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Mantle cell lymphoma (MCL) is an aggressive form of non-Hodgkin’s B-cell lymphoma
with poor prognosis. Despite recent advances, resistance to therapy and relapse remain
significant clinical problems. G-protein-coupled estrogen receptor (GPER)-mediated
estrogenic rapid signaling is implicated in the development of many cancers. However,
its role in MCL is unknown. Here we report that GPER activation with selective agonist G-1
induced cell cycle arrest, DNA damage, mitochondria membrane potential abnormality,
and eventually apoptosis of MCL cell lines. We found that G-1 induced DNA damage and
apoptosis of MCL cells by promoting the expression of nicotinamide adenine dinucleotide
phosphate oxidase and the generation of reactive oxygen species. In addition, G-1
inhibited MCL cell proliferation by inactivation of NF-kB signaling and exhibited anti-tumor
functions in MCL xenografted mice. Most significantly, G-1 showed synergistic effect with
ibrutinib making it a potential candidate for chemotherapy-free therapies against MCL.

Keywords: Mantle cell lymphoma, G protein-coupled estrogen receptor (GPER), G-1, cell proliferation, apoptosis,
chemotherapy-free strategies
INTRODUCTION

Mantle cell lymphoma (MCL) is a rare and aggressive form of B-cell lymphoma, characterized by
the hallmark translocation (11;14) (q13; q32) that results in overexpression of cyclin D1 and cell
proliferation (1). Additional genomic alterations, which are involved in cell cycle, DNA damage,
signal transduction, and apoptosis (2, 3), are also found to contribute to MCL progression and
Abbrevations: MCL, Mantle cell lymphoma; GPER, G-protein-coupled estrogen receptor; BTK, Bruton’s tyrosine kinase;
EGFR, epidermal growth factor receptor; ROS, reactive oxygen species; g-H2A.X, phospho-H2A.X; NOX, NADPH oxidase;
NF-kB, nuclear factor kappa-B; NAC, N-Acetyl-L-cysteine; H2DCFDA, 2′,7′-dichlorofluorescin diacetate; DSB, double-
strand break.
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resistance to conventional chemotherapy (4, 5). Recent advances
in cytostat ic drugs , inc luding the development of
immunomodulatory imide drugs such as lenalidomide and the
Bruton’s tyrosine kinase (BTK) inhibitor such as ibrutinib, have
established chemo-free regimes as a promising new direction of
MCL therapy (5–7). However, several challenges remain. For
example, primary and acquired resistance to ibrutinib is
common, leading to poor prognosis (8, 9). Thus, there is a
need to identify new targeted therapeutic options for MCL.

MCL has a high male/female ratio, which is up to 3.5:1, and
male gender is considered an independent negative prognostic
factor (10, 11). In addition to conventional estrogen receptors
ER-a and ER-b, estrogens also mediate rapid signaling pathways
via G-protein-coupled estrogen receptor (GPER), previously
known as GPR30 (12). GPER is involved in non-genomic
estrogenic signaling including calcium mobilization and
generation of cyclic AMP, and stimulation of GPER activates
matrix metalloproteinases, epidermal growth factor receptor
(EGFR), ERK and PI3K pathways. Studies with GPER-deficient
mice and GPER-selective agonist reveal that GPER exhibits an
important function in various pathological processes including
malignant diseases (13). GPER is expressed in various cancers,
and studies in some female reproductive-related neoplasms
suggest that higher GPER expression is associated with inferior
prognosis and contributes to tumor development (14, 15).
However, the opposite results were also observed (16–18).
Study on GPER’s implication in MCL has just recently begun
(19), and many questions remain unanswered.

G-1 is a GPER-selective agonist (20) and has been utilized to
study GPER’s function. It has been shown that activation of
GPER with G-1 represses proliferation and induces apoptosis in
many cancers, such as ovarian cancer, colorectal cancer, breast
cancer, and prostate cancer (21–24). In this study, we
investigated the effects of G-1-induced GPER activation on
MCL cells as well as on tumor growth in MCL-xenografted
mice. In addition, we tested the potential combinative usage of
G-1 and ibrutinib for MCL treatment in preclinical models.
MATERIALS AND METHODS

Reagents and Antibodies
G-1 (B5455) and G-15 (B5469) were purchased from APExBIO
(Texas, USA). G-36 (14397) was purchased from the Cayman
Chemical Company (Michigan, USA). N-Acetyl-L-cysteine
(NAC) (A9165) and 2′,7′-dichlorofluorescin diacetate
(H2DCFDA) (D6883) we r e f rom Mi l l i po r eS i gma
(Massachusetts, USA). 2-Acetylphenothiazine (ML171) (S5304)
and ibrutinib (S2680) were from Selleck (Texas, USA). FITC
Annexin V Apoptosis Detection Kit with PI (640914) was
purchased from BioLegend (California, USA). Hybrid-P protein
hybrid nitrocellulose membranes (RPN303F) was from GE
Amersham (Illinois, USA). BCA protein assay reagent kit
(P0012), JC-1 (C2006), and propidium iodide (C1052) were
from Beyotime (Shanghai, China). RevertAid First Strand cDNA
Synthesis Kit (K1621), PowerUp™ SYBR™ Green Master Mix
Frontiers in Oncology | www.frontiersin.org 2
(A29742), and TurboFect Transfection Reagent (R0531) were
from Thermo Fisher Scientific (Massachusetts, USA). Anti-
mouse/rabbit immunohisto-chemical analysis kit (SP9000) was
from ZSGB-Bio (Beijing, China). DAB Horseradish Peroxidase
Color Development Kit (KGP1046) was from KeyGEN BioTECH
(Jiangsu, China). siRNA targeting GPER and negative control
siRNA were purchased from GenePharma (Shanghai, China).
Antibodies against GPER (ab39742), CD20 (ab9475), NOX1
(ab55831), GAPDH (ab181602), anti-mouse IgG H&L (Alexa
Fluor 594) (ab150116), and anti-Rabbit IgG H&L (Alexa Fluor
647) (ab150075) were from Abcam (Massachusetts, USA).
Antibodies against H2A.X (7631), Phospho-H2A.X (Ser 139)
(9718), Cleaved-Caspase-3 (9664), Cleaved-Caspase-9 (9505),
Phospho- NF-kB p65 (Ser 536) (3033), NF-kB p65 (8242), anti-
mouse IgG HRP-linked antibody (7076), and anti-rabbit IgG
HRP-linked antibody (7074) were from Cell Signaling
Technology (Massachusetts, USA).

MCL Patients
MCL tumor tissues were collected from five male patients with an
average age of 68.2 (age range, 62-74 years). These patients were
admitted into The First Affiliated Hospital of Soochow University
and were diagnosed with MCL according to the World Health
Organization classification. Two control lymph nodes were from
patients in the same hospital who received surgery due to gastric
cancer and colon cancer, respectively. There was no metastasized
cancer cell in any of the lymph nodes used in the present study, as
certified by an experienced pathologist.

Cell Lines
MCL cell lines (Jeko-1, Rec-1, Granta-519) were purchased
from ATCC (Virginia, USA). Mino cell line was a kind gift
from Dr. Jianhong Chu. Cells were cultured in RPMI 1640
medium containing 10% of fetal bovine serum (FBS) and 100
U/mL penicillin and 100 µg/mL streptomycin in a humidified
incubator with 5% CO2 at 37°C. For assessment of apoptosis,
cell cycle, mitochondrial membrane potential, and western blot,
cells were cultured in 5×105/mL and then were treated as
indicated, respectively.

Western Blot
To analyze protein expression, cultured cells were lysed using RIPA
lysis buffer and the protein concentrations were determined by BCA
protein assay reagent kit according to the manufacturer’s
instructions. Lysate with total protein of 20 µg were applied to
10% or 12% SDS-PAGE, and separated proteins were transferred
onto nitrocellulose membranes. After blots were blocked, the
membranes were incubated with primary antibodies and then the
corresponding secondary antibodies. Protein expression was
visualized using Immobilon Western chemiluminescent
HRP substrate.

Immunofluorescence
To observe the cellular location of GPER, Mino cells were plated
in polylysine-coated wells and fixed with 4% paraformaldehyde
for 10 min, followed by permeation and blocking with 3% BSA,
3% donkey serum, and 0.3% Triton-100 for 1 h at room
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temperature. After blocking, the cells were incubated with
primary antibodies against CD20 (1:50) and GPER (1:200)
overnight at 4°C and then with fluorescence-conjugated
secondary antibodies for 1 h at room temperature. DAPI
Fluoromount-G was used for nuclear staining and sealing.
Samples were analyzed with a confocal laser scanning
microscope (TCSSP8, Leica, ×10).

To examine DNA damage, tumors from MCL-xenografted
mice were fixed with 4% paraformaldehyde overnight and then
dehydrated with 20% sucrose overnight followed by OCT
embedding. Next, the tissues were cut into 5 µm slices and
placed on glass slides. The slides were incubated with primary
antibody against g-H2A.X (1:400) overnight, then with the
secondary antibody for 1 h. Sections were analyzed as
described above.

Quantitative Real-Time PCR
To evaluate the level of mRNA transcripts, total cellular RNA was
isolated and reverse transcribed to cDNA with RevertAid First
Strand cDNA Synthesis Kit according to kit instruction. ER-a, ER-
b, and GPER mRNA expression were analyzed in duplicate by
quantitative real-time PCR with PowerUp™ SYBR™Green Master
Mix using a 7500 Real Time PCR System (Thermo Fisher
S c i en t ifi c ) . Th e sp e c ifi c p r ime r s we r e “ATGGT
CAGTGCCTTGTTGG-ATGC” and “GTCTGCCAGGTTGG
TCAGTAAGC” for ER-a, “GCTGAACGCCGTGACCGATG”
and “ACAGGAGCATCAGGAGGTTAGCC” for ER-b ,
“GGTGCTGGTCTTCTTCGTCTGC” and “AAGGC-GGCGA
GGTTGACAATG” for GPER, and “GGTGCTGGTCTTCTTC
GTCTGC” and “AAGGCGGCGAGGTTGACAATG” for
GAPDH. The relative expression of these genes was calculated
with the comparative cycle threshold (Ct) method (-DDCt) by using
GAPDH as endogenous control.

Immunohistochemistry (IHC)
To test GPER expression in MCL patients, lymphoma tissues and
lymph nodes from the patients were fixed and embedded in paraffin
and then cut into 5 µm sections. After deparaffinization and
dehydration, heat-induced antigen retrieval was performed. For
incubating the samples with anti-GPER antibody and secondary
antibody, the anti-mouse/-rabbit immunohistochemical analysis kit
and DAB Horseradish Peroxidase Color Development Kit were
used according to kit instructions. Finally, the slides were incubated
with hematoxylin for 5 min for nuclear staining and were imaged
by microscope (DM2000, Leica, 40×).

Flow Cytometry
To study apoptosis, cultured cells were treated for 48 h or 72 h
either with G-1 or G-36 dissolved in DMSO and other
compounds as indicated, or with 0.2% DMSO alone as control.
Cells were then assessed using FITC Annexin V Apoptosis
Detection Kit with PI according to manufacturer’s protocol.
For cell cycle assessment, cells were fixed with 70% ethanol for
12 h at -20°C followed by staining with PI. To determine
mitochondrial membrane potential, G-1-treated cells were
stained with JC-1 for 20 min at 37°C. To measure ROS levels,
cultured cells were harvested after treatment with corresponding
Frontiers in Oncology | www.frontiersin.org 3
compounds for 24 h and then incubated with 5 µM of H2DCFDA
(2′,7′-dichlorofluorescin diacetate) for 15 min at 37°C. After
washing the cells with PBS three times, signal from fluorescent
2’,7’-dichlorofluorescein (DCF) was monitored. In all of the
above experiments, labeled cells were differentially counted
with CytoFLEX (FC500, Beckman Coulter) and data was
analyzed with FlowJo software.

Cell Viability Assay
Cell proliferation was determined using Cell Counting Kit-8. In
short, 2×104 cells suspended in 100 µL of 10% FBS-containing
mediumwere seeded in 96-well plates and were then incubated with
either G-1 alone, or ibrutinib alone, or amixture of both, or G-36, all
dissolved in DMSO or 0.2% DMSO alone as control, for 72 h or
120 h. After incubation with the CCK-8 solution for 4 h, the level of
living cells was measured with SpectraMax M2 plate reader.

siRNA Transfection
To knockdown GPER expression in MCL cells, 2 × 105 Jeko-1
cells were cultured in 0.5 mL of 1640 medium with 10% of FBS.
siRNAs were transfected into the cells using TurboFect
Transfection Reagent according to manufacturer’s instructions.
After 48 h, the cells were harvested for immunoblotting or were
treated with G-1 for apoptotic analysis. Alternatively, transfected
Jeko-1 cells were subjected for proliferation analysis at 48 h and
96 h and for apoptosis analysis at 48 h. SiRNAs were purchased
from GenePharma (Shanghai, China). GPER siRNA, sense: 5’-3’
CCUGUGCUACUCCCUCAUUTT; anti-sense: 5’-3’AAUGA
GGGAGUAGCACAGGTT. Control siRNA, sense: 5’-3’UU
CUCCGAACGUGUCACGUTT; anti-sense: 5’-3’ ACGUGACA
CGUUCGGAGAATT.

MCL Mouse Models
To generate MCL xenografted mice, 6×106 Mino cells were
subcutaneously injected into the right flank of 6-week-old male
NOD/SCIDmice.When the tumors were palpable after 2 weeks, the
mice were randomized into two groups: vehicle control (n = 5) and
G-1 treatment group (n = 5). G-1 was suspended in 5% DMSO and
95% normal saline. The mice in G-1 treatment group were
intraperitoneally injected with G-1 (3 mg/kg/day), and the control
group were intraperitoneally injected with the same volume of 5%
DMSO and 95% normal saline. Tumor volumes were calculated
every other day according to the formula: (the shortest diameter)2 ×
(the longest diameter) × 0.5. Thirteen days after G-1 administration,
surgeries were performed on the mice under general anesthesia to
remove tumors for further analysis.

Statistical Analysis
The data are depicted as the mean ± SD of three independent
experiments or the mean ± SEM of five cases. The difference
between the two groups were analyzed by Student’s unpaired
t test. Differences with P values less than 0.05 were considered
statistically significant.

Study Approval and Consent to Participate
Animal studies were conducted in accordance with the ethical
guidelines approved by the Institutional Animal Care and Use
June 2021 | Volume 11 | Article 668617
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Committee of Soochow University. Patient studies were
approved by the Ethics Committee of the First Affiliated
College of Soochow University. MCL Lymphoma tissues and
lymph nodes of patients were acquired according to Declaration
of Helsinki with written consent from them.
RESULTS

Mantle Cell Lymphoma Cell Lines and
Primary MCL Tumor Samples
Express GPER
It has been demonstrated that MCL cell lines Jeko-1, Mino, Rec-1,
and Granta-519 express GPER (19), To investigate the role of
GPER, we first validated that GPER was expressed in the four cell
lines under our experimental conditions. We detected GPER
expression at both the protein level, as indicated by immunoblot
analysis (Supplemental Figure 1A), and at the mRNA level by
quantitative real-time PCR (Supplemental Figure 1C). Co-
labeling Mino cells with anti-GPER and anti-CD20 antibodies
showed predominant nuclear expression of GPER in these cells
(Supplemental Figure 1B). Previous study has shown that
lymphoma cells express ER-b, but not ER-a (25). We checked
the mRNA levels of the two ER receptors in Jeko-1 andMino cells,
and our data were consistent with that finding (Supplemental
Figure 1C). In addition, we examined tumor samples from lymph
node biopsy of five MCL patients, and GPER expression was
detected in four of them (Supplemental Figure 1D).

GPER Antagonist G-36 Does not Exert
Anti-Proliferative or Pro-Apoptotic Effects
in Jeko-1 and Mino MCL Cells
GPER antagonist G-36 was shown to be able to reduce cell
proliferation and induce apoptosis in MCL cell lines (19). To
confirm this result, we treated Jeko-1 and Mino cells with G-36
(0.5 - 10 mM for 72 h). However, we did not observe the reported
anti-proliferative or pro-apoptotic effects of G-36 in these MCL cells
(Supplementary Figure 2A, B). We then validated this result with
another GPER selective antagonist, G-15, and found that G-15 did
not exert anti-proliferative or pro-apoptotic effects either even at a
concentration of up to 10 µM for 72 h (data not shown). To further
validate the effects of GPER inhibition on MCL cell growth, we
knocked down GPER expression in Jeko-1 cells by transfecting the
cells with a GPER specific siRNA. Comparing with cells transfected
with control siRNA, GPER siRNA did not hinder cell growth at 48 h
after transfection, and, in contrast, it even enhanced cell
proliferation at 96 h (Supplementary Figure 2C). Furthermore,
there was no apparent difference in cell apoptosis at 48 h between
the two groups of cells (Supplemental Figure 2D). These data
indicate that inhibition of GPER neither inhibits the proliferation
nor promotes apoptosis of MCL cells in our experimental systems.

GPER Agonist Induces Apoptosis
of MCL Cells
GPER-selective agonist G-1 has been found to block tumor
growths in various models (21–24). To determine the role of
Frontiers in Oncology | www.frontiersin.org 4
GPER in MCL, we treated multiple MCL cell lines, which
included Jeko-1, Mino, Rec-1, and Granta-519 cell lines, with
G-1 ranging from 0-5 µM. At 48 h after the treatment, cell death
was observed in all cell lines except Granta-519 in a dose-
dependent manner, as shown by a decrease in the number of
viable cells (i.e. annexin-V-/PI- cells) (Figures 1A, B). Granta-
519 did not undergo obvious apoptosis even under the treatment
with up to 5 µM of G-1 for 72 h (data not shown). MCL cell lines
exhibit variable biology and clinical behavior influenced by their
cytogenetic features and histopathologic origins (26). Granta-519
displays complex karyotypic and heterozygous deletion of TP53
(27). Different from the other three cell lines, Granta-519 carries
Epstein Barr viral genomes and overexpresses Bcl-2, which has
been characterized as an anti-apoptotic molecule through
inhibiting caspase activation (28).

To rule out the nonspecific effect of G-1, GPER expression
was suppressed using the siRNA against GPER (Figure 1C).
Knockdown of GPER significantly abrogated the G-1-induced
apoptosis in Jeko-1 (Figure 1D) which confirms that G-1
induces cell death through association with GPER. Mino and
Rec-1 cells were highly susceptible to apoptosis caused by the
transfection solution. Thus, these two cell lines were not used for
this experiment.

GPER Agonist Induces Cell Cycle Arrest
and Caspases Activation
To explore the mechanisms of the apoptosis induced by G-1, the
effects of G-1 on cell cycle was investigated. We treated Jeko-1
and Rec-1 cells with 1 µM of G-1 for 24 h and then analyzed the
cell cycle stages via flow cytometry after propidium iodide
staining (Figure 2A). Similar procedure was performed on
Mino cells with an increasing amount (0-5 µM) of G-1
(Figure 2B). The results indicated that treatment with G-1
significantly increased the proportion of G2/M phase cells in a
dose-dependent manner.

Mitochondria is at the heart of the intrinsic apoptosis pathway.
Increased mitochondria membrane permeability leads to the release
of cytochrome C which activates downstream caspases as well as
reduces mitochondria membrane potential (loss of DYm) (29).
By monitoring the change of membrane-permeant fluorescent dye
JC-1, we detected loss of DYm in Jeko-1 and Mino cells upon G-1
treatment (Figure 2C). In line with this observation, the activation
of caspase-3,9 was also observed in G-1-treated cells (Figure 2D).

Treatment With G-1 Causes DNA Damage
Through ROS Generation in MCL Cells
Cell cycle G2/M checkpoints can be triggered by DNA damage
(30), and a high level of ROS induces DNA damage, which can
result in mitochondrial dysfunction and even cell death (31).
Since we observed cell cycle arrest, reduced mitochondria
membrane potential as well as apoptosis in G-1 treated MCL
cells, we speculated that G-1 could up-regulate ROS generation.
Indeed, viamonitoring the generation of oxidized DCF with flow
cytometry, we found elevated levels of ROS in G-1-treated Mino
cells compared with DMSO-treated cells (Figure 3A). In
addition, increased levels of ROS were observed in G-1-treated
June 2021 | Volume 11 | Article 668617
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Jeko-1 and Granta-519 cells in a concentration-dependent
manner (Figure 3B). Furthermore, dose-dependent DNA
damage by G-1 was indicated by the up-regulation of DNA
double-strand break (DSB) maker, phospho-H2A.X (g-H2A.X)
(Figure 3C). Pretreatment of Jeko-1 cells with N-Acetyl-L-
cysteine (NAC), an ROS scavenger, reduced G-1-induced ROS
elevation (data not shown) and therefore mitigated the
consequential DNA damage (Figure 3D) and cell death
(Figure 3E), indicating that G-1 treatment leads to ROS
generation and subsequent DNA damage, which in turn
induces cell cycle arrest or apoptosis.

NADPH oxidases (NOX) conduct various physiological and
pathophysiological functions through regulating ROS generation
and are enzymatic sources of ROS (32). Studies with GPER
knockout mice have proven that GPER regulates NOX1
Frontiers in Oncology | www.frontiersin.org 5
expression and function (33). We found that G-1 increased
NOX1 expression in MCL cells (Figure 4D) and pretreatment
with NOX1-specific inhibitor ML171 (34) significantly inhibited
ROS production evoked by G-1 (Figure 4A). Importantly, it
significantly inhibited DNA damage (Figure 4B) and cell death
(Figure 4C). Therefore, it appears that G-1 induces ROS
generation and cell death through activating NOX1.

G-1 Down Regulates NF-kB Pathway and
Exerts Synergistic Cytostatic Effects With
Ibrutinib in MCL Cells
To determine the effect of G-1 on MCL cell proliferation, we
exposed MCL cells to various concentration of G-1 (0-8 µM) for
72 h. As shown in Figure 5A, G-1-treated groups have
significantly fewer viable cells than the DMSO-treated group,
A

B

DC

FIGURE 1 | Treatment with GPER agonist G-1induces lethal effects in MCL cells. (A) Flow cytometry analysis of Jeko-1 cells after 48 h treatment of G-1(0 - 5 µM)
followed by staining with Annexin-V/PI. Viable cells are annexin-V-/PI-. (B) Survival cell counts of Jeko-1, Mino, Rec-1 cells after 48 h treatment of G-1 followed by
staining with Annexin-V/PI. Concentrations of G-1 is as indicated. (C) Immunoblot analysis of GPER expression in Jeko-1 cells transfected with control siRNA or
siRNA for GPER. (D) Relative viable cell counts of above mentioned transfected Jeko-1 cells at 48 h after G-1 (1 µM) treatment. *P < 0.05.
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demonstrating that G-1 inhibits the proliferation of MCL cells,
including Granta-519, which is resistant to G-1-induced apoptosis.

NF-kB is well known to promote cell proliferation in cancer. It can
be driven by upstream signal of B cell receptor and is involved in the
pathogenesis of MCL (35). Studies showed that G-1 treatment could
rapidly decrease the phosphorylation of p65 in triple-negative breast
cancer cells, non-small cell lung cancer cells and colorectal cancer cells
(21, 36, 37). To explore the association of NF-kB and GPER inMCL,
we examined the expression of NF-kB in G-1 treated Jeko-1 and
Mino cells. In agreement with the studies mentioned above, our
experiments showed that after exposure to G-1 for different times (0-
48 h), although the total p65 level remained stable, there was
significant reduction of phosphorylated-p65 kinase (Figure 5C),
indicating that G-1 inhibits MCL cell proliferation through down
regulating NF-kB signaling pathway.

To define novel therapeutic strategies that may improve the
anti-MCL function of BTK inhibitors, we assessed the combined
effects of treatment with both ibrutinib and G-1 for 120 h in
Jeko-1 and Mino cells. Figure 5B shows that co-treatment with
ibrutinib and G-1 exerted synergistic inhibition of proliferation
of both Jeko-1 and Mino cells. Furthermore, the synergy effect
was observed in Granta-519 cells (data not shown).
Frontiers in Oncology | www.frontiersin.org 6
G-1 Shows Anti-MCL Activity
in Mino-SCID Xenografted Mice
Finally, we tested the in vivo effects of G-1 treatment on SCID
mice xenografted with MCL cells. Following subcutaneous
injection of 6×106 Mino cells into the flanks of mice (n=5 per
group), treatment with G-1 or control vehicle was commenced
once tumor was visible. Thirteen days after G-1 administration,
the mice were sacrificed and tumors were removed. Consistent
with the observation with MCL cell lines, G-1 significantly
inhibited tumor growth in all five mice (Figures 6A–C).
Importantly, increased expression of g-H2A.X was observed in
tumors from all five mice in G-1 group compared with tumors
from the control group (Figure 6D), an indication of elevated
DNA damage in Mino-SCID xenografted mice induced by G-1.
DISCUSSION

In this study, we explored the effects of GPER agonist G-1 on
MCL and investigated the mechanism of its action. We found
that G-1 up-regulated NADPH oxidases expression in MCL cells
A B

DC

FIGURE 2 | GPER agonist G-1 induces cell cycle G2 arrest and loss of mitochondrial membrane potential (MMP), and activates caspases in MCL cells. (A, B) Cell
counts analyzed with flow cytometry of MCL cells at various cell cycle stages after 24 h of treatment with 1 µM (A) or 0-5 µM (B, Mino cells) of G-1 followed by PI
staining. DMSO, treatment control; G1, S, G2/M, cell cycle stages. (C) Representative flow cytometry analysis of Jeko-1 and Mino cells after 48 h treatment with G-1
(1µM) followed by labeling with JC-1. (D) Immunoblot of protein levels in Jeko-1 and Mino cells after 48 h of incubation with G-1 in various concentrations. ß-tubulin,
control of protein expression.
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A B

D

E

C

FIGURE 3 | G-1 treatment induces ROS-dependent DNA damage in MCL cells. (A) Flow cytometry analysis of Mino cells treated with G-1 (1µM) or DMSO for 24 h
followed by 15 min incubation with H2DCFDA. ROS was measured by detecting fluorescence of oxidized DCF. (B) Relative H2O2 level in G-1treated Jeko-1 and
Granta-519 cells. Cells were incubated with 0 - 5 µM G-1 for 24 h and the value with 0 µM was used as 1, *P < 0.05, **P < 0.01. (C) Immunoblot analysis of
phospho-H2A.X (g-H2A.X) expression in G-1 (0 - 5 µM) treated MCL cells. ß-tublin, expression control. DMSO, treatment control. (D) Immunoblot analysis of
phospho-H2A.X (g-H2A.X) expression in 1 µM G-1 treated Jeko-1 cells for 24 h with or without pretreatment with 20 mM of NAC for 1 h. (E) Flow cytometry analysis
of annexin-V-/PI- Jeko-1 cells which were similarly treated as described in (D) for 48 h, *P < 0.05.
A B

DC

FIGURE 4 | G-1 induced ROS and cytotoxicity is mediated by an NADPH oxidase. (A) Flow cytometry analysis of G-1 (1 µM)-treated Mino cells for 24 h with or
without pretreatment of NOX1 inhibitor ML171 (50 µM) for 2 h. ROS levels were measured by monitoring the conversion of H2DCFDA to DCF. (B) Immunoblot
analysis of g-H2A.X expression in Mino cells treated as described in (A). (C) Annexin-V-/PI- cell counts of MCL cells treated as described in (B) for 48 h. *P < 0.05.
(D) Immunoblot analysis of NOX1 expression in MCL cells treated with G-1 for various time.
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that in turn led to DNA damage, cell cycle arrest and eventually
apoptosis. G-1 also inactivated proliferation of MCL cells via
down-regulating NF-kB pathway. In addition, G-1 significantly
inhibited MCL tumor growth in xenografted mice. Furthermore,
we found that G-1 exerted synergistic cytostatic effects with
ibrutinib in MCL cells, suggesting that G-1 could be a potential
candidate to combine with BTK inhibitor in chemo-free
combinations for MCL.

Previous studies revealed that GPER deficiency in vascular
smooth muscle cells led to the reduction of NOX1 mRNA and
protein levels, and GPER antagonist G-36 selectively
inhibits expression of NOX1 (33). Consistent with that, G-1
elevated the expression of NOX1 in MCL cell lines in our studies.
NADPH oxidases play various physiological and pathophysiological
roles through regulating ROS generation and oxidant stress can
cause DNA damage (32). In our studies, we observed increased
levels of ROS in G-1 treated cells. ROS in turn induced DNADSB, a
severe form of DNA damage, and this effect was abrogated by pre-
treatment with ROS scavenger. Increased DNA damage was
detected as well in tumor tissues from MCL mice. Cell cycle
Frontiers in Oncology | www.frontiersin.org 8
checkpoints, existing at G1/S and G2/M boundary, prevent cells
from replication and entering mitosis in the presence of DNA
damage to maintain the genome integrity (38). The G2 checkpoint
can sense DNA DSB and trigger cell cycle arrest through DNA
damage response pathway. Cells will re-enter cell cycle after the
completion of DSB repair, or programmed cell death could be
triggered (39). We detected cell cycle arrest and apoptosis in G-1
treated MCL cells. Observation of disruption of mitochondria
membrane potential and elevated expression of cleaved caspases
supports increased cell death. Our data show that G-1 induced
DNA damage and apoptosis by regulating NOX1 and ROS
generation, which is different from DNA damage caused by
cytotoxic drugs. In addition, G-1 has been found effective in
treating several cardiovascular and metabolic diseases in vivo
(40, 41).

In addition to inducing apoptosis, we found that G-1 also
inhibit MCL tumor cell growth by inactivating proliferation. It
was shown that G-1 suppressed proliferation in several types of
cancer cell lines by inhibiting NF-kB phosphorylation and cross-
talk between GPER signaling and NF-kB signaling has been
noted. For example, GPER activation reduces the secretion of
inflammatory factors, such as IL-6 and TNF-a from monocyte/
macrophages in mice, suggesting that GPER indirectly regulates
NF-kB and reduces inflammation (42, 43). In human, GPER
activation alleviates inflammation by interacting directly with the
ER-a splice variant and the p65 subunit of NF-kB in primary
monocytes (42). NF-kB pathway plays a crucial role in the
proliferation and survival of lymphoid organs (44). Previous
studies have documented that constitutive activation of NF-kB
contributes to the pathogenesis of MCL (35), and ibrutinib has
been approved in MCL patients for its function of inactivating
NF-kB. However, MCL cells often become resistant to agents like
ibrutinib due to alternatively activated NF-kB pathways. Thus, it
is important to identify novel NF-kB – inhibiting therapeutics
especially for relapsed or refractory mantle cell lymphoma. Our
present studies demonstrated that in MCL cells, G-1 down-
regulated the NF-kB pathway by decreasing the phosphorylation
of p65 and G-1 and ibrutinib exhibited a synergistic effect on
inhibiting proliferation in MCL cell lines, providing a possible
treatment strategy for ibrutinib-resistant MCL patients.

G-1 significantly reduced tumor size of MCL xenografted mice.
Some studies demonstrated that G-1 mediates inflammation and
immunity via activating GPER in T cells and suppresses
autoimmune disease (45, 46). Thus, whether the in vivo anti-
lymphoma effect of G-1 is partly mediated by the tumor immune
microenvironment of the MCL xenografted mouse needs
further investigation.

Many cancer cell lines and primary tumors express GPER,
including MCL.

Studies of GPER’s function in cancer progression and G-1’s
effects on cancer cell lines or tumor tissues have shown
conflicting results. For example, G-1 stimulates proliferation in
primary breast cancer tissue and the GPER antagonist G-36
completely inhibits G-1-mediated proliferation (47); G-1
enhances ovarian cancer cell proliferation via EGFR and Akt
signaling pathways (48). In contrast, G-1 induces cell cycle arrest
A

B

C

FIGURE 5 | G-1 inhibits NF-kB activation and MCL cells proliferation. (A)
Viable cell counts with cell counting kit-8 (CCK-8) of G-1 (0 - 8 µM; 72h)-
induced MCL cells. Values of DMSO-treated cells were used as 100%. (B)
Viable cell counts of variously treated Jeko-1 and Mino cells. IB, cells were
treated with 4 µM of ibrutinib; G-1, cells were treated with 0.4 µM of G-1; IB/
G-1, cells were treated with mixture of ibrutinib (4 µM) and G-1 (0.4 µM).
*P < 0.05, **P < 0.01. (C) Immunoblot analysis of G-1 treated Jeko-1 and
Mino cells with anti-P-p65 and anti-p65 antibodies. Durations of exposure to
1 µM of G-1 were indicated on top of the image.
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and inhibits prostate cancer cell growth through activation of
ERK and it substantially reduces tumor size of cancer cell
xenografted mice (24); G-1 decreases adrenocortical carcinoma
cell growth in vivo and in vitro by inducing apoptosis (49); In
addition, G-1 triggers apoptosis via ROS/ERK and inhibits NF-
kB in colorectal cancer cells and suppresses the in vivo
progression of colorectal cancer (21). These data suggest that
GPER plays diverse functions depending on cell types,
underlying pathology, and tumor micro-environment. GPER is
expressed in the early stages of immune cells including B cells
(43). But related functional studies are very limited. Estrogen-
GPER have been reported to regulate immune response of B cells
by increasing IgG production in mice and antibody production
in fish (50, 51). Mice lacking GPER do not exhibit obvious
abnormality in B cells related immune development and function
(41). Information regarding GPER in MCL is scarce. There is
only one report (a letter to the editor) that reports an analysis of
157 MCL patients with no correlation of GPER expression with
the Ki-67 proliferation index (19). It presented that GPER
antagonist G-36 could inhibit proliferation of MCL cell lines,
as assessed by the MTT assay, with IC50 of 1.4 - 8.9 µM (19).
However, in our studies, G-36 and G-15 neither suppress MCL
cell growth nor increase MCL cell apoptosis even at a
concentration of up to 10 µM for 72 h. Furthermore, knocking
down GPER expression in Jeko-1 did not restrain the cells from
surviving. Rather, we found that agonist G-1 induced apoptosis
and inhibited proliferation in MCL cells. Most significantly, in
our in vivo study, G-1 obviously reduced the size of tumors from
all MCL xenografted mice.

Our data support that G-1 could be a promising therapeutic
candidate for MCL. First, GPER is expressed in majority of MCL
Frontiers in Oncology | www.frontiersin.org 9
patients (19) and any effective GPER-targeting therapy may
benefit these patients. Secondly, molecular studies have
identified the heterogeneous spectrum of somatic mutations in
MCL, which results in the variable biology and clinical behavior
of the disease (1). For example, TP53 and ATM had been
reported as one of the most frequently mutated genes in MCL,
and the patients with TP53 mutation have inferior prognosis (2).
It is remarkable that low concentration of G-1 showed
antitumoral activity, via pro-apoptosis and/or anti-proliferation
functions, in MCL cell lines with either defective tumor
suppressor gene (TP53 in Jeko-1 and Mino), DNA damage
response gene (ATM in Granta-519), or cell-cycle checkpoint
gene (p16 in Rec-1 and Granta-519) (52). These data imply that a
broad range of MCL patients could be sensitive to G-1 treatment.

Recent advances in cancer drug discovery shines light on the
development of chemo-free strategies in MCL management,
which overcomes conventional chemotherapy-related toxicity.
Several novel targeted therapies, including ibrutinib, have proven
to be highly effective for relapsed/refractory MCL, while ongoing
trials have demonstrated that depth and duration of response can
be improved by combining novel agents with ibrutinib (5).
However, the responses to ibrutinib in MCL patients appears
not be lasting and relapse usually happens. Other than mutation
in BTK gene itself, relative resistance to ibrutinib can be caused
by non-genetic adaptive mechanisms leading to compensatory
pro-survival pathway activation such as NF-kB (53). Our present
study showed that GPER agonist G-1 inactivates NF-kB pathway
and appears to have a synergistic effect with ibrutinib on
inhibiting proliferation in MCL cells. Therefore, addition of G-
1 might potentially improve the outcome of MCL patients who
develop resistance to chemo-free therapies with ibrutinib.
A B

D C

FIGURE 6 | G-1 exerts anti-MCL activity in Mino-SCID xenografted mice. Mino cells (6 x 106) were subcutaneously injected into SCID mice. Mice were treated with
G-1 (3 mg/kg/d) or vehicle for 13 days (n=5 mice/group). (A) Tumor volume in xenografted mice at various times (days) post G-1 treatment. Vehicle, treatment
control, *P < 0.05, **P < 0.01. (B) Tumor weights at day 13 after G-1 treatment, **P < 0.01. (C) Images of removed tumors. (D) Immunofluorescence staining with g-
H2A.X of tumor tissues from the xenografted mice.
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