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Abstract
Background: Open chromatin is associated with gene transcription. Previous 
studies have shown that the density of mutations in open chromatin regions is 
lower than that in flanking regions because of the higher accessibility of DNA re-
pair machinery. However, in several cancer types, open chromatin regions show 
an increased local density of mutations in activated regulatory regions. Although 
the mutation distribution within open chromatin regions in cancer cells has been 
investigated, only few studies have focused on their functional implications in 
cancer. To reveal the impact of highly mutated open chromatin regions on can-
cer, we investigated the association between mutations in open chromatin re-
gions and their possible functions.
Methods: Whole- genome sequencing data of 18 cancer types were down-
loaded from the PanCancer Analysis of Whole Genomes and Catalog of Somatic 
Mutations in Cancer. We quantified the mutations located in open chromatin 
regions defined by The Cancer Genome Atlas and classified open chromatin re-
gions into three categories based on the number of mutations. Then, we investi-
gated the chromatin state, amplification, and possible target genes of the open 
chromatin regions with a high number of mutations. We also analyzed the asso-
ciation between the number of mutations in open chromatin regions and patient 
prognosis.
Results: In some cancer types, the proportion of promoter or enhancer chroma-
tin state in open chromatin regions with a high number of mutations was sig-
nificantly higher than that in the regions with a low number of mutations. The 
possible target genes of open chromatin regions with a high number of mutations 
were more strongly associated with cancer than those of other open chromatin 
regions. Moreover, a high number of mutations in open chromatin regions was 
significantly associated with a poor prognosis in some cancer types.
Conclusions: These results suggest that highly mutated open chromatin regions 
play an important role in cancer pathogenesis and can be effectively used to pre-
dict patient prognosis.
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1  |  BACKGROUND

Open chromatin is a locally accessible region of the ge-
nome. DNA is usually wrapped around histone proteins to 
form nucleosomes, and multiple nucleosomes are folded 
into higher- ordered chromatin structures. In the heter-
ochromatin (closed chromatin) state, heterochromatin- 
associated proteins and silencing factors bind to DNA,1 
resulting in gene silencing. On the other hand, the euchro-
matin (open chromatin), a less condensed chromatin, is 
associated with gene transcription and is found in tran-
scriptionally active gene loci or regulatory regions, such as 
promoters and enhancers.

Previous studies have shown that fewer mutations 
occur in open chromatin regions than in the flanking 
regions.2,3 In other words, the mutation density is lower 
in transcriptionally active regions. It is believed that this 
mutation distribution in the genome is due to the higher 
accessibility of open chromatin by the DNA repair system. 
Indeed, the high chromatin accessibility allows enhanced 
nucleotide excision repair (NER) and base excision repair 
activities, leading to a relative decrease in the mutation 
density in open chromatin regions.4 A previous work has 
demonstrated that, in normal human skin fibroblasts, mu-
tations in transcriptionally active regions and open chro-
matin regions were repaired more quickly than those in 
other genomic regions, whereas the regions with the de-
layed repair were associated with a higher level of cancer- 
linked mutations.4

The number of mutations is, however, not always uni-
formly lower within open chromatin regions. Chromatin 
accessibility is a factor that leads to mutation accumula-
tion in several types of cancer, and some other factors are 
also associated with mutation accumulation.5 A higher 
mutation density is found in localized regions within 
DNase I- hypersensitive sites (DHSs). For example, in mel-
anoma, lung cancer, and ovarian cancer, mutations are 
enriched in the center of DHSs in gene promoter regions, 
which are strongly associated with transcription initiation 
activity.6 Similarly, in ubiquitous enhancers (enhancers 
that strongly promote transcription of enhancer RNAs 
across all cell lines studied),7 the mutation density is sig-
nificantly higher than that in the flanking regions, and 
the mutation density ratio between DHS and DHS flank-
ing regions is significantly higher than that in permissive 
enhancers (enhancers that show bidirectional transcrip-
tion in a cell- type- specific manner) in melanoma, lung 
cancer, and ovarian cancer.6,7 Moreover, the analysis of 

the distribution of somatic mutations in TF binding sites 
(TFBSs) in melanoma revealed that active TFBSs, which 
overlap with open chromatin regions, have a higher mu-
tation rate than flanking regions because of the increased 
level of UV- induced damage.8,9 The enrichment of muta-
tions in CTCF- binding sites was observed in some cancer 
types.10,11 This is partially due to DNA- binding TFs inter-
fering with the NER machinery, resulting in increased 
DNA mutation rates at the TFBSs. In addition, we pre-
viously showed that the number of mutations in open 
chromatin regions with at least one recurrent mutation is 
significantly higher than that in open chromatin regions 
without recurrent mutations.12 Thus, the distribution of 
mutations in open chromatin regions is heterogeneous, 
with some open chromatin regions being highly mutated.

Although several studies have investigated the muta-
tion distribution in the open chromatin regions of can-
cer cells or analyzed specific cancer- related mutations in 
regulatory regions,13– 16 only a few studies have focused 
on their functional implication of mutation- enriched 
open chromatin regions in various cancers. Recently, 
The Cancer Genome Atlas (TCGA) provided pan- cancer 
ATAC- Seq data17 and the PanCancer Analysis of Whole 
Genomes (PCAWG) project provided 2658 whole- genome 
sequencing (WGS) data from 38 cancer types, enabling 
comprehensive mutation analysis of the entire cancer ge-
nome.18 In addition, databases such as The Encyclopedia 
of DNA Elements (ENCODE)19 and Roadmap20 have made 
it possible to use epigenomic and higher- order chromatin 
structure data generated from various tissues to interpret 
the functions of certain genomic regions. The accumula-
tion of these data facilitates the comprehensive analysis 
of mutation- enriched open chromatin regions and their 
association with cancer pathogenesis.

In the present study, we analyzed the WGS data from 
PCAWG18 and Catalog of Somatic Mutations in Cancer 
(COSMIC).21 We examined the characteristics and func-
tions of open chromatin regions with mutations. We 
found an association between the number of mutations 
in open chromatin regions and the proportion of regula-
tory regions and genome amplification in several cancer 
types. Gene ontology (GO) enrichment analysis showed 
that possible target genes of open chromatin regions 
with a higher number of mutations were more strongly 
associated with cancer pathogenesis than those of other 
open chromatin regions. Finally, we performed a survival 
analysis using the data on highly mutated open chro-
matin regions. The results showed a significantly poor 
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prognosis for patients with a high number of mutations 
in the mutation- enriched open chromatin regions in some 
cancer types. Our findings suggest that highly mutated 
open chromatins can function as regulatory elements in 
various cancers and might be used as prognostic markers.

2  |  MATERIALS AND METHODS

2.1 | Datasets

WGS data, copy number variants, and clinical data 
were downloaded from the PCAWG project.18 We 
also downloaded mutation data of whole- genome se-
quenced samples from the COSMIC data reposi-
tory (CosmicGenomeScreensMutantExport.tsv.gz and 
CosmicNCV.tsv.gz) (GRCh37, release v92; 27 August 
2020).22 We focused on 18 solid cancer types: bladder 
urothelial carcinoma (BLCA), breast adenocarcinoma 
(BRCA), cervical squamous cell carcinoma and endocer-
vical adenocarcinoma (CESC), colon adenocarcinoma 
(COAD), esophageal carcinoma (ESCA), glioblastoma mul-
tiforme (GBM), head and neck squamous cell carcinoma 
(HNSC), kidney renal clear cell carcinoma (KIRC), kidney 
renal papillary cell carcinoma (KIRP), lower- grade glioma 
(LGG), liver hepatocellular carcinoma (LIHC), lung adeno-
carcinoma (LUAD), lung squamous cell carcinoma (LUSC), 
prostate adenocarcinoma (PRAD), skin cutaneous mela-
noma (SKCM), stomach adenocarcinoma (STAD), thyroid 
carcinoma (THCA), and uterine corpus endometrial carci-
noma (UCEC) (Table 1). We extracted information regard-
ing mutations in these 18 cancer types from the PCAWG 
and COSMIC datasets. Single nucleotide polymorphisms 
with an allele frequency of ≥0.01 assessed by gnomAD (ver-
sion 2.1.1)23 and mutations in samples from TCGA24 or the 
International Cancer Genome Consortium25 that were in-
cluded in the PCAWG data repository were removed from 
the mutations listed in the COSMIC dataset. Then, we ex-
tracted the mutations that were experimentally confirmed 
by sequencing both cancer and a matched normal tissue or 
blood from the same patient. Finally, mutations from the 
PCAWG and COSMIC datasets were merged into a unique 
gene list for each cancer type and mutations with mappabil-
ity scores not equal to 1 were filtered out. The human refer-
ence genome GRCh37 was used in this study.

2.2 | Classification of open 
chromatin regions according to the 
number of mutations

To define open chromatin regions, ATAC- Seq data of the 
selected 18 cancer types were downloaded from TCGA.17 

The ATAC- Seq data were converted from human genome 
assembly GRCh38 to GRCh37 using the liftOver program.26 
In the ATAC- Seq data obtained from TCGA, peak location 
is defined as a 500 bp region. We used the 500 bp regions 
(=250 bp on either side of the midpoint) for open chromatin 
analysis in this study. The midpoint of the converted open 
chromatin regions was calculated, and the 250 bp region on 
either side of the midpoint was defined as an open chromatin 
region. The number of mutations located in open chromatin 
regions was counted in each cancer type using the mutation 
dataset obtained as described above.

Open chromatin regions were divided into three cat-
egories according to the number of mutations: (1) open 
chromatin regions without mutation (N- OC), (2) the top 
1% of open chromatin regions with the highest number of 
mutations (H- OC), and (3) other open chromatin regions 
(L- OC) (Table 2 and Table S1). Since the numbers of mu-
tations are discrete values, we set the value not exceeding 
1% as the cutoff for H- OC.

2.3 | Evaluation of the open 
chromatin state

We analyzed the epigenetic dataset available for 23 tissues 
derived from 15 cancer types with the core 15- state model 

T A B L E  1  Cancer sample size for each dataset

Cancer types
WGS from 
PCAWG

WGS from 
COSMIC

ATAC- Seq 
from TCGA

BLCA 23 9 10

BRCA 214 71 75

CESC 20 0 4

COAD 60 31 41

ESCA 98 107 18

GBM 41 182 9

HNSC 44 0 9

KIRC 111 7 16

KIRP 33 4 34

LGG 18 182 13

LIHC 349 362 17

LUAD 38 175 22

LUSC 48 148 16

PRAD 286 12 26

SKCM 107 301 13

STAD 75 95 21

THCA 48 13 14

UCEC 51 0 13

Total 1664 1699 371
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calculated by ChromHMM27 in the Roadmap Epigenomics 
Project20,28 (Table S2). The proportion of each 15- state to 
the total open chromatin length was calculated for the 
three open chromatin categories. The proportion of each 
15- state in the entire genome was calculated as a control.

2.4 | Evaluation of TF footprinting in 
open chromatin regions

TF footprint data (false- positive rates <0.05) were used for 
the analysis of TF binding to open chromatin regions.29 
Specifically, we used datasets from 30 cancer cell lines 
or primary cells derived from 12 cancer types (Table S3). 
The TF footprint length per open chromatin region for the 
three categories was calculated for each cancer type.

2.5 | Investigation of genome 
amplification in open chromatin regions

Data regarding the copy number in each sample from the 
PCAWG repository were used to obtain the copy number 
for each open chromatin region. The average copy num-
ber in each open chromatin region was calculated for each 
cancer type. Regions with an average copy number of ≥4 
were defined as amplified open chromatin regions.30 The 
proportion of amplified open chromatin regions was cal-
culated for each cancer type. The same analysis was per-
formed for regions outside the open chromatin regions.

To investigate the co- occurrence of mutations and 
genome amplification in each open chromatin region, 
samples were divided into four groups: (1) regions with 
both mutations and genome amplification, (2) regions 
with only mutations, (3) regions with only genome am-
plification, and (4) regions with neither mutation nor ge-
nome amplification. Then, we calculated, for each cancer 
type and open chromatin region, the observed and ex-
pected number of samples with mutations and genome 

amplification in the open chromatin region and analyzed 
the ratio using the t- test.

2.6 | Extracting possible target genes of 
open chromatin regions

To identify the genes from which the promoter overlaps 
with open chromatin regions, we defined a promoter re-
gion as ±3000 bp around the transcription start site (TSS) 
using GTF files (Homo_sapiens.GRCh37.87.gtf) down-
loaded from Ensembl. To identify genes spatially in con-
tact with open chromatin regions, RNA Polymerase II 
ChIA- PET data from the MCF7 human breast cancer cell 
line were downloaded from ENCODE.19 These two gene 
lists were merged resulting in a list of possible target genes 
of open chromatin regions. GO analyses were performed 
using Metascape 3.531 and R package clusterProfiler (ver-
sion 3.14.3). We used Metascape 3.5 and R package dis-
genet2r (version 0.1.1) to analyze the association between 
genes and human diseases.32

2.7 | Survival analysis according 
to the number of mutations in open 
chromatin regions

Cox proportional hazards model in R survival package 
(version 3.2- 11) was used to estimate hazard ratios (HRs) 
and their 95% confidence intervals. We used thresholds 
for the number of mutations in open chromatin regions 
ranging from the 10th to 90th percentiles and defined the 
value that distinguished samples with the highest statisti-
cal significance as the final threshold.33

To analyze all samples, regardless of the cancer type, 
we used the following variables as covariates: cancer type, 
tumor mutation burden (TMB), total number of amplified 
open chromatin regions, gender, and age at diagnosis. The 
same covariates excluding the cancer type were used for 
the analysis of samples from each cancer type. We also 
used cancer stage data if available. The TMB and total 
number of amplified open chromatin regions were bina-
rized based on the median values and the cancer stage was 
divided into two categories (stages I– II vs. stages III– IV). 
Using 100 times 5- fold cross- validation, Harrell's concor-
dance index (C- index)34 was calculated to assess the dis-
criminative power of the prognostic models.

2.8 | Statistical analyses

Statistical analyses were performed using the R soft-
ware version 4.0.1 (R Project for Statistical Computing). 

T A B L E  2  Number of mutations in the three categories of open 
chromatin

Cancer types

Open chromatin category

N L H

CESC, GBM, HNSC, KIRP, LGG, 
PRAD, THCA

0 1 ≥2

BLCA, BRCA, ESCA, KIRC, 
LUAD, LUSC, STAD, UCEC

0 1– 2 ≥3

LIHC 0 1– 3 ≥4

COAD 0 1– 4 ≥5

SKCM 0 1– 7 ≥8
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Jonckheere– Terpstra trend test and Cochran– Armitage 
trend test were used to determine if there was a sig-
nificant trend among the three categories. Benjamini– 
Hochberg procedure was used to adjust for multiple 
testing.35 Statistical analyses were two- sided and a p- value 
of <0.05 was considered statistically significant (*p < 0.05, 
**p < 0.01, and ***p < 0.001).

3  |  RESULTS

3.1 | Classification and genomic 
characteristics of open chromatin regions

To analyze the number of mutations in open chroma-
tin regions from cancer samples, we used the WGS data 
from PCAWG. Out of 2658 samples of 38 cancer types in 
PCAWG, 1664 samples of 18 cancer types with ATAC- Seq 
data were used in the present analysis (Table 1). We also 
used a mutation dataset in COSMIC derived from WGS 
comprising 1699 samples from 18 cancer types (Table 1). 
These mutation datasets were merged into a unique muta-
tion list for each cancer type. The total number of unique 
mutations was 37,922,637. ATAC- Seq data from 371 sam-
ples from the selected 18 cancer types were downloaded 
from TCGA. The cancer type with a maximum number 
of open chromatin regions (214,911) was BRCA and that 
with a minimum number (55,895) was CESC. The dis-
tribution of unique mutations per 100 kb bin across the 
entire genome showed that there was a general trend of 
mutation enrichment in the regions with a higher density 
of open chromatin regions and a relatively low density of 
exons (Figure 1A). Focusing on the number of mutations 
per open chromatin region revealed that the number of 
mutations in each open chromatin region was variable.

We counted the number of unique mutations in each 
open chromatin region for each cancer type from the 
ATAC- Seq data. To investigate the relationship between 
the number of mutations in open chromatin regions and 
cancer pathogenesis, we first classified open chromatin 
regions into three categories according to the number of 
mutations for each cancer type. The categories N, L, and H 
contained 89,744 ± 27,588, 21,191 ± 18,758, and 558 ± 446 
(average ± standard deviation) open chromatin regions, 
respectively (hereafter, the N, L, and H open chromatin 
regions are named N- OC, L- OC, and H- OC, respectively.) 
(Figure 1B, Tables S1 and S2).

First, we investigated the mutation spectrum in open 
chromatin regions. For this, we used regions without open 
chromatins as the control and compared the difference in 
the mutation spectrum between inside and outside open 
chromatin regions. We found that the proportions of 
C>G and C>T mutations in open chromatin regions were 

significantly higher than those outside open chromatin 
regions in all cancer types analyzed except KIRP, LGG, 
PRAD, and SKCM (Figure S1A). The APOBEC signature 
is based on C>T and C>G mutations associated with var-
ious cancer types.36,37 Therefore, the difference in the pro-
portions of C>T and C>G mutations between open and 
closed chromatin regions might be partly attributed to the 
APOBEC enzyme activity, through which mutations are 
enriched in regions with high chromatin accessibility.38 
The comparison of L- OC and H- OC mutation spectra re-
vealed that, in SKCM, the proportion of C>T mutation 
in H- OC regions was higher than that in L- OC regions 
(Fisher's exact test: adjusted p = 2.06e- 22) (Figure S1B). 
This finding was consistent with that of a previous work 
showing an increased number of UV- induced C>T muta-
tions in promoter regions in melanoma.9

Next, to assess the open chromatin state, we used 
the chromatin state data from Roadmap defined by 
ChromHMM. The chromatin state data of the 15 cancer 
types analyzed were found in Roadmap with the excep-
tion of those for HNSC, PRAD, and UCEC (Table S3). We 
calculated the proportion of each chromatin state in each 
of the three open chromatin categories. For control, we 
calculated the proportion of each chromatin state in the 
whole genome. The results showed that the proportion 
of active TSS state increased with the number of muta-
tions within open chromatin regions in BLCA, CESC, and 
SKCM (Cochran– Armitage trend test: adjusted p = 1.86e- 
9, 2.66e- 12, and 4.01e- 48, respectively) (Figure  1C). In 
addition, the proportion of enhancer state increased with 
the number of mutations within the open chromatin re-
gions in THCA (Cochran– Armitage trend test: adjusted 
p = 8.65e- 7). We also performed the same analysis with 
different definitions of H- OC: the top 2% and 5% of open 
chromatin regions with the highest number of mutations. 
These results were similar to those obtained when H- OC 
was defined based on the 1% (Figure S2). This is because 
the threshold of mutation counts did not change in most 
cancer types, even if different percentages (1%, 2%, or 5%) 
were used as the cutoff value (Tables S4 and S5). To validate 
the results of the chromatin state, we compared the pro-
portions of open chromatin regions with a certain histone 
modification to that of all open chromatin regions for each 
histone modification using ChIP- Seq data of H3K4me1, 
H3K4me3, and H3K27ac from the Roadmap Epigenomics 
Project (excluding BLCA, KIRC, and KIRP of H3K27ac 
owing to the lack of the data) (Figure  S3). The results 
supported those obtained using ChromHMM; for exam-
ple, SKCM showed a decrease in the number of H3K4me1 
peaks (=enhancer state) in H- OC regions. These results 
indicate that open chromatin regions with a high number 
of mutations in at least four cancer types are more likely to 
function as regulatory regions. The ChromHMM data for 
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SKCM were derived from normal cells. Therefore, the de-
crease in the proportion of enhancers in the H- OC region 
in SKCM is not a cancer- specific phenomenon.

Then, to investigate the function of H- OC as a regula-
tory element, we measured the TF footprint length within 

each open chromatin region. We focused only on open 
chromatin regions annotated as active TSS or enhancer 
by ChromHMM. Footprinting data29 were retrieved for 13 
cancer types, namely BLCA, BRCA, CESC, COAD, GBM, 
KIRC, KIRP, LGG, LIHC, LUAD, LUSC, PRAD, and SKCM 

(A)

(B)

(D)

(C)



3908 |   KIKUTAKE and SUYAMA

(Table S6). The TF footprint length was significantly lon-
ger in open chromatin regions with more mutations than 
in those with less mutations in BLCA, BRCA, LUAD, 
LUSC, and SKCM (Jonckheere– Terpstra trend test: all ad-
justed p < 2.2e- 16) (Figure 1D). TF binding to regulatory 
elements in these five cancer types might inhibit the re-
pair of mutations in regulatory regions, leading to more 
mutations in open chromatin regions.6 These results sup-
port the findings of a previous study showing a significant 
increase in the mutation density in promoter DHS com-
pared with that in flanking regions in melanoma and lung 
cancer.6

3.2 | Genome amplification of open 
chromatin regions

To evaluate whether N- OC, L- OC, and H- OC regions are 
possibly carried on extrachromosomal DNA (ecDNA) in 
cancer cells, we examined the copy number of open chro-
matin regions and the mutations therein. The chromatin 
is highly accessible in ecDNA39,40 and ecDNA can be de-
tected by ATAC- Seq because the nucleosome structure is 
less compact.41 Often, ecDNA carries amplified oncogenes 
and regulatory regions controlling gene expression levels 
and is associated with cancer pathogenesis and therapeu-
tic resistance.30,42

The average copy number of each open chromatin re-
gion was calculated in each cancer type using the copy 
number of the open chromatin region from each sample. 
Next, the number of open chromatin regions with an av-
erage copy number of ≥4 was determined. This cutoff 
was adopted because it has been used as a characteristic 
of ecDNA.30 Finally, the proportion of the open chro-
matin regions with an average copy number of ≥4 was 
evaluated in each cancer type and was defined as the 
proportion of amplification (Figure 2A). To compare the 
proportion of amplification in open chromatin regions 
with that in the control region, we used regions outside 
the open chromatin regions as control (Figure 2B). We 

found that for 15 cancer types, the proportion of am-
plification was significantly higher in open chromatin 
regions than that outside open chromatin regions (chi- 
square test: adjusted p  =  2.30e- 84 for BLCA, p < 2.2e- 
16 for BRCA, p  =  1.24e- 115 for CESC, p  =  4.08e- 179 
for COAD, p < 2.2e- 16 for ESCA, p < 2.2e- 16 for GBM, 
p = 1.10e- 129 for HNSC, p = 5.02e- 23 for LGG, p = 4.83e- 
13 for LIHC, p  =  2.93e- 108 for LUAD, p < 2.2e- 16 for 
LUSC, p  =  5.59e- 3 for PRAD, p  =  2.39e- 86 for SKCM, 
p < 2.2e- 16 for STAD, and p = 1.26e- 40 for UCEC). We 
then compared the proportion of amplification in the 
three categories of open chromatin regions and found 
that the proportion of amplified open chromatin regions 
increased with the number of mutations in open chro-
matin regions in seven cancer types (Cochran– Armitage 
trend test: adjusted p = 6.65e- 77, p = 2.92e- 3, p = 1.88e- 
47, p = 8.38e- 6, p = 5.28e- 4, p = 5.85e- 9, and p = 5.88e- 50 
for BRCA, ESCA, GBM, HNSC, LGG, LUAD, and LUSC, 
respectively) (Figure 2B). These results support previous 
findings showing that ecDNA is present in these cancer 
types.30,43 We also performed a detailed analysis of the 
genomic position of the highly amplified (copy number 
≥4) H- OC regions in GBM (17.3%; the highest value) 
and BRCA (12.8%; the second- highest value). We found 
that most H- OC regions (79.7%) with genome amplifica-
tion in GBM were located within 500 kb from the TSS of 
epidermal growth factor receptor (EGFR) (Figure  2C). 
A recent study already demonstrated that ecDNA with 
focally amplified EGFR tends to contain mutations.44 In 
BRCA, 10.1% of H- OC regions with genome amplifica-
tion were located within 500 kb from TSS of the receptor 
tyrosine- protein kinase erbB- 2 (ERBB2) (Figure 2D). It 
has been reported that ERBB2 is likely to be amplified in 
breast cancer.45 These results suggest that some regula-
tory regions around oncogenes are amplified as ecDNA 
in several cancers.

To evaluate whether amplification and mutations 
occur independently in open chromatin regions, we cre-
ated a 2 × 2 contingency table for each open chromatin 
region using the number of samples corresponding to 

F I G U R E  1  Mutation distribution and characteristics of open chromatin regions. (A) Distribution of the total number of mutations 
(top), total length of open chromatin regions (upper), total number of mutations per open chromatin region (lower), and total exon lengths 
(bottom) per 100 kb on chromosome 11. “OC” on the horizontal axis represents mutations within open chromatin regions. (B) Open 
chromatin categories used in this study. Open chromatin regions were divided into three categories defined as N- OC, L- OC, and H- OC based 
on the number of mutations. (C) Proportion of the frequency of 15 chromatin states in open chromatin regions for 15 cancer types. The 
horizontal axis represents the three categories of open chromatin regions in each cancer type and the vertical axis represents the proportion 
of 15 chromatin states. Ctrl represents the average proportion of the 15 chromatin states in the whole genome. Asterisks represent the cancer 
types with a significantly higher proportion of the chromatin state “1_TssA” or “7_Enh” in H- OC regions. The upward arrows indicate that 
the proportion is significantly higher for open chromatins with more mutations, whereas the downward arrows indicate that the proportion 
is significantly lower for open chromatins with more mutations. (D) TF footprint length per open chromatin in the three categories for 12 
cancer types. The horizontal axis represents the three categories of open chromatin for 12 cancer types and the vertical axis represents the 
TF footprint length per open chromatin (bp)
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two items: the presence/absence of genome amplification 
(copy number ≥4) and presence/absence of mutations. 
Then, we performed Fisher's exact test for each cancer 
type (Table S7 and Figure 2E,F). In most cancer types, the 
amplified open chromatin regions and the occurrence of 

mutations were not independent but were either positively 
correlated or mutually exclusive. To investigate whether 
mutations were likely to occur in open chromatin regions 
prone to amplification, we calculated the expected num-
ber of samples with co- occurrence and compared them 

(A)

(C)

(D)

(E) (F)

(B)
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with the observed values (Table S7 and Figure 2E,F). The 
statistical analysis showed that the ratios of all observed 
to expected values, except the ratio for H- OC regions in 
COAD (t- test: adjusted p = 0.470), were above 1, which in-
dicated a positive relationship. These results suggest that, 
in most cancer types, mutations and genomic amplifica-
tion tend to co- occur in open chromatin regions.

3.3 | Investigation of possible target 
genes of open chromatin

To identify the genes transcriptionally regulated by open 
chromatin, we extracted genes with promoters either 
overlapping or in spatial contact with open chromatin 
regions from the ChIA- PET dataset. Because only a 
limited amount of public ChIA- PET data was available, 
we applied to all cancer types the ChIA- PET data derived 
from the MCF7 breast cancer cell line, which has the 
highest number of interactions between two different 
genomic regions. In this analysis, we focused only on the 
protein- coding genes and defined promoter as the region 
extending 3000 bp upstream and 3000 bp downstream 
of the gene's TSS. The results showed that in 10 cancer 
types, namely BLCA, BRCA, HNSC, LIHC, LUAD, LUSC, 
PRAD, SKCM, STAD, and UCEC, the number of possible 
target genes per H- OC region was significantly higher than 
those per L- OC and N- OC regions (Cochran– Armitage 
trend test: adjusted p = 1.13e- 131 for LIHC, p = 3.19e- 153 
for SKCM, and p < 2.2e- 16 for the eight other cancer types) 
(Figure 3A). The absence of significance for eight cancer 
types (CESC, COAD, ESCA, GBM, KIRC, KIRP, LGG, 
and THCA) might be due to the limited number of open 
chromatin regions or possible target genes. We found 
4352 possible target genes of H- OC regions, 16,966 for 
L- OC regions, and 18,227 for N- OC regions. These gene 
lists were generated by counting unique genes in the 18 
cancer types. Among these, 1007 (H- OC), 15,600 (L- OC), 
and 17,477 (N- OC) genes were present in multiple cancer 
types and hence were expected to be more associated with 

cancer than the other genes in relevant regions. We used 
these shared genes in the subsequent analysis.

To examine the characteristics of the shared genes in 
each category of open chromatin, we compared the pro-
portion of cancer- related genes included in the gene lists. 
Since a substantial number of genes were included in the 
gene lists for L- OC and N- OC regions, we randomly se-
lected 1007 genes, to match the number of genes in H- OC 
regions, from the L and N gene lists 100 times. We cal-
culated the average proportion of genes present in the 
Cancer Gene Census (CGC) (723 genes)22 and tumor 
suppressor genes (TSGs) registered in TSGene 2.0 (1217 
genes) for each of the three categories.46 We found that 
the proportion of genes registered in the CGC was sig-
nificantly higher among the genes in H- OC regions 
(153/1007  =  0.152) than among those in L- OC regions 
(average 90/1007  =  0.089) and N- OC regions (average 
81/1007 = 0.080) (Cochran– Armitage trend test: adjusted 
p = 2.16e- 7) (Figure 3B). Moreover, the proportion of TSGs 
registered in TSGene 2.0 was significantly higher among 
genes in H- OC (187/1007 = 0.186) than among those in 
L- OC regions (average 132/1007  =  0.131) and N- OC re-
gions (average 130/1007  =  0.130) (Cochran– Armitage 
trend test: adjusted p = 3.56e- 4) (Figure 3B). These results 
indicate that cancer- related genes were likely enriched 
among the possible target genes of open chromatin re-
gions with more mutations.

To further analyze the characteristics of the shared 
genes for H- OC regions, we performed a pathway and 
process enrichment analysis (Figure 3C). We found that 
these genes were highly associated with ontology terms 
related to cellular response to stimuli and kinase activity, 
as well as terms directly related to cancer or carcinogen-
esis. To interpret the functions of the shared genes for 
H- OC regions, we also analyzed the relationship between 
these genes and human diseases using the DisGeNET da-
tabase.32 We first obtained data on human diseases asso-
ciated with genes for H- OC regions. Then, we extracted 
data on diseases with adjusted p < 0.01 and counted the 
number of cancer- related diseases. To compare the data 

F I G U R E  2  Proportion of genome amplification in open chromatin regions. (A) Outline of the analysis for genome amplification in open 
chromatin regions. The average copy number (ave CN) was determined for each open chromatin region and the proportion of amplified 
open chromatin regions was calculated. (B) Proportion of open chromatin regions with an average copy number of ≥4 in 18 cancer types. 
The horizontal axis represents regions outside open chromatin regions (C: Control) and the three categories of open chromatin regions (N, 
L, and H) for each cancer type. The black asterisks represent the cancer types with a significantly higher proportion of genome amplification 
in open chromatin regions than that outside the open chromatin regions. The red asterisk represents the cancer types with a significantly 
higher proportion of genome amplification in H- OC regions than those in other open chromatin categories. (C) Genomic region around 
EGFR with H- OC regions accumulation in GBM. The black vertical lines represent the positions of H- OC region. (D) Genomic region 
around ERBB2 with the accumulation of H- OC regions in BRCA. (E) Ratio between the observed sample numbers with the co- occurrence 
of mutation and genome amplification in each H- OC region and the expected sample numbers. Red line: ratio = 1. (F) Ratio between the 
observed sample numbers with the co- occurrence of mutation and genome amplification in each L- OC region and the expected sample 
numbers. Red line: ratio = 1
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of cancer- related genes with those of control genes, we 
performed the same analysis for 1007 genes randomly 
selected from the gene lists for L- OC and N- OC regions 

100 times. We identified 39 cancer- related diseases (147 
diseases were extracted) using the shared genes in H- OC 
regions, an average of 0.03 cancer- related diseases (in 

F I G U R E  3  Characteristics of possible target genes of H- OC regions. (A) Number of possible target genes for each open chromatin region 
category. The horizontal axis represents the three categories of open chromatin regions (N, L, and H) in 18 cancer types. The black asterisks 
represent the cancer types with a significantly higher number of possible target genes per open chromatin in H- OC regions than those in other open 
chromatin categories. (B) Proportion of genes present in the Cancer Gene Census (CGC) and tumor suppressor genes (TSGs) registered in TSGene 
2.0 for each of the three categories. The horizontal axis represents the three categories of open chromatin regions (N, L, and H), and the vertical axis 
represents the proportion of cancer- related genes among the selected 1007 genes. (C) GO analysis using the possible target genes of H- OC regions. 
The horizontal axis represents the −log10(p- value), and the vertical axis represents the GO terms arranged in the order of descending p- values. 
(D) The relationship between the possible target genes of H- OC regions and human diseases was obtained using the DisGeNET database. The 
horizontal axis represents the −log10(p- value), and the vertical axis represents the human diseases arranged in the order of descending p- values

*** *** *** *** *** *** *** *** *** ***

(A)

(B)

(C)

(D)
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average 0.20 diseases were extracted) using the shared 
genes for L- OC regions, and 0 cancer- related diseases (av-
erage 0.12 diseases were extracted) using the shared genes 
for N- OC regions (Figure 3D). The proportion of the num-
ber of cancer- related diseases to the number of extracted 
diseases using the genes for H- OC regions was signifi-
cantly higher than that for L- OC (t- test: adjusted p = 2.2e- 
16) and N- OC regions (t- test: adjusted p = 2.2e- 16). Based 
on these results, it is likely that open chromatin regions 
with a high number of mutations are strongly associated 
with the regulation of cancer- related genes.

3.4 | Relationship between mutations 
in open chromatin regions and 
patient survival

Overall, our findings suggest that the mutations in H- OC 
regions may have an impact on cancer pathogenesis. To 
further evaluate the effect of these mutations on cancer 
pathogenesis, we examined whether the mutations in 
H- OC regions affected the prognosis of cancer patients. 
Using clinical data from PCAWG (n = 1577), HRs for the 
number of mutations in H- OC regions were estimated 
by a multivariable Cox proportional hazards model. We 
used the following variables as covariates: cancer type, 
TMB, the total number of amplified H- OC regions, gen-
der, and age at diagnosis. The samples were divided into 
two groups based on the number of mutations in H- OC 
regions: ≥29 mutations (top 15%), n = 236, and <29 mu-
tations (bottom 85%), n = 1341. The results showed that 
samples with a higher number of mutations in H- OC re-
gions were significantly associated with a poorer prog-
nosis than samples with fewer mutations (p  =  0.0191) 
(Table 3 and Figure 4A). In contrast, samples with a lower 
TMB were significantly associated with a poorer prognosis 
than samples with more mutations (p = 5.70e- 3).

We also performed a survival analysis for the 18 cancer 
types. Because of the small sample size, the survival anal-
ysis could not be performed for four cancer types (COAD, 
KIRP, LGG, and THCA). We used the following variables 
as covariates: cancer type, TMB, the total number of am-
plified H- OC regions, gender, age at diagnosis, and stage 
if the cancer stage data is available (BRCA, ESCA, KIRC, 
LIHC, PRAD, SKCM, and STAD). The prognosis was sig-
nificantly poorer for patients with a greater number of 
mutations within H- OC regions in four cancer types (ad-
justed p = 0.0497, p = 7.55e- 4, p = 2.80e- 4, p = 0.0391, and 
p = 0.0173 for ESCA, LIHC, LUSC, SKCM, and UCEC, re-
spectively) (Figure S4). On the other hand, a lower num-
ber of mutations within H- OC regions was significantly 
associated with a poor prognosis for patients with GBM 
(adjusted p = 0.0329) (Figure S4). These results indicate 

that the number of mutations in H- OC regions is associ-
ated with patient survival in several cancers. To examine 
the difference in the possible target genes in H- OC regions 
between the five cancer types (ESCA, LIHC, LUSC, SKCM, 
and UCEC) and GBM, which showed a different trend of 
prognosis, we extracted data on oncogenes and TSGs reg-
istered in CGC and TSGene 2.0, respectively, using the 
gene lists for these six cancer types. We compared the pro-
portion of the number of oncogenes and TSGs included 
between the two groups of cancer types and found that 
there were no significant differences between the two an-
alyzed groups of cancer types (oncogene: p = 0.621, TSG: 
p = 0.147). These results suggest that patient prognosis is 
likely to be associated with not only mutations in the reg-
ulatory regions of cancer- related genes but also mutations 
in other regions.

To compare the effect of the number of mutations in 
H- OC regions with the effect of the TMB on prognosis, 
we evaluated the accuracy of clinical outcome prediction 
using the C- index calculated by 100 times 5- fold cross- 
validation. We used the following variables as covariates: 
total number of amplified H- OC regions, gender, and age 
at diagnosis. Data for COAD, KIRP, LGG, and THCA were 
not analyzed because of the small sample sizes. However, 
among the 14 cancer types analyzed, the C- indices for 
six types (ESCA, GBM, HNSC, LIHC, LUSC, and SKCM) 
were significantly higher in the model using the num-
ber of mutations in H- OC regions than those obtained 
with the TMB- based model (t- test: adjusted p = 8.97e- 9, 

T A B L E  3  Cox regression analysis for all cancer types

Variable

Using the number of mutations 
in OCa

Hazard ratio (95% 
CI) p- valueb

The number of mutations in H- OC

<29 1.000 – 

≥29 1.447 (1.062– 1.972) 0.0191*

TMB

<median 1.000 – 

≥median 0.680 (0.517– 0.894) 5.70e- 3**

Total number of amplified OCa

<median 1.000 – 

≥median 1.058 (0.860– 1.302) 0.594

Gender

Female 1.000 – 

Male 1.091 (0.855– 1.393) 0.481

Age at diagnosis 1.015 (1.006– 1.025) 1.19e- 3**
a OC represents open chromatin regions.
b *p < 0.05 and **p < 0.01.



   | 3913KIKUTAKE and SUYAMA

6.83e- 49, 5.72e- 4, 5.80e- 37, 2.07e- 43, and 1.67e- 8 for 
ESCA, GBM, HNSC, LIHC, LUSC, and SKCM, respec-
tively) (Figure 4B). On the other hand, for BRCA, KIRC, 
and LUAD, the C- indices were significantly higher in the 
model that used the TMB than those obtained with the 
model using the number of mutations in H- OC regions (t- 
test: adjusted p = 1.46e- 16, 2.40e- 2, and 2.92e11 for BRCA, 
KIRC, and LUAD, respectively). These results suggest that 
the number of mutations in H- OC regions is a factor pre-
dicting patient prognosis complementary to the TMB.

To validate the effect of H- OC mutations on patient 
prognosis, we performed the same survival analysis as de-
scribed above using WGS data for LUSC (n = 103) derived 
from The National Cancer Institute's Clinical Proteomic 
Tumor Analysis Consortium (CPTAC).47 First, the num-
ber of mutations in H- OC regions from LUSC samples was 
counted as defined above. Then, the HR for the number 
of mutations in H- OC regions was estimated by a mul-
tivariable Cox proportional hazards model using the fol-
lowing variables as covariates: TMB, the total number of 
amplified H- OC regions, gender, and age at diagnosis. The 
results showed a link between the high number of muta-
tions in H- OC regions and a poor prognosis (Figure S5), 
confirming our finding in an independent cohort.

4  |  DISCUSSION

Our previous study showed that open chromatin regions 
with recurrent mutations tend to accumulate mutations 
other than recurrent mutations.12 Because open chromatins 
include regulatory elements and TFBS mutations can lead 

to the dysregulation of target cancer- related genes, we 
hypothesized that open chromatin regions with a high 
number of mutations would be associated with cancer. 
Here, we focused on mutation- enriched open chromatin 
regions and explored the functional and clinical 
implications using the WGS dataset from PCAWG and 
COSMIC to examine the characteristics of the mutation- 
enriched open chromatin regions. In most cancer types 
(except COAD, KIRC, and KIRP), we found that open 
chromatin regions with a high number of mutations are 
more likely to function as regulatory regions on the basis 
of the combination of analysis involving the chromatin 
state, genome amplification, and the number of the 
possible target genes. These findings are supported by the 
results that the possible target genes of open chromatin 
regions with a high number of mutations were more likely 
to be associated with cancer pathogenesis. Moreover, we 
found that the number of mutations in H- OC regions is 
associated with the patient prognosis in six cancer types, 
some of which have had no effect on prognosis when 
considering the TMB.

LUSC was one of the cancer types in which more mu-
tations in H- OC regions were significantly associated 
with poor prognosis. In LUSC, the proportion of genome 
amplification in H- OC regions was higher than that in 
other open chromatin regions. Moreover, mutations and 
genome amplification in H- OC regions co- occurred in 
LUSC. The higher amplification ratio in H- OC regions 
was considered to be partially due to ecDNA.30 In cancer 
cells, multiple copies of genomic regions exist as ecDNA, 
in which a higher probability of somatic mutations is ob-
served than that noted in chromosomes. The evolution of 

F I G U R E  4  Survival analysis according to the number of mutations in H- OC regions. (A) Kaplan– Meier curves of samples with <29 (red 
line) or ≥29 (green line) mutations in H- OC regions. The horizontal axis represents the time (in days), and the vertical axis represents the 
survival probability. (B) Comparison of the C- indexes obtained with the Cox regression model using the TMB (red box) and those obtained 
using the number of mutations in H- OC regions (green box) in 14 cancer types. The black asterisk represents the cancer types with a 
significantly higher C- index obtained using the TMB model. The red asterisk represents the cancer types with a significantly higher C- index 
obtained using the H- OC model. The C- index was calculated by 100 times 5- fold cross- validation. The red line represents a C- index of 0.5, 
and the blue line represents a C- index of 0.7

(A) (B)
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ecDNA is independent of chromosomal DNA and is faster 
than that of regular chromosomes.48 In a previous study, 
extrachromosomal gain- of- function mutations were iden-
tified as amplification- linked extrachromosomal muta-
tions in several cancer types, including LUSC.44 Moreover, 
ecDNA amplifications are associated with cancer aggres-
siveness.30 Our results support these previous findings as, 
in LUSC, the accumulation of mutations in ecDNA may 
affect patient prognosis.

LIHC samples with more mutations in H- OC regions 
were also associated with poor prognosis. Because of 
the low proportion of amplification in H- OC regions, 
we considered that ecDNA was not linked to the accu-
mulation of mutations in the open chromatin regions 
in LIHC. The number of genes with promoters possibly 
regulated by H- OC regions was significantly higher than 
that of genes with promoters regulated by other open 
chromatin regions. Moreover, the proportion of en-
hancer chromatin state in H- OC regions was relatively 
higher than that in other cancer types. These results sug-
gest that H- OC regions are likely to function as regula-
tory regions, such as enhancers. A recent study showed 
that mutations in coding and regulatory regions play im-
portant roles in carcinogenesis and gene expression.49 
Recurrently mutated regulatory regions were identified 
in another work based on a large- scale whole- genome 
analysis in liver cancer.50 Therefore, it is likely that some 
of the mutations in the H- OC regions in LIHC may be 
associated with the control of gene expression and affect 
liver cancer pathogenesis.

TMB is a predictive marker of the response to immune 
checkpoint inhibitors and is routinely tested in clini-
cal practice. Several studies have linked high TMB with 
a high response rate of immune checkpoint inhibitors 
in certain cancer types, such as lung cancer and mela-
noma.51,52 Moreover, TMB was proposed as a prognostic 
factor in cancer patients. TMB had a significant impact 
on the prognosis for 14 out of 20 cancer types.33 The 20 
cancer types were divided into three groups: cancer types 
with a high TMB and a poor prognosis, those with a low 
TMB and a poor prognosis, and those with no difference 
in TMB. Four cancer types in which TMB had no impact 
on the prognosis were included in the present analysis. 
For two of them (LUSC and SKCM), the number of mu-
tations in H- OC regions had a significant impact on the 
prognosis. These results indicate that TMB and mutations 
in H- OC regions may have different effects on cancer and 
that the number of mutations in H- OC regions might be 
a novel prognostic factor complementing TMB. Therefore, 
it is necessary to consider both TMB and mutations in 
functionally important open chromatin regions for the 
analysis of cancer pathogenesis. Although not all H- OC 
regions have an impact on prognosis, the combination of 

mutations within some of the H- OC regions possibly af-
fects the prognosis. Many studies have been conducted to 
identify driver mutations in non- coding regions and only 
a few single non- coding mutations affected the expression 
levels of target genes.13,15,53 Therefore, to identify novel 
non- coding driver mutations, a combination of mutations 
in several open chromatin regions should be considered.

This study has some limitations. The ATAC- Seq data 
used in this study were derived from a limited number of 
samples, and more open chromatin regions can be exam-
ined if the number of available ATAC- Seq data increases. 
A previous study has shown that an increasing number 
of detected open chromatin regions is expected with an 
increasing sample size.17 Therefore, with sufficient ATAC- 
Seq data, novel open chromatin regions important for 
cancer development may be identified. Another limitation 
of this study is that the ATAC- Seq data did not originate 
from the same individuals as those from whom the WGS 
data were obtained. Using WGS, ATAC- Seq, and clinical 
data from the same individuals and an adequate sample 
size may facilitate the analysis of mutation distribution in 
open chromatin regions for each individual,54 leading to 
the understanding of intertumoral heterogeneity.

5  |  CONCLUSIONS

In conclusion, we provide new insights into the charac-
teristics of open chromatin regions and show that muta-
tions in open chromatin regions are a prognostic factor 
in various cancer. After validating our study findings, the 
characteristics of open chromatin regions can be used as 
a prognostic factor in clinical practice. In addition, experi-
mental validation of the effects of individual mutations 
in open chromatin regions will allow the identification 
of novel cancer- associated regulatory sequences or gene 
regulatory mechanisms. These open chromatin regions 
may not only provide insights for elucidating the mecha-
nisms of cancer development but also represent novel 
drug targets.
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