ReLU) is a non-linear activation function that 
is utilized in neural networks models, and is defined as: 

f (x)=max(0, x) (4)  

where x is an input parameter. As stated in Eq (4), the maximum value 
between zero and function input is the ReLU output. When the input 
value is negative the output is equivalent to zero, and when the input is 
positive, the outcome is x. Accordingly, the Eq (4) readdress as follows: 

f (x)=
{

0, if x < 0
x, if ≥ 0 (5) 

In our proposed model, ReLU is used after each depthwise separable 
convolution layer. Relu is not a vanishing gradient, more computa
tionally efficient, and learn several times faster [26]. 

3.5. Proposed model 

In this section, we present the Fast COVID-19 Detector (FCOD) model 
as a deep learning model for automatic classification of COVID-19 in 2D 
X-ray images. FCOD has used depthwise separable convolution layers, 
which is shown in Fig. 4. 

In the proposed model, we have been using fewer layers and filters in 
contrast to the basic architectures. Also, we have applied depthwise 
separable convolution layers instead of convolutional layers. 

The model consists of three parts. In the first part, the chest X-ray 
images were used for the input layer of the model. These images pass 
over four depthwise separable convolution layers, and then the max- 
pooling layer follows each of the depthwise separable convolution 

layers. The middle part merged with 12 depthwise separable convolu
tion layers. Both of the first and middle parts are followed by batch 
normalization. 

Also, batch normalization enables significant gradients, and the re
sults appear in faster convergence [58]. The dropout layer is utilized 
after 16 separable convolution layers with a dropout ratio of 0.2 [59]. 
This network ends with Global Average Pooling, a layer of depthwise 
separable convolution, two fully-connected (FC) layers, and a softmax 
activation function. 

3.6. Model training 

By updating the weights of the network, the loss function, which is a 
categorical cross-entropy can optimize the algorithm. Categorical cross- 
entropy is utilized for multi-class classification task to predict the 
probabilities over the N number of classes. 

The RMSprop optimization algorithm is used for training the model 
[60]. We have set 100 epochs, 16 batch sizes, and a learning rate of 
0.001 for training our network. 

3.7. Classification performance 

For analyzing the performance of each model, different metrics have 
been used. As shown in Fig. 5, we have used a confusion matrix for 
analyzing the performances of the proposed network. 

This matrix has four expected parameters as follows: TP, TN, FP, FN 
which refer to the true positive, true negative, false positive, and false 
negative samples of any class. Accuracy is generally utilized as a clas
sification metric and represents how well a classification model can 
distinguish the classes in the test set. The accuracy is defined by: 

Accuracy=
TP + TN

TP + FP + FN + TN
(6) 

As shown in Eq (6), the accuracy can be explained as the ratio of the 
predicted correct labels of the structure over the total number of labels. 

Precision (Eq (7)) is defined as the ratio of predicted correct labels of 
the architecture over the whole number of actual labels. 

Precision=
TP

TP + FP
(7) 

Recall (Eq (8)) is defined as the proportion of predicted correct labels 

Fig. 3. (a) Standard CNN. (b) Depthwise Separable CNN. In depthwise separable convolution, standard convolutional layers divided into two different levels. 
Depthwise convolution executes convolution in a single depth slice, while pointwise Convolution merges the information over the entire depth. 
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of the model over the total number of predicted labels. 

Recall=
TP

TP + FN
(8) 

Measuring the proportion of negatives which are recognized without 
error, is done by specificity (Eq (9)). 

Specificity=
TN

FP + TN
(9) 

Also, F1 - score (Eq (10)) is referred to the harmonic average of the 
Precision and Recall. 

F1 − score= 2
(Precision × Recall)
(Precision + Recall)

(10)  

4. Experimental results 

In this section, we show the performance of the proposed algorithm 
using various evaluation metrics. 

The model is implemented in Python using Keras framework 2.2.4 
with Tensorflow 1.14.0 as the backend, and the hardware configuration 
is based on free Google service.3 

The Receiver Operating Characteristics (ROC) curve and the confu
sion matrix of the proposed model are shown in Fig. 6 (a) and 6(b), 
respectively. 

The training and testing accuracy and loss curves of the proposed 
classification model are demonstrated in Fig. 7. As shown in this Figure, 
the loss value of the training and testing phases has decreased. On the 
other hand, the accuracy of the training and testing sets have increased. 
Accordingly, these issues indicate that the proposed architecture has 
appropriate efficiency. 

The performance metrics of some popular deep learning classifier 
models are tabulated in Table 2. 

According to Table 2, the tested DCNN image classifier model’s ac
curacy and computational times are compared with the other models. By 
using the GPU’s robust abilities with a small X-ray image dataset, the 
proposed deep learning model’s running time is low. Also, the overall 

Fig. 4. Scheme of the proposed classifier architecture.  

Fig. 5. Confusion matrix.  

Fig. 6. ROC curves and confusion matrix of the proposed deep learning model.  

3 https://colab.research.google.com. 
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accuracy is 96%, and the prediction time is 0.014 s, which is one of the 
best prediction times among the classifier models in this task. Eventu
ally, this model can be used as an online/real-time framework with high 
accuracy and low prediction time. 

The performance of FCOD for some randomly selected patients is 
shown in Fig. 8. FCOD can detect COVID-19 cases quickly with high 

accuracy. 

5. Discussion and conclusion 

Since the excessive infection rates and mortality of COVID-19 cases 
have been increasing, there is a need to use early, fast, and inexpensive 

Fig. 7. Accuracy and loss curves of the training and testing phases of the proposed deep learning model.  

Table 2 
Comparative classification performance of deep learning models.  

Classifier Sensitivity Specificity Precision Accuracy F1-Score Training time(s) Testing time(s) 

COVID-Net [61] 0.90 0.80 – 0.85 0.22 – – 
COVID-CAPS [62] 0.90 0.95 – 0.95 – – – 
Shashank [63] 098 0.91 0.96 0.96 0.97 – – 
VGG19 [51] 0.83 1.00 1.00 0.90 0.81 2641 4.0 
CovidGAN [64] 0.95 0.94 0.90 0.94 0.92 – – 
ResNet50 [47] – 100 100 0.98 0.98 – – 
DenseNet201 [51] 0.83 1.00 1.00 0.90 0.81 2122 6.00 
ResNetV2 [51] 1.00 0.62 0.40 0.70 0.57 1086 2.00 
InceptionV3 [51] – 0.50 0.00 0.50 – 1121 2.00 
Inception        
-ResNetV2 [51] 1.00 0.71 0.60 0.80 0.75 1988 6.00 
Xception [51] 1.00 0.71 0.60 0.80 0.75 2035 3.00 
MobileNetV2 [51] 1.00 0.55 0.20 0.60 0.33 389 1.00 
Proposed Model 0.93 0.97 0.97 0.96 0.96 1800 0.014  

Fig. 8. Some examples from final output of the proposed model.  
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diagnostic methods. Unfortunately, there is still no specific drug or 
approved vaccine to treat COVID-19 infected patients, while fast diag
nosis and screening of the disease are two basic and essential issues. 
Nowadays, most laboratories are equipped to detect the virus gaining 
the otorhinolaryngological methods. 

The availability of testing devices and kits is the limitation of the 
COVID-19 tests. X-ray machines are more simply and quickly available. 
Hence, the use of chest X-ray images for analysis of the Coronavirus will 
be assistive. To address this issue, we proposed a novel architecture 
called FCOD, which has trained, tested, and validated on chest X-ray 
images for fast detection of COVID-19. 

This network can be efficiently utilized to help doctors in the analysis 
of the X-ray images. The proposed algorithm’s innovation has a lower 
prediction time than the other existing models with high performance. 
The network automatically recognizes the complicated patterns from X- 
ray images, which is comparable with skilled radiologists. Furthermore, 
we can improve our network’s performance by adding more COVID 
cases of chest X-ray images in our training data. 

The proposed classification method was tested and evaluated on 
covid-chestxray-dataset, which is a publicly available dataset. For 
comparison, we report the results with the other popular existing 
methods. The proposed network has illustrated essential improvements 
over the other methods, especially in prediction time. The proposed 
algorithm can perform detection of the COVID-19 in 0.014 s. The ob
tained accuracy and AUC for the proposed model are 96%, and 95%, 
respectively. 

From what has been discussed above, it can be concluded that the 
proposed classification algorithm can be used as an accurate and fast 
method to detect COVID-19 using chest X-ray images. This model can be 
used as an online/real-time medical assistive implement in radiologic 
clinics and hospitals. 
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