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Do X-ray spectroscopies provide evidence for
continuous distribution models of water at
ambient conditions?
Lars G. M. Petterssona,1, Yoshihisa Haradab,c,d, and Anders Nilssona

Ambient water properties have been shown to require
heterogeneity (1). Niskanen et al. (2) apply a linear
relationship between the intensity of the 4a1 excita-
tion in an electron energy loss spectroscopy gas-
phase spectrum and the preedge in water and ice
from X-ray Raman scattering to extract the number
of hydrogen bonds (HBs) and conclude about homo-
geneity of liquid water. We raise several concerns re-
garding their analysis and interpretation.

First, an HB number by itself cannot say anything
about homogeneity or heterogeneity since one needs
to determine the spatial distribution. Second, due to
extended X-ray absorption fine structure oscillations
(3) and energy-dependent shake-off processes, nor-
malization by the f-sum rule requires measurements
extended to 500 eV above the edge, and not only
25 eV as in ref. 2. Third, there exists no strict theoret-
ical foundation for this procedure to derive an HB
number, since the orbitals in condensed phase
change character and absorption cross-section due
to HB formation (4). The authors of ref. 2 rely on spec-
trum calculations to derive an empirical relationship,
but the calculated ambient liquid spectrum (reference
30 in ref. 2) shows major discrepancies with experi-
ment with main- to postedge intensity ratio 2:1. How-
ever, the structure used for the calculations corresponds
rather to 254 K in terms of the O–O pair-distribution
function (5), for which the ratio should instead be almost
1:1 (6). Furthermore, the computed preedge intensities
(reference 30 in ref. 2) give a large spread for similar HB
situations calling for caution and a precise linear relation-
ship cannot be extracted from these calculations.

It is claimed in ref. 2 that preedge-excited resonant
inelastic X-ray scattering (RIXS) probes all bonding

arrangements, but the authors report only one O–H
stretch frequency. This single frequency is claimed as
consistent with a homogeneous model of water, ig-
noring that preedge excitation may select a specific
class of molecules. Indeed, Harada et al. (7) have
scanned the whole X-ray absorption spectroscopy res-
onance, not only the preedge, demonstrating suben-
sembles with different frequencies.

Higher excitation energies give 2 discrete lone-pair
X-ray emission peaks with temperature-dependent
relative ratio. Niskanen et al. propose that the A′ peak
(Figure 4 in ref. 2) originates from core-hole–induced
dynamics. The theoretical simulation is problematic by
keeping the B′ peak at constant energy, independent
of scattering duration time. However, the B′ peak is at
lower energy for H2O than D2O (reference 14 in ref. 2),
which directly shows that core-hole–induced dynam-
ics shifts this peak down. Thus, keeping the B′ peak
constant in energy is incorrect and makes instead
other peaks move up. With correct energy scale, peak
A′ should remain in the 3a1 region (1.5 to 2 eV from B′)
and not shift up in energy. Indeed, earlier simulations
using this energy calibration (reference 18 in ref. 2 and
ref. 8) have assigned peak A′ to a1 symmetry. However,
polarization-dependent RIXS measurements show that
also this peak is of b1 symmetry (9).

In Niskanen et al. (2), the 2 peaks seen in ice at low
temperature are proposed to support one peak (A′) as
due to core-hole dynamics. However, for ice mea-
sured instead at −10 °C, the B′ peak is suppressed
and A′ dominates, as expected for tetrahedral local
structure (reference 46 in ref. 2). Here, rapid equilib-
rium with the vapor heals beam-induced transforma-
tions into high-density amorphous ice (10).
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