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Persistent regional glucocorticoid (GC) dysregulation in alcohol-withdrawn subjects 
emerges as a key factor responsible for protracted molecular and neural alterations 
associated with long-term cognitive dysfunction. Regional brain concentrations of 
corticosterone vary independently from plasma concentrations in alcohol-withdrawn 
subjects, which may account for the treatment of alcohol withdrawal–induced persistent 
pathology. Thus, from a pharmacological point of view, a main issue remains to determine 
the relative efficacy of compounds targeting the GC receptors to attenuate or suppress 
the long-lasting persistence of brain regional GC dysfunctions in abstinent alcoholics, 
as well as persistent changes of neural plasticity. Data from animal research show that 
acting directly on GC receptors during the withdrawal period, via selective antagonists, 
can significantly counteract the development and persistence of cognitive and neural 
plasticity disorders during protracted abstinence. A critical remaining issue is to better 
assess the relative long-term efficacy of GC antagonists and other compounds targeting 
the corticotropic axis activity such as gamma-aminobutyric acid A (GABAA) and GABAB 
agonists. Indeed, benzodiazepines (acting indirectly on GABAA receptors) and baclofen 
(agonist of the GABAB receptor) are the compounds most widely used to reduce alcohol 
dependence. Clinical and preclinical data suggest that baclofen exerts an effective 
and more powerful counteracting action on such persistent cognitive and endocrine 
dysfunctions as compared to diazepam, even though its potential negative effects on 
memory processes, particularly at high doses, should be better taken into account.

Keywords: alcohol withdrawal and relapse, benzodiazepines, baclofen, corticosterone, gaba receptors, 
glucocorticoids, prefrontal cortex, working memory

INTRODUCTION

Alcoholism is characterized by periods of sustained alcohol consumption, in part due to changes 
in neural circuits mediating anxiety and stress disorders, notably the prefrontal cortex (PFC) and 
structures such as the hippocampus (HPC) and the amygdala (AMG) (1, 2). Indeed, the PFC–HPC–
AMG circuit plays key roles in modulating neuroadaptive responses to stress and anxiety and is 
markedly and consistently altered in most of neuropsychiatric disorders (3, 4).
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Alterations of hypothalamic–pituitary–adrenal (HPA)  axis 
activity is a prime mechanism contributing to protracted 
alcoholism (5) and the release of glucocorticoids (GCs; cortisol 
in humans and primates, corticosterone in rodents) from the 
adrenal glands. Clinical and experimental data in both humans 
(6–8) and rodents (5, 9, 10) have shown that both acute and 
chronic alcohol consumption, as well as alcohol withdrawal, 
enhanced plasma GCs and decreased GC receptor (GR) 
availability (11). In addition, even though the relationships 
between HPA axis activity, craving, and alcohol intake during 
early abstinence have been particularly well documented (4, 
12), little is known on such a relationships during protracted 
abstinence. Moreover, whereas most of the measures of the HPA 
axis activity are peripheral, some brain regions playing a critical 
role in either memory or reward processes have been shown to 
exhibit sustained local GC dysfunction in contrast to a transient 
increase in circulating GC level, a phenomenon that is as yet 
insufficiently taken into account to understand alcohol relapse in 
abstinent subjects (13, 14).

In the first part, this review thus provides updated clinical 
and experimental evidence for the persistence of brain regional 
GCs over protracted alcohol abstinence and how sustained 
GC-related neurocognitive dysfunction might possibly lead 
to relapse. In the second part, this paper focuses on the 
efficacy of pharmacological compounds modulating, directly 
or indirectly, GC receptors to suppress or attenuate these 
long-lasting neurocognitive alterations in alcohol-withdrawn 
subjects. Even though alcohol withdrawal affects numerous 
brain structures and networks (15–17), in this review, we 
focused on PFC-related studies. Indeed, on the one hand, 
it has been shown that neurons of the PFC are dramatically 
vulnerable to the oxidative stress mediated by chronic alcohol 
exposure, leading to important neuronal cell death (18), and 
on the other hand, our own studies have shown that alcohol 
withdrawal induced protracted GC alterations in the PFC that 
were responsible for working memory (WM) impairments in 
mice (13, 19, 20).

PERSISTENT BRAIN REGIONAL 
GLUCOCORTICOID ALTERATIONS AFTER 
PROTRACTED ALCOHOL ABSTINENCE

Alcohol withdrawal induced protracted alterations of 
corticosteroid-releasing factor (CRF) and plasma corticosterone 
in the HPC, the PFC, and the hypothalamus, far beyond 
the detoxification step (10). Interestingly, the long-lasting 
neuroadaptive changes of GCs caused by prolonged alcohol 
withdrawal within neural circuits involved in learning, memory, 
and emotions are only scarcely known.

The initial phase of alcohol withdrawal is characterized by 
increases of both plasma and brain GC concentrations (13, 
14, 19, 21). Little and colleagues (14) were the first to show in 
rodents that during the initial phase of withdrawal after 8 months 
of chronic alcohol consumption (CAC), rats and mice showed 
exaggerated corticosterone levels in the PFC and the HPC. The 

excessive corticosterone level in the PFC of alcohol-withdrawn 
rodents persisted for up to 2 months, whereas circulating 
corticosterone level already returned to basal concentrations. 
Other studies also reported that protracted high levels of local 
corticosterone concentration are important factors for the 
maintenance of cognitive impairments after prolonged cessation 
of alcohol intake in rodents (19, 22, 23) and in abstinent patients 
(11, 24). The persistence of altered regional GC responses to long-
term alcohol withdrawal could be a clue to understand how the 
local neuroadaptive changes to withdrawal generate sustained 
downstream molecular and neurofunctional activity disorders, 
notably in the PFC–HPC–AMG circuit, and could promote 
relapse to alcohol-seeking behavior (see Figure 1).

In our own studies, in vivo intracerebral microdialysis was 
used to evaluate the evolution of corticosterone concentration 
over time in the medial PFC and the dorsal HPC during and 
after completion of a WM task in mice previously submitted 
to a 6-month CAC period followed by either a short (1 week) 
or prolonged (6 weeks) withdrawal period (13, 19). This WM 
task was based on spontaneous alternation behavior, which 
involves intact interconnections between the PFC and the 
HPC for successful performance (25, 26). We observed that 
behavioral testing produced an exaggerated corticosterone rise 
in the medial PFC regardless of withdrawal duration, in spite 
of normal circulating GC levels. In addition, a late deficit in the 
inhibitory feedback response on HPA axis activity in both the 
PFC and the dorsal hippocampus (dHPC) was also observed 
in withdrawn mice, even though unrelated with the WM 
deficit (19). Interestingly, the severity of the memory deficit 
correlated positively with high levels of PFC corticosterone 
concentration, showing that there is a functional link between 
exaggerated corticosteroid responses and PFC-related 
cognitive dysfunction (27–29). The persistent elevation in 
PFC corticosterone levels in withdrawn mice could be due 
to the presence of local GC production, proximity to target 
cells, and possibly, tissue-specific control mechanisms (30). 
Our findings agree with many neuroimaging studies showing 
structural and functional deficits in PFC regulatory regions 
(31) or blood flow alterations in the medial frontal lobe 
(32). Thus, a functional disconnection between the PFC and 
the AMG emerges as an early index of neuroadaptation in 
alcohol dependence that predicts PFC-dependent cognitive 
impairments during abstinence (29, 33, 34). Endogenous 
GCs are critically implicated in maintaining PFC-dependent 
cognitive functions (35). Consistently, an increase in cortisol 
predicts frontal cortex–related cognitive deficit as shown 
either after a hydrocortisone administration or in pathological 
condition such as in Cushing’s disease (33, 36–39).

REGIONAL GC ALTERATIONS AND 
NEURAL PLASTICITY

GCs influence brain function through two types of GRs, the high-
affinity mineralocorticoid receptor (MR) or the low-affinity GR 
(40). GR acts as a nuclear transcription factor to regulate expression 
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of various target genes (41–43). They also play an important role 
in the addiction to alcohol. For instance, GR-mediated plasticity 
increased voluntary alcohol intake (44), whereas GR antagonist 
reduced alcohol intake (45) in rats. Thus, alterations of GCs in 
withdrawn subjects could impair neural plasticity within the PFC–
HPC–AMG circuitry implicated in stress and higher cognitive 
function, such as declarative memory and WM (19, 23, 29, 46, 47).

Several lines of research have shown that GC alterations 
disrupt memory processes through either changes in activated/
phosphorylated cAMP response element-binding protein (pCREB) 
due to GR dysfunction (48–50) or the MR-mediated effects on the 
cAMP–protein kinase A (PKA) cascade (51, 52). A recent study 
in our lab reported that early and protracted withdrawal periods 
after prolonged alcohol consumption produced WM deficits in a 
sequential alternation task, which were associated with reduced 
pCREB levels, more specifically in the PFC, whereas none of 
these impairments were observed in mice still under alcohol 
condition (13). Results further indicated that local injection of the 
PKA activator (Sp-cAMPS) into the PFC significantly improves 
or impairs, respectively, WM performance in withdrawn and 
water animals (13). These findings strongly support the view 
that dysregulation of the cAMP–PKA–CREB signaling pathway, 
particularly in PFC, is a key molecular signature of the cognitive 
dysfunction during alcohol withdrawal (53–56). The impact of 
GCs on PFC function is thought to be driven mainly, although 
not exclusively (57), via complex local interactions between 
dopaminergic and glutamatergic receptors (58, 59).

RESCUING LONG-LASTING 
WITHDRAWAL-INDUCED COGNITIVE AND 
GLUCOCORTICOID DYSFUNCTION BY 
TARGETING GC RECEPTORS

The highest densities of MR are expressed in the HPC (60–62). In 
contrast, the GRs are widely distributed throughout the brain (40, 
63, 64), mainly in areas involved in learning and memory. These 
areas are particularly sensitive to the effects of stress, namely the 
PFC–HPC–AMC.

AMG circuitry (65–67). More specifically, as shown in human 
studies of Cushing’s syndrome, sustained cortisol elevation 
over the years alters the integrity of the HPC–PFC circuitry 
and accordingly influences the severity of various cognitive 
dysfunctions (37, 38, 68–70). Indeed, GC impairment of WM 
critically depends on influences within the PFC (27–29), and 
selective impairments of frontal cortical functions during 
withdrawal in detoxified alcoholics have been reported (16, 34, 
71–74). These findings are in agreement with several studies 
indicating that exaggerated concentrations of GCs produced 
PFC dysfunction, as also reported in depression or Cushing’s 
syndrome (16, 36, 37, 68, 75–78).

Several types of pharmacological compounds acting on GC 
release or the GC receptors have been used to restore memory 
function after alcohol withdrawal. Thus, mifepristone (a GR 
antagonist) or the dihydropyridine calcium channel nimodipine, 
delivered prior to withdrawal from chronic alcohol exposure, 

FIGURE 1 | Parallel evolution of alcohol withdrawal–induced symptoms and plasmatic or brain regional glucocorticoid (GC) levels over time. Acute withdrawal is 
associated with a release of catecholamines, CRF, and high plasmatic GCs, which mediate physiological and behavioral symptoms initially through non-genomic 
effects. The early abstinence period is associated with a decrease in plasmatic GC concentration as opposed to a brain regional GC increase, particularly in the 
PFC, likely involving genomic effects of GC. Although brain GC concentration and affective/cognitive symptoms will be normalized in many dependent subjects, 
persistence of elevated brain GC levels and cognitive impairments in others is predictive of high risk of relapse (see text for details).
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reduced both the protracted rises in brain corticosterone and 
sustained cognitive or motivational deficits in mice (22) or rats 
(79). Recently, we studied whether the regional GC blockade in 
the medial PFC suppressed WM deficits in alcohol-withdrawn 
mice. To that aim, withdrawn mice were given intraperitoneal 
administration of metyrapone (a corticosterone synthesis 
inhibitor) prior to testing. We found that the withdrawal-
induced WM impairments were totally alleviated, confirming 
the key role of persistent enhanced GC levels in withdrawal-
associated cognitive impairments. Similarly, acute intra-PFC 
infusion of spironolactone that diminished MR activation, and 
to a lesser extent, of mifepristone that diminished GRs activation, 
fully restored WM function in withdrawn mice. In contrast, 
neither spironolactone nor mifepristone had any effect when 
infused into the dorsal HPC (19). These data are congruent with 
findings reporting that high GC levels via either corticosterone 
administration or local infusion of the GR agonist RU 28362 
into the medial PFC shortly before testing similarly impair WM 
(29), while the GR antagonist RU 38486 infused into the PFC 
can restore stress-induced deficits in executive function (59). 
All together, these findings suggest that long-term adaptive 
behavioral effects of withdrawal after a long alcohol exposure 
are mediated in large part through sustained GC dysregulation 
within the PFC circuitry, while circulating corticosterone levels 
are already normalized.

RECOVERY OF PFC FUNCTIONS 
AND SUCCESSFUL PROTRACTED 
ABSTINENCE

There is now extensive evidence showing that recovery of 
PFC cognitive function is related to long-lasting abstinence in 
alcoholics (16, 80, 81). This raises two critical issues that should 
be addressed by future clinical and animal research. Firstly: is 
recovery of executive functions relying on restoration of normal 
PFC activity, or is it the result of compensatory activity in other 
cortical or hippocampal regions as previously suggested (82)? 
For instance, it remains unclear whether some of the withdrawal-
induced cognitive impairments are due to the PFC itself or the 
HPC (16, 73, 74, 83, 84). Since many confounding factors may 
limit the relevance of clinical studies in that matter, it is an 
essential task of preclinical models of alcohol dependence to 
better understand regional cellular substrates of these cognitive 
deficits. Secondly, GC release corresponds to a physiological 
mechanism (negative feedback control), which is preparing 
the organism to cope and eventually to recover from various 
environmental threats (85). The medial PFC is a critical target 
area for the negative-feedback effects of GCs on HPA activity 
after stress (86). There is increasing evidence showing that PFC-
dependent cognitive impairments in many alcohol-dependent 
subjects are no longer observed after 1 year of abstinence (81, 
82, 87). Therefore, a fundamental issue will be to better evaluate 
the long-term benefits of targeting GC activity, in order to 
determine what GC-related treatments are effective in reducing 
transient withdrawal-induced cognitive deficits without 

compromising normalization of the stress system reactivity and 
cognitive function.

TARGETING GC ACTIVITY DURING 
WITHDRAWAL VIA GABAERGIC 
AGONISTS

Another way to rescue the protracted regional GC dysregulation 
in alcohol-withdrawn subjects and rodents is to act directly or 
indirectly on the GABAergic neurotransmission during the 
withdrawal period. Indeed, the GABAergic system modulates 
the HPA axis response to stress (88–91) mainly through its 
inhibitory action on corticotropin-releasing hormone (CRH) 
cells of the paraventricular nucleus of the hypothalamus, which 
regulates GC release by the adrenal gland (92). Experimental data 
have already shown benefic effects of GABAA agonist (muscimol) 
on alcohol tolerance and dependence in rats (93). However, 
among benzodiazepines (such as lorazepam, chlordiazepoxide, 
and oxazepam) acting on the GABAA receptor, diazepam is the 
most commonly used, mainly given its prolonged half-life (94). 
Given that, diazepam has been widely used to reduce the negative 
side effects of alcohol withdrawal and transiently delivered 
in alcoholics mainly with the aims of reducing anxiety and 
decreasing neural excitability in the early phase of the cessation 
of alcohol intake (95–100).

However, given the high variability of patients’ reactions 
to diazepam, its use may also be causal of strong deleterious 
neurocognitive and affective disorders (101). For example, 
diazepam induces deleterious effects on cognitive functions 
(mainly amnesia) in humans (102–104) and rodents (89, 105, 106) 
that resemble those induced by chronic alcohol consumption and 
withdrawal (105). In addition, it is well established that addiction 
to benzodiazepines can develop over time in treated alcoholics 
or in people with a history of a substance use disorder (100, 
107). Furthermore, chronic diazepam treatment potentiates the 
addictive properties of psychostimulants such as cocaine (108). 
In a rodent model of chronic intermittent access to alcohol 
leading to escalation of alcohol intake, George et al. (109) showed 
that recruitment of GABAergic and CRH cells in the medial PFC 
during withdrawal and disruption of the PFC–central AMG 
pathway are causal factors for impairments of executive control 
over motivated behavior, suggesting that alterations of medial 
PFC interneurons may be a prime signature of neuroadaptation 
in dependence on alcohol. Interestingly, functional inactivation 
of the orbitofrontal cortex by agonists of the GABAA (muscimol) 
and GABAB (baclofen) receptors disrupts the context-induced 
relapse to alcohol and executive control in rats (110). Overall, 
in spite of motivational and cognitive disorders potentially 
linked to the use of benzodiazepines, they remain the most 
common pharmacological compounds used to reduce the 
negative side effects of alcohol withdrawal in humans. Indeed, 
other compounds such as anticonvulsant drugs (carbamazepine, 
valproic acid, or gabapentin, for instance) and barbiturates 
such as phenobarbitone also attenuate alcohol withdrawal 
symptoms, but their use is often limited by negative side effects or 
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insufficient benefic effects as compared to benzodiazepines [for a 
comprehensive review, see Ref. (111)].

Initially used for its myorelaxant effect through its agonist 
action on GABAB receptors (112), baclofen was found to 
modulate HPA axis activity (113) and to reduce HPA axis 
activity in withdrawn alcoholics (114). Baclofen has been used 
only recently in the treatment of alcohol dependence (97, 115, 
116). Although the initial case report put an emphasis on its 
anticraving properties (117), increasing evidence suggests that 
different mechanisms could account for the effects of baclofen 
on motivational and physical symptoms of alcohol withdrawal 
(115–119). Clinical and experimental data have mentioned an 
attenuation of alcohol dependence in both humans and animals, 
even though adverse events have been also reported, mainly 
with high baclofen doses (110, 120–123). Whereas beneficial 
effects of both diazepam and baclofen after a short period of 
alcohol withdrawal are well documented, a critical issue that 
remains under question is to determine the relative efficacy of 
these compounds at rescue from the persistent cognitive and 
biological alterations resulting from long withdrawal periods. In 
humans, diazepam and baclofen induced comparable and similar 
physical symptoms to those of alcohol withdrawal, such as 
anxiety, sweating, and tremors over a 10-day withdrawal period 
(124). A recent survey study did not report different qualitative 
effects of baclofen as regards other benzodiazepines (diazepam, 
chlordiazepoxide) in the treatment of severe alcohol withdrawal 
syndrome (125). In contrast, another study showed a greater 
efficacy of chlordiazepoxide as compared to baclofen in reducing 
the physical symptoms of alcohol withdrawal (126). Low doses 
of baclofen associated with benzodiazepine administration 
lowered the dose of lorazepam used to counteract the increase 
in anxiety resulting from the cessation of alcohol intake (127). 
We recently confirmed the corrective effects of a 9-day diazepam 

administration on memory dysfunction, GC levels, and altered 
pCREB in the PFC after a short (1 week) withdrawal period in 
mice; however, these benefic effects were only transient since they 
were not observed after a longer (4 weeks) alcohol withdrawal 
period (128) (and see Figure 2). The lack of efficacy of subchronic 
diazepam injections to alleviate the protracted cognitive and 
biological alterations in 4-weeks-withdrawn mice may result 
from sustained alterations of GABAA receptors (99, 129, 130), 
increased downregulation of these receptors over repeated 
diazepam administration (131), or other neuroadaptations that 
may progressively emerge after withdrawal, such as alterations of 
epigenetic mechanisms (4, 20).

In contrast to diazepam, other studies have reported beneficial 
effects of baclofen after protracted alcohol withdrawal. More 
specifically, Geisel et al. (114) evidenced in abstinent alcoholics 
sustained increased plasma GC levels, which decreased 
significantly in baclofen-treated patients, up to 14 weeks after 
treatment. Authors suggested that a decrease of CG levels during 
treatment with high-dose baclofen contributes to its preventive 
effects on alcohol relapse. In line with this hypothesis, we 
reported in recent experiments, as yet unpublished, a clear-cut 
dissociation between baclofen and diazepam in the protracted 
GCs and motivational dysfunction in alcohol-withdrawn mice. 
Using an odor place preference paradigm, we showed that 
alcohol-withdrawn animals receiving an acute stress (electric foot 
shocks) before the recognition session exhibited an abnormal 
rise of plasma corticosterone as compared to stressed controls, 
as well as a strong preference for an area impregnated with the 
odor of alcohol at the expense of a zone impregnated with water. 
Interestingly, repeated administration of baclofen administered 
during the withdrawal period normalized the stress-induced 
plasma corticosterone rise and concomitantly suppressed the 
stress-induced alcohol place preference, up to 4 weeks after the 

FIGURE 2 | Effects of diazepam treatment on cognitive deficits, prefrontal cortical (PFC) GC levels, and pCREB expression in alcohol-withdrawn C57BL6/J mice. 
Chronic alcohol consumption lasted 6 months at 12% (v/v). This pharmacological study showed that 1-week-withdrawn mice receiving vehicle exhibited increased 
levels of corticosterone, reduced pCREB activity in the PFC, and working memory deficits as assessed with a sequential alternation task, 24 h after the last 
diazepam injection. Diazepam administered i.p. at decreasing doses ranging from 1.0 to 0.25 mg/kg every day during the 9 days of the withdrawal phase transiently 
(1 week but not 4 weeks) reversed both the endocrine and cognitive impairments observed in vehicle-treated animals (128). 
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cessation of alcohol intake, whereas diazepam had only a short 
transitory (1 week) beneficial effect (132).

In spite of its promising effect in the treatment of protracted 
alcohol-related neurocognitive and motivational disorders, one 
might note that a limitation of the use of baclofen is associated 
with the determination of the relevant dose to induce beneficial 
effects without negative side disorders (116) such as cognitive 
and emotional disorders, which have been reported with high 
doses (133). Its use in humans might require closet medical 
surveillance given the pathological alterations associated with 
self-misuse or high doses of this compound.

CONCLUDING REMARKS

From a functional point of view, persistent regional GC 
dysregulation in alcohol-withdrawn subjects emerges as a 
key factor responsible for protracted molecular and neural 
alterations associated with long-term cognitive dysfunction. 
The demonstration that regional brain concentrations of GCs 
can change in alcohol-withdrawn subjects independently 
from circulating concentrations has important implications 
for the treatment of alcohol withdrawal–induced persistent 
pathology. Thus, from a pharmacological point of view, a main 
issue remaining to be resolved concerns the relative efficacy of 
compounds targeting the GC receptors to attenuate or suppress 
the long-lasting persistence of brain regional GC dysfunctions 

in abstinent alcoholics, as well as other persistent changes of 
neural plasticity. Data from animal experimentation show 
that acting directly on GRs during the withdrawal period, 
via selective antagonists, can significantly counteract the 
development and persistence of cognitive and neural plasticity 
disorders during protracted abstinence. A critical remaining 
issue is to better assess the relative long-term efficacy of GABAA 
and GABAB agonists in counteracting the protracted brain 
regional GCs and neurocognitive dysfunctions resulting from 
alcohol withdrawal. Clinical and preclinical data suggest that 
the agonist of the GABAB receptor baclofen exerts an effective 
counteracting action on such persistent dysfunctions. However, 
there is still a need for a better evaluation of its potential 
negative side effects, particularly when using high doses over a 
long period of time.
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