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Abstract

The queen conch fishery in Jamaica is sustained by Pedro Bank, which is the main harvest-

ing site located approximately 80 km south-west from Kingston. Due to its relative size,

Pedro Bank has been subdivided into zones for management purposes by the Fisheries

Division and the Veterinary Services Division. Understanding whether these sub-divisions

reflect different sub-populations is critical for managing exploitation levels because fisheries

management must demonstrate that harvesting does not endanger the future viability of the

population as queen conch are on Appendix II of the Convention in Trade in Endangered

Species of Wild Fauna and Flora (CITES). This determination is essential for the continued

export to international markets such as the European Union. Two hundred and eight sam-

ples were collected across the entire Pedro Bank and were genetically characterized using

nine polymorphic microsatellite loci. Population structure analysis for Lobatus gigas from

Pedro Bank yielded low but significant values (FST = 0.009: p = 0.006) and suggested a high

magnitude of gene flow indicative of a fit and viable population throughout the bank. Analysis

of molecular variance (AMOVA) indicated a 100% variation within individual samples with lit-

tle variation (0.9%) between populations. In contrast pairwise genetic comparisons identified

significant differences between populations located to the south eastern and eastern region

of the bank to those in the central and western locations. Bayesian clustering analysis also

indicated the likelihood of two population sub-divisions (K = 2) on Pedro Bank. The results

provided evidence of a weak but significant population structure which has crucial implica-

tions for the fishing industry as it suggests the use of ecosystem based management (EBM)

in setting quotas to promote sustainable harvesting of L. gigas within each monitoring zone

on Pedro Bank.
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Introduction

The queen conch Lobatus gigas, (Linnaeus 1758), is an edible marine gastropod mollusk of the

order Mesogastropoda, and one of six species of the family Strombidae found throughout the

Caribbean region [1–5]. With the advent of overfishing in coastal waters along with habitat

loss due to coastal and marine ecosystem degradation [6], fishers are travelling further away

from traditional fishing grounds to sustain their livelihood and fulfill their need for food secu-

rity [7, 8]. The main conch grounds in Jamaica are located offshore approximately 80 km

south-west of the mainland on Pedro Bank. In 1992, Jamaica became the largest queen conch

producer in the Caribbean, and the resources on Pedro Bank began to show signs of overex-

ploitation following a pattern of conch population declines elsewhere in the region [9, 10].

In response to these events and concerns, the Convention on the International Trade in

Endangered Species of Wild Fauna and Flora (CITES), moved queen conch (L. gigas) to a list-

ing in Appendix II. This requires that all international trade by signatory countries be accom-

panied by a valid CITES permit, issued by the authorized National CITES Management

Authority and endorsed by the Scientific Authority [2, 11, 12]. Mahon et al. [9], predicted a

collapse in the Jamaican Conch Fishery within three years if adequate management measures

were not put in place to reduce or eliminate the harvesting of immature individuals. This led

to the drafting of the Conch Management Plan and between 2008 and 2011, conch production

decreased from the unsustainable early 1990s harvest figures of close to 3,000 mt to around

400 mt, with a value of approximately 2.6 million US dollars [7, 10]. This decrease can be

attributed to the implementation of management strategies by the Ministry of Agriculture and

Fisheries (MoAF) to control exploitation of dwindling stocks. Some of the management regu-

lations currently in place include, licensing of conch fishers and conch fishing vessels, closed

season, transferable quota system based on National Total Allowable Catch (NTAC), mini-

mum weight of processed meat, vessel monitoring system (VMS), fishing effort report on each

fishing trip along with inspection of catch on landing and a conch export levy which is put

into a fisheries management fund for the development of a sustainable fisheries sector in

Jamaica [2, 13–15].

Pedro Bank (Fig 1A), has an area of 8040 km2, a maximum length of 168 km and a maxi-

mum width of 83 km in the west [16]. It consists of extensive sand flats interspersed with

patches of macroalgae made up of various species, rubble, scattered patch reefs and shoals [10,

17, 18]. Due to its size, fisheries management zones were assigned across the bank, based on

depth and fishing pressure (Fig 1B), by Jamaica’s Veterinary Services Division (VSD) which is

the competent authority in charge of monitoring conch production areas. These demarcations

have allowed for more effective monitoring of the main conch production area as fishing activ-

ities can be prohibited based on the health of marine gastropods and prevailing sanitary condi-

tions within a specified zone [19]. Genetic diversity assessments and comparisons between

harvesting zones may help assure managers of the integrity of the fishery products if a harvest-

ing zone is closed and allow for specific management measures to be applied to each zone

especially where sub-populations are found. The identification of sub-populations could then

effect fishing effort control to a specific area and bring management to the sub-population

level. In addition, the information on population genetic structure can also be used in the

design of stock enhancement programmes by ensuring appropriate genetic diversity in each

area [20]. This is especially useful as selection may favor different genotypes from different

habitats and geographic locales [21].

Providing more effective monitoring of the Pedro Bank through genetic labelling of conch

will also strengthen international trade by meeting stringent requirements set out by the Euro-

pean Commission Decision [19] which outlined special conditions for the import of marine
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Fig 1. Map of Pedro Bank. (a.) Highlighting location approximately 80 km SW of mainland Jamaica with major

contour lines demarcating Artisanal zone (0–10 m) and Industrial Fishing zone (11–20 m). (b.) VSD Monitoring zones

1–5 established across the bank for management purposes and straddling the depth zones 0–10 m in yellow (artisanal

zone), 11–20 m in blue (industrial zone) and the 21–30 m zone in red. (c.) Sampling locations within monitoring

zones. Three sets of samples were located in zone 1 as differentiated by shades of green triangles. Diamond shapes were

representative of samples in zone 3 while zones 2, 4 and 5 were grouped into one sample set (star shapes). (a) Adapted

from [11] while (b and c) were produced using ArcGIS ver. 10.3.1.

https://doi.org/10.1371/journal.pone.0245703.g001

PLOS ONE Genetic composition of queen conch (Lobatus gigas) population on Pedro Bank, Jamaica

PLOS ONE | https://doi.org/10.1371/journal.pone.0245703 April 5, 2021 3 / 19

https://doi.org/10.1371/journal.pone.0245703.g001
https://doi.org/10.1371/journal.pone.0245703


gastropods originating in Jamaica, the U.S. Food and Drug Administration (FDA), Seafood

Guidance Documents and Regulatory Information for Shellfish Programs and the Codex Ali-
mentarius code of practice for fish and fishery products. The aim of this study was to detect

fine-scale population structure and how that could impact long term conservation and sustain-

able harvest of L.gigas stocks on the Pedro Bank along with traceability of product from har-

vesting site to market.

Methods

Sample collection and processing

Permission for research was granted by the National Environment & Planning Agency

(NEPA). A total of 208 L. gigas individuals were sampled across the five monitoring zones on

Pedro Bank (Fig 1C), with 144 samples collected from the 2015 conch abundance survey (Fig

2) and an additional 64 samples through monitoring by the competent authority of MoAF,

(Table 1). A tissue sample of approximately 4 cm2 was removed from the tip of the mantle,

rinsed in clean water to remove excess mucus and dirt, then placed on blotting paper for dry-

ing before extraction (Fig 3). DNA for each individual sample was extracted and purified using

the AutoGenprep 965, a fully automated high throughput system utilizing the solution phase

organic extraction method at the Smithsonian Institution’s Laboratory for Analytical Biology

National Museum of Natural History (LAB-NMNH). The samples were returned as pellets to

be re-suspended with 50 ml Elution Buffer before the DNA quality and quantity was assessed

using gel electrophoresis and NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific).

Microsatellite genotyping

All conch individuals were genotyped for nine microsatellite loci: Sgig1, Sgig2 and Sgig6 [22],

and ConchPR11F, ConchF29, ConchF17, ConchPR1F, ConchF21 and ConchF23 [23]. These

loci were successfully grouped into 3 multiplexes (Table 2), and amplified using the Qiagen

Type-it1Microsatellite PCR kit in a 10μL reaction following the standard protocol. The

amplification was performed on a Dyad Thermocycler (Bio-Rad) under the following PCR

conditions: 95˚C for 5 minutes denaturation, followed by 28 cycles of 95˚C for 30 seconds,

annealing at 62˚C for 90 seconds for MP2 and 63˚C for MP1 and MP3, 72˚C for 30 seconds

and a final extension step at 60˚C for 30 minutes. PCR products were separated on an ABI

3730xl DNA analyzer (Applied Biosystems) with ROX size standard and scored manually

using GeneMapper1 Software v 3.7 (Applied Biosystems). All genotyping was conducted at

LAB-NMNH.

Irregularities in the data set such as genotyping errors caused by the presence of null-alleles

and scoring errors due to large allele drop-outs and stuttering were tested for using Micro-

Checker version 2.2.3 [24]. FreeNA was used to estimate genetic distance for each population

pair with and without the ENA (excluding null alleles) correction [25]. Linkage disequilibrium

among all loci and deviations from Hardy-Weinberg Equilibrium (HWE) were calculated at

each locus for all populations sampled using the genetic software Arlequin version 3.5.2.2 [26]

and Genepop version 4.2. [27, 28].

Estimates of genetic diversity, including total heterozygosity estimated from observed het-

erozygosity (Ho) and expected heterozygosity (He), number of alleles per locus, effective num-

ber of alleles along with variance in allele frequency (FST) based on 1,000 permutations were

computed in Arlequin version 3.5.2.2 [26]. Relatedness was explored by calculating the

inbreeding coefficient within individuals at each locus (FIS) and the inbreeding coefficient

adjusted for bias (GIS) using GenAlEx 6.502 with probability data based on 999 permutations

[29, 30].
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The level of genetic differentiation within and between populations was estimated using the

analysis of molecular variance (AMOVA), and the hierarchical AMOVA was effected among

populations using Arlequin version 3.5.2.2. Pairwise population matrices were calculated

using the G-statistics option in GenAlex 6.502., with probability based on 999 permutations.

To determine the most probable number of populations clusters (K) and assign each individ-

ual sampled to these clusters based on their genotype, a Bayesian assignment method was

Fig 2. Sampling locations on Pedro Bank. (a.) Sites sampled in the 2015 conch abundance survey. (b.) All 80 sites

from the 2015 survey with 47 highlighted to show samples taken for genetic studies in keeping with the 1:2:1 ratio

associated with fishing pressure across all 3 depth zones while allowing for maximum coverage of Pedro Bank. Map

produced using ArcGIS ver. 10.3.1.

https://doi.org/10.1371/journal.pone.0245703.g002
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performed as implemented in STRUCTURE version 2.3.4 [31]. A total of 1,000,000 MCMC

(Markov Chain Monte Carlo) repetitions were performed with a burn-in period of 10,000 iter-

ations for K ranging from 1–10 in consideration of the maximum number of expected

Table 1. Samples collected from the five monitoring zones across Pedro Bank.

Sample Locations Monitoring Zones Number of Samples

1A 1 46

1B 1 40

1C 1 42

2 2,4,5 34

3 3 46

Total 208

https://doi.org/10.1371/journal.pone.0245703.t001

Fig 3. Individual conch samples. (a.) Showing tip of mantle collected for genetic analysis. (b.) Air dried on paper with

coded sampling location from zones on Pedro Bank prominently displayed. (Photographs by author).

https://doi.org/10.1371/journal.pone.0245703.g003
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populations, with 10 independent runs for each putative number of populations. The most

likely number of clusters was inferred for population subdivision by the modal value of ΔK,

corresponding to the rate of change in the likelihood of K following recommendations by

Evanno et al. [32]. In addition, K-means clustering was performed in Genodive version 3.04

[33]. Two summary statistics were used to determine the optimal value of K, pseudo-F [34]

and Bayesian Information Criterion (BIC) [35], based on [36] using a simulated annealing

approach with 50,000 steps and 20 repeats. DARwin (Dissimilarity Analysis and Representa-

tion for Windows) version 6 software [37] was used to visualize the genetic relationship

between individuals within and between populations by using the weighted neighbour joining

method [38].

Results

Linkage disequilibrium was evident in three pairwise comparisons between loci using Fisher’s

method (Sgig 1 and ConchF23, Sgig 1 and Sgig 6, ConchF23 and Sgig6). After false discovery

rate (FDR) correction (p< 0.001) only comparisons with Sgig 2 appeared significant. The

results showed two significant deviations from Hardy Weinberg Equilibrium (HWE) from dif-

ferent populations (1C and 3), and at different microsatellite loci (Sgig2 and ConchF23)

respectively. Analysis in Micro-Checker [24] suggested that these deviations were caused by

the presence of null alleles as there was no consistent evidence of scoring errors due to stutter-

ing or evidence of large allele dropout across all loci. The analysis with FreeNA using the ENA

method to correct for bias induced by the presence of null alleles [25], indicated that calcula-

tions of Global FST = 0.0084 and a corrected Global FST = 0.0083. GenAlEx computations of G-

statistics such as FST adjusted for bias GST, and standardized G”ST which further corrected for

bias when number of population is small (S1 Table), showed values which correlated with cal-

culated FST, therefore all microsatellite loci were included in further analysis and reported

using the fixation index.

All nine microsatellite loci were highly polymorphic across all five sampled locations on

Pedro Bank. The average number of alleles per locus ranged from 12.4 to 15.1 with 6.7 (± 0.79)

being the mean effective number of alleles across all sites (Table 3). Zone 1 which constitutes

sample locations 1A, 1B and 1C displayed the highest numbers of private alleles and the high-

est percentages of genetic diversity which was 78% on average across all sampled locations.

Average observed homozygosity was slightly higher than expected heterozygosity, 0.81 and

0.77 respectively across Pedro Bank with the inbreeding coefficient FIS detected at low levels

and was negative at three of the five locations sampled.

Analysis of molecular variance (AMOVA) indicated a 0.9% genetic differentiation among

sampling locations, while variation within individuals was 100%. The hierarchical AMOVA

Table 2. Multiplex grouping for microsatellite markers and primer sequence.

Multiplex Markers Forward Sequence Reverse Sequence

1 Sgig1 TCTTCCTCAGTTGCCTCAGAG ACGAGCGTGTGCGCAAGC

1 ConchPR11F CACTACGATAGATTGTGGCAGC TGTCAGTACAGGTTTGAGTGACC

2 Sgig2 GGTTAATTCATCAGTGGACAG AAGTCATGGATTGGCGGGGTG

2 ConchF29 TCAGTCTGTCTGTTTTGGCG ATAGAGAATTGGAGACAGTAAGCG

2 ConchF17 GAGGGATATGACGATGGTGG TGAGGAACAAGGTCTGGTCG

2 ConchPR1F GCGAAGCTTGATTCAAAATGG AAAGAGGGTGCTTCTGTGGC

3 ConchF21 CAGGTCTGGCTGGGAAGC AAGTTGCCGTCAGTTTTGAGG

3 ConchF23 AACATTTGTCACTGCTGCTGG TGATAGGAGTGGTCAGGATGG

3 Sgig6 CCAGCTGGTAGGCTCCTTGA TAACCGTACCAGTTGGCTGG

https://doi.org/10.1371/journal.pone.0245703.t002
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(Table 4) indicated a low but significant population variation (FST = 0.009: p = 0.006). Pairwise

FST comparisons ranged from 0.007 to 0.15, with four significant comparisons observed after

FDR correction (Table 5), three of which included sampling location 3. The genetic differenti-

ation between sampling locations was consistent with dendrogram constructed using the

DARwin software Neighbour-Joining method (Fig 4) and the principal component analysis

(PCA) scatterplot (S1 Appendix) which showed a high degree of overlap between sampling

locations.

The optimum number of sub-populations (K) of queen conch on Pedro Bank based on the

largest value of ΔK using the Bayesian clustering analyses performed in Structure was K = 4

(Fig 5). There was extensive admixture of individuals across the Pedro Bank, hence the clusters

as shown in the bar plot were not well defined (Fig 6), and showed a high likelihood of K = 2,

supported by the dendrogram (Fig 4) which also displayed an admixture of individuals from

the different locations sampled. The two clusters identified comprises cluster 1 (sampling loca-

tions 1A- 1C and 2), situated to the centre and western end of Pedro Bank and cluster 2 repre-

sented by sampling location 3 located on the eastern side of the bank. K-means clustering

(Table 6), produced the highest value of pseudo-F (2.305) at K = 2 which further supports the

number of most reliable populations (Fig 6), while also producing the lowest value of BIC

(14.922) for K = 3. These results indicating high levels of relatedness was also reflected by the

population assignment tests performed in GenAlEx which indicated 68% of individuals being

assigned to the population in which it was sampled while 32% indicated a likelihood of being

assigned to other populations (S2 Appendix).

Discussion

This is the first genetic study where all monitoring zones encompassing different depth strata

on Pedro Bank were sampled for genetic assessment. Despite the heavy exploitation of queen

conch on Pedro Bank, the high genetic diversity values observed within each group of L. gigas

Table 3. Genetic diversity across sampling locations on Pedro Bank.

Sampling Locations Na Ne Np He Ho Ht Fis

1A 15.111 7.536 1.444 0.779 0.801 0.783 0.003

1B 14.556 7.210 1.556 0.799 0.850 0.804 -0.046

1C 14.222 6.891 1.222 0.792 0.794 0.796 0.040

2 11.444 5.462 0.667 0.777 0.846 0.782 -0.067

3 12.444 6.562 0.778 0.736 0.768 0.736 -0.014

Mean 13.556 6.732 1.133 0.776 0.812 0.780 -0.017

SD 1.546 0.797 0.396 0.024 0.035 0.026 0.042

Na: average number of alleles per locus, Ne: number of effective alleles per locus, Np: number of private alleles, He: expected heterozygosity, Ho: observed

heterozygosity, Ht: total heterozygosity and Fis: inbreeding coefficient.

https://doi.org/10.1371/journal.pone.0245703.t003

Table 4. Global AMOVA results as a weighted average over all nine loci across the five locations sampled.

Source of variation Sum of squares Variance components Percentage variation

Among populations 24.329 0.03165 0.89495

Among individuals within populations 701.480 -0.03931 -1.11134

Within individuals 735.000 3.54458 100.21638

Total 1460.809 3.53693

Fixation Index: FST = 0.00895, p = 0.006

https://doi.org/10.1371/journal.pone.0245703.t004
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sampled, is indicative of a vigorous population. This high genetic diversity is likely due to the

large area represented by the bank resulting in spatial variability across the Pedro Bank with

little population isolation. These results are expected in large populations, which is consistent

with the high conch density 374 conch/ha reported by Morris et al. [39] from the Pedro Bank

queen conch 2015 abundance survey. Each group exhibited high heterozygosity for all loci

with an average of 0.77(± 0.024), signifying high genetic variability across the bank. Despite

the occurrence of high genetic variability maintained by gene flow within the Pedro Bank pop-

ulation, Yamamichi and Innan [40] cautioned against making the assumption that randomly

mating populations existed in nature as all populations are at least partially structured into

subpopulations. They also observed that gene flow in natural populations can be estimated

using proportions of private alleles in a wide range of species.

Private allelic richness can be used as a simple measure of genetic distinctiveness as it has

proven to be informative in conservation genetic studies [41, 42]. Slightly elevated frequencies

of private alleles were seen in sampling locations 1A, 1B and 1C corresponding to monitoring

zone 1 (Fig 1B), which is the most exploited zone. Increased harvesting of species can lead to

the depletion of genetic information and later extinction and recolonization of entire popula-

tions. Whilst this may prevent differentiation of sub-populations within an area [43], an

increase in private allele frequency can also be attributed to inbreeding due to the cumulative

effect of genetic drift [44]. However, due to the difficulties in collecting data on alleles that are

not found in all subpopulations, F-statistics is a better method by which gene flow can be esti-

mated in natural populations [45].

Table 5. Pairwise comparisons of the five populations sampled across Pedro Bank.

1A 1B 1C 2 3

1A 0.000 0.094 0.172 0.001 0.050

1B 0.007 0.000 0.806 0.023 0.001

1C 0.007 0.005 0.000 0.037 0.003

2 0.015 0.010 0.010 0.000 0.001

3 0.007 0.012 0.010 0.021 0.000

FST values below the diagonal and p values above. Significant values highlighted.

https://doi.org/10.1371/journal.pone.0245703.t005

Fig 4. DARwin Neighbour-joining tree showing the admixture of 208 individuals. Based on estimates of average

distances from nine polymorphic microsatellite loci used to characterize the genetic population of Lobatus gigas across

Pedro Bank. Each location sampled was assigned a colour which magnifies the level of admixture of individuals within

and between populations. Below the dendrogram are four defined groups of individuals, while two clades are

highlighted above indicating the most likely populations among the samples.

https://doi.org/10.1371/journal.pone.0245703.g004
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Our results (Table 3) indicated a slightly higher value for average observed homozygosity

(Ho) than expected heterozygosity (He). Increased homozygosity is an indication of inbreed-

ing which occurs as a result of mating between two related individuals in a population [46–

48], or as a result of severe reduction in population size from exploitation [49]. Positive

inbreeding coefficient, albeit low values (FIS = 0.003 and 0.040) were observed in the most

heavily fished areas suggesting some level of relatedness due to removal of alleles from the pop-

ulation. However, the average inbreeding coefficient across Pedro Bank was negligible

Fig 5. Determination of homogeneous populations (K) according to the Evanno (ΔK) method. The modal value of

an ad hoc quantity was used which is based on the second order rate of change in the likelihood function according to

the Evanno test.

https://doi.org/10.1371/journal.pone.0245703.g005

Fig 6. Bayesian clustering analysis of Lobatus gigas samples from five sampling sites across Pedro Bank. Analysis

was performed using STRUCTURE and samples were assigned to four (K = 4) population clusters represented by the

lines below the bar graph. Lines above the bar plot represents the most reliable populations from the reassignment of

individuals as reflected using samples collected from the Queen conch survey only (S3 Appendix).

https://doi.org/10.1371/journal.pone.0245703.g006
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signifying a population with high genetic variability, which is less related than is expected

under the assumption of random mating. Inbreeding can contribute to the failure of a species

to recover from exploitation as it increases the frequency of deleterious alleles [47, 50]. Despite

this detrimental effect, inbreeding has been used for decades to increase favourable selection

responses leading to improvements and ensuring uniformity within livestock breeds [39, 46]

and to promote economically important traits such as fast growth in food fish production [51].

In fact Gjedrem and Robinson [52] noted that although significant strides have been made

within the last 40 years to manage genetic diversity and conserve fish populations, genetic

improvements from selective breeding in aquatic animals is far behind that achieved for terres-

trial animals and plants.

Kenchington and Heino [53], regarded selective fishing as a possible means of not only

affecting life history traits such as age and maturation, but as a means to influence the dynam-

ics of fish populations and ultimately sustainable yield of a population. This observation was

also made by Stoner et al. [54] when they reported that the selective removal of larger individu-

als by fishing, had significant effects on density and biomass as negative growth rates can

occur within the population if density was<56 adult conch ha-1 [55] or below the recom-

mended 100 conch ha-1 [7]. The high conch density calculated for Pedro Bank in the 2015

queen conch abundance survey, especially in the south and south-eastern sections correspond-

ing to monitoring zone 1 of the study area, provided no support for impending local extinction

despite heavy exploitation. In fact, the numbers suggest the existence of a substantially large

population with high genetic variability [27].

Low estimates of population structure are typically found in benthic marine invertebrates

such as L. gigas with an extended planktonic larval stage, which may last up to 8 weeks and

hence have a high dispersal potential [4, 56, 57]. Our estimates of population structure indicated

a weak but significant population variation (FST = 0.009: p = 0.006), across Pedro Bank, suggest-

ing genetic homogeneity which can be maintained by the exchange of genetic material between

a few individuals per generation [40, 58]. Significant genetic differences were seen among

groups and within individuals but not among individuals within each group sampled. This pat-

tern of genetic variation over small spatial scales was described by Campton et al. [57] as genetic

patchiness which can be attributed to post-settlement natural selection where variation among

groups is greater than variation within each group. Similar patterns of genetic structure was

observed in previous studies of L. gigas within the Caribbean region by Kitson-Walters et al.

[59], and for Stegastes partitus (damselfish) by Villegas-Sanchez et al. [60]. The latter attributed

the small-scale genetic variation to a temporally unstable genetic structure, a phenomenon

known as ‘sweepstake-chance effect’ where most recruits to the fishery are from a few individu-

als due to random assortment and matching of reproductive activity with oceanographic condi-

tions conducive to spawning, fertilization, larvae development and recruitment.

While many of these processes may contribute to the fine-scale and large-scale spatial varia-

tion within the population on Pedro Bank, the results from the pairwise comparisons which

Table 6. K–means clustering statistics from K = 1 to K = 3.

K SSD(T) SSD(AC) SSD(WC) r-squared pseudo-F BIC Rho

1 715.696 0 691.982 0 0 17.44 0

2� 715.696 10.303 705.393 0.434 2.305 16.199 0.016

3& 715.696 16.184 699.512 0.682 2.149 14.922 0.019

� Best clustering according to Calinski & Harabasz’ pseudo-F: k = 2.

& Best clustering according to Bayesian Information Criterion: k = 3.

https://doi.org/10.1371/journal.pone.0245703.t006
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indicated that the easternmost group (sampling location 3) was the most significantly different

from the other groups in the central and western end, supports the mechanism of genetic vari-

ation caused by oceanographic conditions. Surface currents in the Caribbean generally flow

towards the west [53, 61, 62], and Jamaica is supplied from large upstream reef areas and as

such may be less susceptible to overfishing and species loss [56, 61]. Kitson-Walters et al. [59]

also suggested that Pedro Bank receives recruitment from outside the Jamaican exclusive eco-

nomic zone (EEZ) corroborating the hypothesis that queen conch recruitment would be great-

est on the eastern end of the bank, which also has the highest conch density [27]. The substrate

cover in that area is predominantly sand sediment, seagrass, coral reefs and small areas of

macroalgae [18, 63]. Previous studies conducted on Pedro Bank indicate a direct relationship

between substrate type, depth and L. gigas density [2, 11, 18, 27, 64]. Tewfik and Appeldoorn

[64] and Morris [18], found that substrate type and depth were influential in the distribution

of queen conch across Pedro Bank, while Stoner et al. [65] reported habitat limitation as the

most plausible explanation for low abundances in the conch population west of Cat Island in

the Bahamas.

The neighbour joining (NJ) tree is in congruence with the pattern of genetic structure

found (Fig 4), where Group 3 was significantly different from the other groups except for

Group 1A which is closest geographically and consistent with the genetic structure pattern of

queen conch in Yucatan, Mexico [20]. Contrastingly, Campton et al. [57] described queen

conch as displaying spatial and temporal genetic variation as geographical distance did not

correlate with relatedness of individuals, instead he attributed this genetic patchiness to pre-

settlement events due to stochastic variations in the marine environment, temporal variations

in recruit source for each locality and/or genetic drift. The distribution of queen conch on

Pedro Bank was also described as patchy by Appeldoorn [11] due to densities found through-

out the bank from sporadic larval settlement which may also lead to distinct genetic popula-

tions being formed [14]. A combination of barriers to dispersal and ocean circulation could

also be used to explain variation between groups of marine species [66].

The Bayesian clustering analysis indicated four clusters (K = 4) with an admixture of indi-

viduals assigned to all clusters indicative of mixed ancestry with a richer and more complex

representation than is traditionally assumed by clustering models where each individual

belongs to a unique cluster [67]. This analysis also indicated a high likelihood at (K = 2), which

corresponded to results obtained using samples collected only from the 2015 queen conch

abundance survey (S3 Appendix) which had less individuals to assign. Kalinowski [68] con-

cluded from his simulation exercise that clusters produced by the software STRUCTURE can

be strongly influenced by differences in sample size but the same data set can produce realistic

results when using traditional methods such as pairwise comparisons. The most probable

number of populations identified on Pedro Bank was two which corresponds to the pairwise

comparisons where spatial variation was evident between sample location 3 and the rest of the

bank. The two K-means clustering statistics supported different number of clusters, however

the pseudo-F statistic works better for clustering populations such as queen conch [11, 33, 64]

and had an optimal clustering of (K = 2) which is supported by the FST pairwise comparisons.

Sample location 3 situated on the eastern side of Pedro Bank (zone 3) has a predominant

depth of 11–20 m and considered to be a nursery area due to the substrate type. Here larvae

transported by the Caribbean current could settle and metamorphose into juveniles [27, 39,

69]. In their study on coral reef connectivity throughout the Caribbean, Schill et al. [61] stated

that coral reefs rely heavily on ocean currents in order to maintain genetic vigour as currents

are a valid source of new recruits which influences biomass, population persistence, resilience

and species diversity. Sample location 3, based on its position, is directly impacted by westerly

flowing currents and incidentally displayed the lowest average for total heterozygosity (0.736).

PLOS ONE Genetic composition of queen conch (Lobatus gigas) population on Pedro Bank, Jamaica

PLOS ONE | https://doi.org/10.1371/journal.pone.0245703 April 5, 2021 12 / 19

https://doi.org/10.1371/journal.pone.0245703


This corroborates the indication that exploitation, genetic drift and potential larval retention

may promote genetic differentiation among groups [70]. Additionally, Stoner et al. [65] cau-

tioned that increased recruitment from upstream areas does not guarantee high queen conch

production as mortality rates in newly settled invertebrates can be high. The highest juvenile

densities are found on the southeastern edge of the bank [39, 64], however the presence of

small juveniles with limited capacity for migration and dispersal across Pedro Bank indicates

that significant larval recruitment and settlement are occurring throughout the bank. It also

suggests that replenishment of queen conch is not solely dependent upon recruitment from

traditional nursery areas [11], that is, Pedro Bank may be self-recruiting [59] but still receives

larvae from upstream areas which have greatest influence at the eastern end of the bank.

Management implications

Over the years the impacts of commercial fishing and overexploitation of L. gigas on Pedro

Bank have received considerable attention from a wide variety of stakeholders ranging from

within Jamaica and the wider Caribbean, to international trading partners concerned with

conservation of the species [3, 7, 71–73]. Solutions to these impacts have been sought through

biological surveys and assessments [11, 18, 39, 64] marine spatial planning [63] and genetic

assessment [59]. However, management plans thus far have only utilized biological surveys to

guide the queen conch fishery in Jamaica which is primarily based on Pedro Bank. The results

from this study revealed a weak but significant population structure which may be habitat

dependent and would benefit from EBM as suggested by Morris [18].

Genetic diversity of queen conch on Pedro Bank embodies that of a fit population in all

monitoring zones sampled under prevailing environmental conditions, however the central to

eastern and southeastern end of the bank comprising monitoring zones 1 and 3 are heavily

fished and incidentally comprise dense patches of seagrass beds which potentially act as nurs-

ery areas for recruitment to the fishery. These zones are predominantly < 20 m in depth hence

the increased exploitation as it is more economical and safer for commercial fishers to fill their

quotas in these areas [39]. The deeper areas in open water locations are also more exposed to

high waves [74] and ocean currents which are variable in strength [59]. The constant removal

of species from one area can be detrimental as entire cohorts may be removed over successive

fishing seasons causing the fishery to eventually collapse by the removal of reproductive indi-

viduals before they make a contribution to the fishery. This type of serial dilution was observed

in the Bahamian queen conch fishery by Stoner et al. [74], to cause low densities of adult

conch incapable of successful mating and reproduction hence a fishery on the verge of collapse

if strong management measures are not instituted. Even though the total allowable catch for

queen conch in Jamaica is relatively low per fishing season, commercial fishing should be

encouraged across the entire Pedro Bank perhaps with incentives to offset economic losses

such as an increased quota to fish in particular areas, thus safeguarding the genetic diversity

across the bank. Instituting the marine spatial planning (MSP) for Pedro Bank as suggested by

Baldwin et al. [63], would also allow for important nursery areas to be protected and permit

the Fisheries Division to meet one objective of the conch management plan for rehabilitation

of overexploited stocks.

A closed season to protect the reproductive period is a common management strategy in

fisheries. This is particularly important for queen conch because they are susceptible to overex-

ploitation when they aggregate in particular areas to spawn [2, 55, 75]. Reproduction in queen

conch occurs year round in some areas [62, 76], although reproduction seems to be triggered

by temperature [18, 21], so spawning tends to occur in the warmer months of the year [72, 77].

The closed season for queen conch in Jamaica is set by the Fisheries Division through the
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Minister with responsibility of MoAF and currently varies from year to year. With the event of

climate change and other environmental factors that may impact spawning, there needs to be

a concerted effort to investigate temporal variability of the life history stages of L. gigas and as

such institute appropriate periods for fishing restrictions suitable to the biology of the species.

An alternate management measure to closed seasons may be closed areas as monitoring zones

can be closed for specific periods to achieve the objectives of a closed season.

Without proper enforcement, management strategies are mere suggestions for good prac-

tices. Aiken et al. [13] has lamented the fact that enforcement has historically been a weak

point for the fishing industry in Jamaica. Cochrane and Garcia [75] made the realistic observa-

tion that if enforcement is to take place in remote areas which cover a large expanse such as

Pedro Bank the practicalities and cost of enforcement can be prohibitive. Although enforce-

ment in Jamaica has been a challenge, exceptions to this are highlighted to some degree for the

conch fishery because it is a commercial fishery and production is primarily export oriented.

Whilst landings geared towards export are captured in the queen conch production for

Jamaica, landings by artisanal fishermen for local consumption by restaurants and hotels may

go unnoticed and hence not captured in the total estimated figure for queen conch production.

In addition to contributing to serial dilution of stocks, this may affect the NTAC set by fisher-

ies managers and hence calls for increased monitoring of harvesting areas and local landings

by artisanal fishermen.

The identification of two possible subpopulations on Pedro Bank will assist fisheries man-

agers in regulating harvesting areas and strengthen the certification scheme implemented to

facilitate trade with the EU as entire sections of the bank may be closed off to fishing if neces-

sary, and traceability of the individuals landed will be possible. The genetic information eluci-

dated from the study will also strengthen the non-detrimental findings (NDF) required by

CITES as traceability of the products can be substantiated along with the data provided for

export. Knowing the genetic composition of the stocks on Pedro Bank and being able to trace

the final product to the source stock will also serve as a deterrent to IUU fishing [78], which

can only be substantially decreased with enforcement. The need therefore arise for further

studies using more powerful genetic techniques which are able to identify relatedness of indi-

viduals within populations and hence determine fine-scale population structure where low lev-

els of genetic variation exist.

Conclusion

The results from this study revealed a weak but significant population structure for L. gigas on

Pedro Bank as was seen in previous studies done elsewhere in the Caribbean [21, 23, 40, 57, 70].

Queen conch displayed a patchy distribution across the monitoring zones sampled with signifi-

cant but weak genetic variation found in zone 3 which is located on the heavily exploited eastern

end of the bank. This genetic differentiation may be attributed to two main factors, namely the

serial dilution of species and the complex oceanic current patterns associated with the eastern

end of the bank. Pedro Bank is directly impacted by the westward flow of the Caribbean current

and could serve as the primary recruitment area of queen conch larvae from upstream locations.

The geographical and ecological conditions on the eastern end of the bank are also conducive to

post larval settlement, however the high densities of juvenile conch found throughout the bank

coupled with high gene flow across the bank suggests that self-recruitment is taking place and is

possible due to the different depth strata presently unexploited within the monitoring zones.

These recruitment options available to the L. gigas stocks on Pedro Bank should ensure a viable

population continues to exist with the use of proper management tools incorporating all avail-

able data into ecosystem management and continued monitoring of the stocks.
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