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Abstract

Motivation: Admixture, the interbreeding between previously distinct populations, is a pervasive force in evolution.
The evolutionary history of populations in the presence of admixture can be modeled by augmenting phylogenetic
trees with additional nodes that represent admixture events. While enabling a more faithful representation of evolu-
tionary history, admixture graphs present formidable inferential challenges, and there is an increasing need for
methods that are accurate, fully automated and computationally efficient. One key challenge arises from the size of
the space of admixture graphs. Given that exhaustively evaluating all admixture graphs can be prohibitively expen-
sive, heuristics have been developed to enable efficient search over this space. One heuristic, implemented in the
popular method TreeMix, consists of adding edges to a starting tree while optimizing a suitable objective function.

Results: Here, we present a demographic model (with one admixed population incident to a leaf) where TreeMix
and any other starting-tree-based maximum likelihood heuristic using its likelihood function is guaranteed to get
stuck in a local optimum and return an incorrect network topology. To address this issue, we propose a new search
strategy that we term maximum likelihood network orientation (MLNO). We augment TreeMix with an exhaustive
search for an MLNO, referring to this approach as OrientAGraph. In evaluations including previously published ad-
mixture graphs, OrientAGraph outperformed TreeMix on 4/8 models (there are no differences in the other cases).
Overall, OrientAGraph found graphs with higher likelihood scores and topological accuracy while remaining compu-
tationally efficient. Lastly, our study reveals several directions for improving maximum likelihood admixture graph
estimation.

Availability and implementation: OrientAGraph is available on Github (https://github.com/sriramlab/OrientAGraph)
under the GNU General Public License v3.0.

Contact: ekmolloy@cs.ucla.edu or sriram@cs.ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Admixture, the exchange of genes between distinct populations, has
emerged as an important process in shaping genetic diversity within
and between populations. Evidence of gene flow events in many spe-
cies, including humans (Green et al., 2010), wolves (Pilot et al.,
2019) and butterflies (Edelman et al., 2019), has led to increasing
interest in estimation of the demographic history of populations
while accounting for admixture.

The demographic history of populations in the presence of ad-
mixture can be naturally modeled by augmenting phylogenetic trees
with additional nodes that represent admixture events. These ad-
mixture graphs cannot be directly observed and need to be estimated
from genomic data. Admixture graphs model changes in allele fre-
quencies as a Wright–Fisher process, parametrized by the pair
ðN;HÞ, where N is a phylogenetic network on a set S of populations

(Definition 1) and H is a real-valued vector describing parameters
associated with the edges of N, namely branch lengths in units of
genetic drift and admixture proportions. The objective of admixture
graph inference is to estimate ðN;HÞ from genetic variation data
measured across the populations in S. Many popular methods utilize
summary statistics, such as the vector X of f-statistics, computed
from allele frequencies in each of the S populations.

One of the most widely used tools, qpGraph (Patterson et al.,
2012), takes X as well as a network topology N as input and then
fits the numerical parameters H. When the number of populations is
very small, it is possible to evaluate the likelihood of all network
topologies with a fixed number of admixture events (e.g. using the
admixturegraph R package from Leppälä et al., 2017). Otherwise,
the researcher must propose potential networks and evaluate them
individually (see Harney et al., 2021 for discussion).
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Brute force and manual procedures quickly become intractable,
as the number of possible network topologies grows superexponen-
tially in the number of populations (McDiarmid et al., 2015). This
has motivated the development of heuristics for estimating admix-
ture graphs from f-statistics. For example, MixMapper (Lipson
et al., 2013, 2014) is a pipeline in which the user identifies a set of
unadmixed populations R � S, estimates a submodel (i.e. a popula-
tion tree) on R, and then sequentially adds populations in S n R to
the submodel. This approach works best when there are only a few
admixed populations and can be viewed as a ‘semi-automated’ ver-
sion of qpGraph (Lipson, 2020).

A recent approach to automating admixture graph inference,
called miqograph (Yan et al., 2020), is unique from prior methods in
that it simultaneously estimates the network topology N and numeric-
al parameters H, requiring the user to specify some additional param-
eters. miqograph is similar to admixturegraph in that it is guaranteed
to find the highest scoring admixture graph with a user-specified num-
ber of admixture events; however, unlike admixturegraph, the net-
work space evaluated by miqograph is constrained to networks in
which all admixture nodes are either a leaf node or are the parent of
an admixture node (see Yan et al., 2020 for further discussion).

To the best of our knowledge, the only method that is fully auto-
mated and (at least in principle) allows for the greatest flexibility in
exploring network topologies is TreeMix (Pickrell and Pritchard,
2012). The only topological constraint imposed by TreeMix is that
N is tree-based, meaning that it can be drawn as a tree annotated
with additional edges representing gene flow (Francis and Steel,
2015; see Definition 4). At a high level, TreeMix uses a maximum
likelihood (ML) search heuristic that operates by searching for an
ML population tree T on S and then adding edges sequentially pro-
vided the edge additions improve a measure of model fit (hill climb-
ing). We refer to methods that operate in this fashion as starting-
tree-based maximum likelihood (STB-ML) methods. Empirical evi-
dence suggests that TreeMix can be biased by its starting tree, espe-
cially when many populations are admixed (Lipson et al., 2013), so
researchers may be wary of relying solely on TreeMix, despite its
scalability relative to other approaches (Lipson, 2020).

In this paper, we consider the problem of admixture graph esti-
mation from f-statistics using STB-ML methods. To explore the lim-
itations of this class of methods, we study a simple admixture graph
ðN�;H�Þ with just one admixture event incident to a leaf. Given the
f-statistics implied by the true model ðN�;H�Þ (which is equivalent
to assuming that the number of independent sites goes to infinity),
any STB-ML method that succeeds in finding the ML tree [which in
this case is also the Neighbor Joining (NJ) tree] as its starting tree, is
guaranteed to get stuck in a local optimum and return an incorrect
network topology N0. Our case study highlights that STB-ML meth-
ods can be inconsistent even under a demographic model with a sin-
gle admixture event.

Examining our case study in more detail, we observe that the in-
correct topology N0 can be transformed into the correct topology
N� simply by changing which population is admixed and redirecting
the edges of N0 accordingly. This graph transformation is performed
by researchers manually searching for the admixture graph topology
using qpGraph (Lipson, 2020) and is also related to recent theoretic-
al results on phylogenetic network orientation by Huber et al.
(2019). Utilizing the terminology of Huber et al. (2019), we say that
N0 and N� are two different orientations of the same undirected net-
work (Definition 5), with N� yielding in a higher likelihood score
than N0. While Huber et al. (2019) look at network orientation
from a graph theoretic perspective (e.g. addressing questions such
as: is the orientation of an undirected network uniquely determined
by the position of the root and admixed populations?), here we ex-
plore network orientation as a search strategy, leading us to propose
the maximum likelihood network orientation (MLNO) problem.

To evaluate the utility of MLNO for improving the accuracy of
STB-ML methods based on f-statistics, we augment TreeMix with
an exhaustive search for an MLNO after every edge addition. In line
with our theoretical expectations, this approach, which we refer to
as OrientAGraph, recovers the correct network in our motivating
case study, whereas the original TreeMix method does not. We also

benchmark OrientAGraph against TreeMix and miqograph on 7
model admixture graphs, 6 of which were estimated from biological
datasets in recent studies. We find that OrientAGraph improves the
accuracy of the original TreeMix method and, in two scenarios, is
more accurate than miqograph. The first scenario occurs when an
admixed population is not incident to a leaf (as this violates the topo-
logical constraints employed by miqograph); the second scenario
occurs when the dataset is large enough (e.g. 10 populations and 2 ad-
mixture events) so that miqograph is unable to solve its problem to
optimality within our specified maximum running time. We conclude
by discussing future directions as well as the potential utility of
MLNO to STB-ML methods that take estimated gene genealogies as
input (e.g. Wen et al., 2018; Wu, 2020; Yu et al., 2014).

2 Terminology and background

Throughout this paper, we discuss results for phylogenetic networks
and the approximate likelihood function computed by TreeMix
(Pickrell and Pritchard, 2012); the relevant background is provided
in this section.

2.1 Phylogenetic networks
We use the term phylogenetic network to refer to a graphical object,
which we now define.

Definition 1 (Phylogenetic network). A phylogenetic network N is a trip-

let ðn; S;/Þ, where n is a graph, S is a set of labels (typically denoting spe-

cies or populations) and / is a bijection mapping the leaves (i.e. vertices

with out-degree 0) of n to the labels in S. N is directed, meaning that n is

a directed acyclic graph with a directed path between the root (i.e. a spe-

cial vertex with in-degree 0) and all other vertices in n and without any

parallel arcs or self-loops. For convenience, we typically do not make an

explicit distinction between a phylogenetic network N and its graph n.

Instead, we say that N is a network on S and denote its vertices as V(N),

edges as E(N) and leaves as L(N).

Henceforth, we assume that N is binary, meaning the root has out-
degree 2, leaf vertices have in-degree 1 and all other vertices,
referred to as internal vertices, have in-degree and out-degree sum-
ming to 3. This is consistent with Francis and Steel (2015), Huber
et al. (2019), and much of the literature on phylogenetic networks.
However, we use the terms admixture or gene flow instead of reticu-
lation or hybridization. Specifically, we refer to any internal vertex
with in-degree � 1 as an admixture node. An admixture edge is an
arc whose head (target vertex) is an admixture node; all other arcs
are tree edges. A directed phylogenetic network with zero admixture
nodes is a directed phylogenetic tree.

TreeMix and related methods search the space of directed phylo-
genetic networks using operations, such as edge additions and tail
moves (Fig. 2). Such operations are legal if they produce a directed
phylogenetic network. We refer to the set of networks that can be
created by performing one legal edge addition to N as the edge add-
ition neighborhood of N; we use similar terminology for other oper-
ations, such as tail moves. It is worth noting that the space of all
directed phylogenetic networks is connected under tail moves
(Gambette et al., 2017; Janssen et al., 2018).

Definition 2 (Edge addition). An edge addition between two edges e and

f in a directed phylogenetic network N involves subdividing them with

new vertices s and t, respectively, and then adding an edge, referred to as

the linking arc, from s to t.

Definition 3 (Tail move). A tail move between two edges e and f in a

directed phylogenetic network N involves relocating the tail (source ver-

tex) of edge e so that it subdivides edge f.

Many methods require networks to have specific properties;
TreeMix, in particular, searches for tree-based networks, a class of
networks introduced by Francis and Steel (2015).
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Definition 4 (Tree-based). We say that a directed phylogenetic network

N is tree-based if it can be constructed from a phylogenetic tree T,

referred to as the base tree, via a sequence of edge additions, with the

linking arcs representing gene flow, that can be performed in any order.

As shown by Francis and Steel (2015), this implies the existence of
labeling w : EðNÞ ! f0;1g with the following properties: first, any
nonroot vertex has exactly one of its incoming edges labeled 0, se-
cond, any internal vertex has at least one of its outgoing edges
labeled 0 and third, the root has both of its outgoing edges labeled 0
(note this last requirement is specific to TreeMix). We say that edges
labeled 0 are ‘part of the base tree’, and edges labeled 1 are ‘gene
flow’. Labelings with these properties are called tree-based (note
that there can be multiple tree-based labelings of N).

We conclude this section by discussing undirected phylogenetic
networks. A phylogenetic network N0 ¼ ðn0; S; hÞ is undirected if n0

is undirected and connected, with no parallel edges or self-loops
(Gambette et al., 2012). Again, we assume that N0 is binary, so
leaves are vertices with degree 1 and all other vertices have degree 3.
It is easy to transform a directed phylogenetic network N into an un-
directed network N0 simply by ignoring edge directions and sup-
pressing the vertex previously designated as the root (Gambette
et al., 2012).

Definition 5 (Network orientation). We say that a directed network N is

an orientation of an undirected network N0 if the undirected version of

N, denoted Nju, is isomorphic to N0.

Note that two undirected networks N01 ¼ ðn1; S;/1Þ and N02 ¼
ðn2; S;/2Þ are isomorphic if there exists a bijection f : VðN01Þ !
VðN02Þ such that ðu; vÞ 2 EðN01Þ if and only if ðf ðuÞ; f ðvÞÞ 2 EðN02Þ
and /1ðuÞ ¼ /2ðf ðuÞÞ for all u 2 LðNÞ.

The reverse operation of transforming an undirected network N0

into a directed network N, referred to as orienting the network, is
not so straightforward, because the location of the root does not
uniquely determine the direction of all edges in an unrooted network
(Gambette et al., 2012; Huber et al., 2019). Notably, Huber et al.
(2019) recently showed that specifying the the location of the root
(i.e. the edge that the root subdivides) and the admixture nodes in
an undirected phylogenetic network N0 results in a unique orienta-
tion of N, provided that an orientation exists (Theorem 2 in Huber
et al., 2019). Furthermore, given this information, this orientation
can be found in linear time in the number of edges (Algorithm 1 in
Huber et al., 2019).

In the remainder of this paper, all phylogenetic networks are
directed, unless otherwise noted, and the term ‘phylogenetic’ is often
omitted when referring to phylogenetic trees and networks.

2.2 Likelihood function
A phylogenetic network N is just one parameter in an admixture
graph ðN;HÞ. In order to search network space, we must define a
procedures for estimating numerical parameters H (i.e. the branch
lengths in drift units and admixture proportions) and computing the
likelihood of the resulting model given the input data.

Without loss of generality, we can define the likelihood function
used by TreeMix (and related methods) in terms of f2-statistics.
Given a model admixture graph ðN;HÞ, we can compute the
expected value of the f2-statistics directly, up to a scaling factor
(Patterson et al., 2012; Peter, 2016; Pickrell and Pritchard, 2012). If
N is a tree, then the f2-statistic for populations i; j 2 S is the sum of
the lengths (in units of genetic drift) of edges on the path from the
leaf labeled i to the leaf labeled j in N. If there is admixture, then
this formula is more complex, as we must consider all paths between
i and j and use the admixture proportions to weight these paths
appropriately.

In practice, ðN;HÞ are unknown, and each f2-statistic is esti-
mated from allele frequency data, along its standard error. We let X
and Z denote the vector of observed f-statistics and the variances, re-
spectively. Given our input X and a network N, we can optimize H
to minimize the difference between the observed f2-statistics X and

the expected value of the f2-statistics for ðN;HÞ, denoted Y.
Assuming Xi is normally distributed with mean Yi and variance Zi,
the composite likelihood function is

log ‘ðNÞ ¼ �1

2

X
i

ðXi � YiÞ2

Z2
i

þ 2 logðZiÞ þ logð2pÞ
 !

(1)

. This (approximate) log-likelihood function used by TreeMix is
related to the log-likelihood score used by qpGraph and miqograph.

As discussed by Pickrell and Pritchard (2012) and others (e.g.
Lipson, 2020), the three branch lengths incident to an admixture
node cannot be estimated simultaneously. Automated methods typ-
ically estimate (i.e. fit) exactly one of the three branch lengths, e.g.
admixturegraph estimates the length of the outgoing edge, setting
the lengths of the two (incoming) admixture edges to 0. In contrast,
TreeMix sets the length of the outgoing edge and one of the two in-
coming admixture edges to 0 (note that TreeMix uses a tree-based
labeling w of N to determine which admixture edges are set to 0 and
which are estimated). Lastly, we note that the position of the root is
not identifiable, except that it must be ancestral to admixture nodes.

3 Pitfalls of STB-ML methods

In this section, we show that there exist simple demographic models
for which STB-ML methods using the likelihood function given
Equation (1) are guaranteed to get trapped in a local optimum and
thus return an incorrect network.

Our case study model (M1), shown in Figure 1a, has five popula-
tions at the leaves, one of which is admixed. The network topology
can be created by forming a caterpillar tree with leaves alphabetical-
ly labeled by the set S ¼ fA;B;C;D;Eg, rooting the tree at popula-
tion E, and then performing an edge addition (Definition 2) on the
edges incident to D and A so that A is admixed. In the remainder of
this section, we use ðN�;H�Þ to denote the network topology and
numerical parameters for model M1.

Given ðN�;H�Þ, it is possible write down the f2-statistics implied
by this model, denoted X�. As the amount of data generated under
ðN�;H�Þ goes to infinity, the estimated f2-statistics converge to X�,
up to a scaling factor, and the standard error for every f2-statistic
goes to zero. (Note that it is typically shifted by a small constant to
avoid numerical issues.)

Evaluating the likelihood of a candidate network N requires
optimizing the numerical parameters H. To verify that our results
were agnostic to the choices in parameter estimation by performing
computational experiments using admixturegraph and TreeMix.
Recall that admixturegraph optimizes the lengths of tree edges only,
whereas TreeMix uses a tree-based labeling w, optimizing the
lengths of the edges that are part of the base tree and whose tails
(source vertices) are not admixture nodes (note that we evaluated
likelihood using all tree-based labelings for a network). Scripts used
in this study are available on Github: https://github.com/ekmolloy/
mlno-study.

We begin our computational study by addressing whether the
network topology N� has the highest likelihood of all phylogenetic
networks on S with one admixture event. We found that N� has the
highest likelihood through brute force, using all_graphs function in
admixturegraph to generate all such topologies and computing their
likelihoods with both admixturegraph and TreeMix.

We now turn to the performance of STB-ML methods given X�

as input. Because M1 contains a single admixture event, an STB-ML
method would operate by (1) searching for an ML starting tree N0,
(2) searching for an ML network N1 in the edge addition neighbor-
hood of N0 and (3) searching from N1 for a network with a higher
likelihood by applying other search moves. Below, we use brute
force to determine the outcome of these three steps.

Step 1:
The first step of an STB-ML method is to estimate a starting tree

on the full set of populations; this is typically done using an ML
heuristic or the NJ algorithm (Saitou and Nei, 1987). In our case
study, the NJ tree for X� is the same as the ML tree for X�, which
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we found using brute force as described above. The NJ/ML tree
rooted at outgroup E, denoted N0 and shown in Figure 1b, is not a
base tree of N�. Note that TreeMix uses a random population heur-
istic to build a starting tree and may not be successful in finding the
optimal tree in practice.

Step 2:
The second step of an STB-ML method is to search for an ML

network in the edge addition neighborhood of N0, which has size
OðjEðN0Þj2Þ (Definition 2). We used brute force to find the optimal
network topology in this neighborhood. The ML network, denoted
N1 and shown in Figure 1c, has E as the admixed population (note
that we confirmed this outcome for all possible rootings of N0).

Step 3:
The third step of an STB-ML method is to search from N1 for a

network with a higher likelihood via hill climbing. In our brute force
evaluation of all networks with one admixture node, we found that
N1 has the second highest likelihood score, second only to N�; there-
fore, it is sufficient to show that N1 cannot be transformed into N�

via a single search move. We consider search moves that are com-
monly implemented in STB-ML methods, namely tail moves
(Definition 3) and head moves. A head move relocates the head

(target vertex) of an admixture edge to some other edge in the net-
work, so we can verify by inspection that N1 cannot be transformed
into N� with head moves. To evaluate whether this can be achieved
with tail moves, we implemented a subroutine that given a network
N finds all networks in its tail move neighborhood. Applying this
subroutine iteratively, we found that at least three tail moves are
required to transform N1 into N�, modulo the position of the root,
which as previously mentioned does not impact the likelihood score
(note that we confirmed this outcome for all possible rootings of
N1). As expected from our brute force analysis, this sequence of tail
moves, shown in Figure 2, requires moving from N1 to graphs of
lower likelihood, so it is impossible to reach N� from N1 via hill
climbing with head moves and tail moves. We conclude that our
STB-ML method returns N1.

4 The MLNO problem and OrientAGraph

In the previous section, we showed through a series of computation-
al experiments that even for a simple model admixture graph, with
just one admixed population, typical STB-ML methods can get
trapped in a local optimum and return an incorrect network. In a

(a) (b) (c)

Fig. 1. Subfigure (a) shows the model admixture graph ðN�;H�Þ discussed in Section 3. We refer to this model as M1, and let X� denote the vector of f2-statistics implied by

this model. Subfigure (b) shows N0: the ML (and NJ) tree for X� rooted at the outgroup E. Subfigure (c) shows N1: the ML network in the edge addition neighborhood of N0.

Although N� has the highest likelihood of all networks with one admixture node, TreeMix and related STB-ML methods get stuck in a local optimum, returning N1.

Numerical parameters shown in subfigure (b) and (c) were computed using TreeMix. Log-likelihood scores, also computed using TreeMix, of N0, N1 and N� are �1 302 625,

�366 944 and 83, respectively. Branch lengths are shown multiplied by 1000

Fig. 2. The top of the figure shows a minimal sequence of three tail moves that transforms the starting network N1 computed in step 2 into the ending network N�. We found,

through brute force analyses, that any sequence of tail moves from N1 to N� must traverse through a network with a lower likelihood score than N1. Alternatively, N1 can be

transformed into N� by selecting A as the admixed population (instead of E) and redirecting the edges of the network accordingly. Adopting the language of Huber et al.

(2019), we refer to this as reorientating the network. This is not to be confused with rerooting the network, which simply relocates the position of the root and does not change

which populations are admixed. Numerical parameters and log-likelihood scores shown above were computed using TreeMix. Branch lengths shown are multiplied by 1000
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purely hill climbing approach, we must move from incorrect net-
work N1 to the correct network N� in a single step. One possible so-
lution is to define a search move consisting of three tail moves. The
3-tail move neighborhood of N1 has size OðjEðN1Þj6Þ, and it seems
unlikely that a random 3-tail move would take us from N1 to N�.
Interestingly, we can transform N1 into N� simply by selecting A to
be the admixed population and redirecting the edges of the network
accordingly (Fig. 2). This search strategy of considering different
populations as admixed has been used by researchers (e.g. Lipson,
2020) to manually explore network space. There is a connection be-
tween this approach and network orientation, because the admix-
ture nodes (along with a valid root position) uniquely determine the
orientation of an undirected binary network (Huber et al., 2019). In
other words, researchers manually search for a network orientation
with the highest likelihood. Integrating this manual process into
automated methods is appealing and leads us to propose the MLNO
problem.

Definition 6 (MLNO problem). Let N0 be an undirected phylogenetic

network, and let NðN0Þ be the orientation neighborhood of N0 i.e. the

set of directed phylogenetic networks such that N 2 NðN0Þ implies that

the undirected version of N, denoted Nju, is isomorphic to N0. We say

that a directed network N� is a maximum likelihood orientation of N0, if

N� is in the set argmaxN2NðN0 Þ‘ðNÞ.

Here, we take ‘ðNÞ to be the likelihood function given in
Equation (1).

The most straightforward approach to finding the MLNO is ex-
haustive search, typically initiated from some directed network N
with h admixture nodes. The orientation neighborhood of Nju is
defined by all ways of selecting h admixture nodes from the set
VðNjuÞ n LðNjuÞ and all ways of selecting a root edge from EðNjuÞ
(Huber et al., 2019). We typically consider networks that are rooted
at the outgroup g, denoting this set N gðNjuÞ � N ðNjuÞ. In a brute
force approach, we evaluate the likelihood of every directed network
M 2 N gðNjuÞ; this requires optimizing the parameters for M,
denoted HM.

As discussed in Sections 2.2 and 3, methods, such as admixture-
graph and TreeMix, differ in how they optimize parameters, with
TreeMix requiring a tree-based labeling w for M. This labeling is
lost in reorientating a network, but a tree-based labeling, if one
exists, can be found in linear time (Francis and Steel, 2015). An issue
here is whether different tree-based labelings will yield different like-
lihood scores or have downstream effects on the search algorithm;
however, when h is small, it is possible to evaluate all 2h labelings
(whether or not a given labeling is tree-based can be verified in linear
time), as described by Francis and Steel (2015). We discuss this issue
further in Sections 6 and 7.

In any case, an exhaustive search for an MLNO is only feasible
when h and jVðNjuÞj are sufficiently small. When h¼1, the orienta-
tion neighborhood N gðNjuÞ can be generated in OðjEðNjuÞj �
jVðNjuÞ n LðNjuÞj time, as the algorithm from Huber et al. (2019),
which scales linearly in the jEðNjuÞj, can be used to reorient Nju for
all ways of selecting one admixture node from the set
VðNjuÞ n LðNjuÞ. For each M 2 N gðNjuÞ, we can compute the likeli-
hood for all tree-based labelings, as there are at most two. When h is
not fixed, we conjecture that finding the MLNO of Nju is NP-hard,
in which case heuristic search will be necessary.

We conclude this section by describing how we incorporate
MLNO within the latest version of TreeMix (v1.13 Revision 231),
referring to our implementation as OrientAGraph. To estimate an
admixture graph ðN;HÞ with h admixture events, the following
steps are taken.

1. Search for an ML starting tree N0, rooting it at the outgroup.

2. For i ¼ 1; 2; . . . ; h:

a. ðNi;HNi
Þ  Search for an ML network in the (gene flow)

edge addition neighborhood of Ni�1.

b. ðNi;HNi
Þ  Search from Ni for a network of a higher likeli-

hood using tails moves.

c. ðNi;HNi
Þ  Search for an ML network in the (outgroup-

rooted) orientation neighborhood of Niju.

3. Return ðNi;HNi
Þ.

All three parts of step 2 apply operations (edge addition, tail
moves, reorientations) to a network with the goal of searching for
an ML network. Our case study focuses on the utility of MLNO;
however, as observed in our experimental study, the relative effect-
iveness of these operations depends on the dataset. The details of
this approach are provided in Supplementary Materials, but we
summarize the differences between TreeMix and OrientAGraph
below (note that steps 1, 2b, and 3 are the same in both methods).

For step 2a, TreeMix searches a subset of the edge addition
neighborhood, which we refer to as the gene flow edge addition
neighborhood. Specifically, edge additions must occur between pairs
of edges that are both labeled as part of the base tree, with the link-
ing arc labeled as gene flow; the tree-based labeling of Ni�1 is then
extended to Ni in the natural way. There are still OðjEðN2

i ÞjÞ net-
works in this space, and TreeMix uses a heuristic to identify a subset
of them that seem promising. In OrientAGraph, we enable an ex-
haustive search of the gene flow edge addition neighborhood.
Regardless of whether a heuristic or exhaustive search is performed,
the legality of edge additions still needs to be evaluated (e.g. an edge
addition cannot produce cycles). Testing for legality can be sped up
by performing a dynamic programming preprocessing phase prior to
initializing the exhaustive search (Algorithm 1 in the Supplementary
Materials). However, an exhaustive search will still be prohibitively
expensive when the number of populations is large.

For Step 2c, OrientAGraph executes an exhaustive search for an
MLNO. [Note this step can be performed by evaluating a single
tree-based labeling found by applying the algorithm of Francis and
Steel (2015) or by evaluating all possible labelings.] In the next sec-
tion, we evaluate the utility of MLNO for enabling STB-ML meth-
ods using f-statistics to escape local optima on modestly-sized
datasets. An exhaustive search for the MLNO will not scale to data-
sets with a large number of admixture events; we discuss how scal-
ability might be addressed and related considerations in Section 7.

5 Experimental study

In our experimental study, we utilized admixture graph models pub-
lished in prior studies to benchmark TreeMix, OrientAGraph and
miqograph, all of which take f-statistics as input. The exact f-statis-
tics implied by the models were given to these methods as input, rep-
resenting the case of infinite data. Method performance on these
model datasets can be attributed to the method itself rather than
error or bias in the input. To evaluate whether the trends observed
for TreeMix and OrientAGraph extended to finite data, we bench-
marked these methods on genomes simulated under a subset of the
models.

5.1 Model datasets
We used the admixturegraph R package (Leppälä et al., 2017) to
create the f-statistic datasets implied by our case study model (M1)
as well as seven other models (Fig. 3 and Supplementary Fig. S1).
Model M2 is based on the toy example shown in Figure 5 of
Patterson et al. (2012) used to benchmark qpGraph. All other mod-
els are based on admixture graphs estimated from biological data-
sets in prior studies; see Figure 3 for details. Note that M5 has the
same network topology as M1; however, M1 is a toy example,
whereas M5 was estimated on a biological dataset by Lipson
(2020). For these experiments, the standard error of the f-statistic
was set to 0.0001 to avoid numerical problems.

5.2 Simulated datasets
We simulated datasets from three demographies from models (M1,
M5 and M6) using ms (Hudson, 2002) with the number of loci set
to 3000, the number of sites per locus set to 1 Megabase, the effect-
ive population size above the root set to 10 000, the sample size for
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each population set to 20, the mutation rate set to 1:25� 10�8, and
the recombination rate set to 1� 10�8. The models based on bio-
logical datasets had branch lengths given in units of genetic drift and
were not dated, so we did not know the timing of each internal
node. To simulate data with ms, we assigned timings at the internal
nodes and then rescaled the population size on each branch so that
it had the correct length in drift units. The maximum number of
SNPs per locus was approximately 6000, 3000 and 3500 for M1,
M5 and M6, and we set the block size accordingly, when we used
TreeMix to estimate f2-statistics, along with their standard error.
(Note that we also performed experiments computing the covari-
ance matrix instead of f2-statistics to confirm that this did not im-
pact results.) Lastly, we repeated this process of estimating matrices
with TreeMix using SNPs from the first 100, 500, 1000, 1500 and
2000 loci. This produced a total of 18 simulated datasets.

5.3 Method evaluation
Our primary focus was comparing TreeMix and OrientAGraph.
Recall that OrientAGraph is implemented on top of TreeMix with
two different subroutines: one for exhaustive gene flow edge addi-
tions and one for MLNO (Section 4). We executed these subroutines
together as well as individually to explore their relative impact.
Note that we exhaustively evaluated potential tree-based labelings
during the MLNO subroutine. Otherwise, methods were run with
the same options: specifying the outgroup, specifying the (correct)
number of admixture events and implementing additional search
moves from the starting tree, after reconstructing it with random
population addition. In addition, we generated all possible popula-
tion addition orders, selected 100 uniformly at random and ran all
TreeMix and OrientAGraph using each of these orders.

Unlike TreeMix or OrientAGraph, miqograph is guaranteed to
find the true admixture graph topology N�, provided that N� meets
some topological constraints. We could not run miqograph on our
cluster (because of how the industrial solver used by miqograph han-
dles academic licenses), so we ran miqograph on the model datasets
only. To compare running times, all analyses of model datasets were
performed on the same shared computing resource [Intel(R)

Xeon(R) CPU 2.10 GHz server with 128 GB RAM and 32 cores].
We allowed miqograph to use all available threads (note that
TreeMix and OrientAGraph are single threaded) and gave it the
same information as TreeMix and OrientAGraph, e.g. the outgroup
and the (correct) number of admixture events. miqograph also
requires the user to specify the granularity with which admixture
proportions can be estimated (we set this value to 4) and the depth
of its ‘search tree’ (we set this value to half the number of leaves in a
given model).

Methods were compared in terms of three measures: log-likeli-
hood score of the estimated admixture graph (for TreeMix and
OrientAGraph only), topological accuracy, specifically triplet dis-
tance between the true and estimated admixture graph topology
(Jansson et al., 2019) and runtime (in seconds). For TreeMix and
OrientAGraph only, we also plotted the estimated admixture graphs
(for one population order) and its residuals for each model dataset
(see Supplementary Materials). This was done to verify that different
likelihood scores corresponded to different residuals and that a trip-
let distance of 0 corresponded to the true admixture graph being
returned.

6 Results and discussion

6.1 Model datasets
In this section, we report the results of running TreeMix,
OrientAGraph and miqograph on model datasets (Table 1).

Models M2, M3 and M8: For these three model datasets, all
methods recovered the true admixture graph topology and did so
quickly.

Model M1: For our case study model dataset, we observed the
results expected based on Section 3. TreeMix recovered an incorrect
topology, whereas OrientAGraph recovered the true topology.
miqograph also recovered the true topology but was 2 orders of
magnitude slower than OrientAGraph.

Model M4: Model M4 is an admixture graph presented with the
publication of Simmons Genome Diversity dataset (Mallick et al.,
2016); however, we simplified the published model so that it only

Fig. 3. This figure shows the model demographies evaluated in our experimental study. M3 is based on Figure S8.1 from Haak et al. (2015), M4 is based on Figure S11.1 from

Mallick et al. (2016) but simplified so that there are only two admixture events, M5 is based on Figure 5a from Lipson (2020), M6 is M5 but extended so that Mixe split into

two populations, M7 is based on Figure 7a from Wu (2020) and M8 is based on Figure 2 from Yan et al. (2020). All of these admixture graphs were estimated from biological

datasets. Note that the branch lengths in these subfigures are not drawn to scale and are shown multiplied by 1000
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had two admixture events: gene flow from Denisova into the ances-
tors of Australians and Papuans as well as gene flow from
Neanderthals into modern human, non-Africans. After 2.78 h, the
graph returned by miqograph graph had a triplet distance of 81 to
the true topology. It is unclear how much this score would improve
with a longer running time, given that both admixture events in M7
are not incident to the leaves, so miqograph is guaranteed to return
an incorrect topology. In contrast, TreeMix and OrientAGraph
completed in <15 s, with a triplet distance of 15 and 0 to the correct
topology, respectively. This difference was also reflected in the log-
likelihood scores of the returned graph. These results were driven by
the exhaustive search for an ML gene flow edge addition rather than
an MLNO, suggesting that heuristic employed by TreeMix to iden-
tify candidate edge additions was ineffective for M4.

Models M5 and M6: On model datasets for M5 and M6, we
observed similar trends to our case study (M1), that is, TreeMix
returned an incorrect topology, which had a lower log-likelihood
score than the true topology. Both OrientAGraph and miqograph
returned the true topology, but again OrientAGraph was faster than
miqograph.

Model M5 was estimated from Simmons Genome Diversity
Project data (Mallick et al., 2016) by Lipson (2020), who explored
the space of admixture graphs manually using qpGraph. We were
not aware of M5 when we designed our case study, but after finding
this result, we created model M6 by extending M5 to have two pop-
ulations descending from the admixed population (Mixe). This
enabled us to evaluate whether the trends observed were unique to
the depth of the admixed population; this was not the case as the
trends observed for M6 were the same as for M5. However, miqo-
graph is guaranteed to recover an incorrect topology for M6 (be-
cause of its topological constraints); this was reflected in our results.

Summary of models M1, M5 and M6: We confirmed that the
trends observed for these three model datasets were driven by
MLNO (and not an exhaustive search for an ML gene flow edge
addition) by running these subroutines separately (Supplementary
Table S1). We also performed exploratory analyses on these model
datasets. For each model ðN�;H�Þ and input data X� pair, we ran
OrientAGraph given a base tree for N� as its starting tree and using
exhaustive search for ML gene flow edge additions. In this setting,
OrientAGraph should recover the true admixture graph topology
even without the MLNO; we confirmed that this was the case. We
also computed the NJ tree for X� to check that it was not a base tree
of N�; again, this was the case, so TreeMix could not be improved
simply by taking the NJ tree as its starting tree.

Lastly, for each model, we scored the true admixture graph top-
ology N�, using all tree-based labelings. While the parameters
around the admixture node differed (as expected), the likelihood
scores were very similar. While some model parameters were not
identifiable by TreeMix, the admixed population was identifiable.
Specifically, in the orientation neighborhood of N�, we found that
OrientAGraph (which returned the true topology) and TreeMix
(which returned an incorrect topology) achieved the highest and se-
cond highest likelihood scores, respectively. Importantly, the resid-
uals showed that the true topology was a better fit to the data
(Supplementary Materials Figs S3, S8 and S10). Note that these
results also suggest that a single tree-based labeling could be used
during MLNO, at least for simple models.

Model M7: Model M7 was estimated by Wu (2020), who ran
GTMix given from data from the third phase of the 1000 Genomes
project (The 1000 Genomes Project Consortium, 2015). Wu (2020)
found that running TreeMix on a related dataset produced a differ-
ent admixture graph topology than GTMix. However, GTMix and
TreeMix use different inputs (gene genealogies versus f-statistics),
different likelihood functions and different search heuristics (al-
though both are STB-ML methods). Our question is whether
TreeMix’s performance could be related to its search procedure.

In principle, TreeMix can recover the true topology, as model
M7 is tree-based; however, both TreeMix and OrientAGraph failed
to recover the true admixture graph topology on this model dataset,
returning graphs with a log-likelihood score of �2883 for all 100
different population orders. The triplet distance between the esti-
mated graphs to the true graph varied (either 16 or 20). We scored
the true admixture graph topology given the model dataset. This
yielded a log-likelihood score of 373 (which is higher than �2883),
so TreeMix is getting stuck local optimum. (Note that MLNO is in-
effective in this scenario.)

miqograph also fails, returning a topology with a triplet distance
of 82 from the correct topology. Although miqograph can recover
the correct graph as both admixture nodes are incident to leaves, it
did not solve its problem to optimality within our allowed time
frame of 10 000 s. This suggests that users may want to be wary of
the results produced by miqograph, when it does not succeed in solv-
ing its problem to optimality. Interestingly, M7 is the only model
that we studied that is where a single vertex is a source for two dif-
ferent admixture edges (i.e. it is tree-child); this model may be of
particular interest to method developers.

Running time comparisons:
The difference in running time between OrientAGraph and

TreeMix was not pronounced on the six model datasets with at

Table 1. Results for estimating admixture graphs given the f-statistics implied by the models in Figure 3 using TreeMix, OrientAGraph

(OAG) and miqograph (miqo)

Model Log-likelihood Correct topology? Topological error Running time (s)

TreeMix OAG TreeMix OAG miqo TreeMix OAG miqo TreeMix OAG miqo

M1 �366 944 83 No Yes Yes 9 0 0 0.06 0.19 398

M2 83 83 Yes Yes Yes 0 0 0 0.04 0.15 802

M3 124 124 Yes Yes Yes 0 0 0 0.28 2.12 2340

M4a 103b 373 No Yes No 14 0 81c 1.28 11.72 10 000

M5 �33 83 No Yes Yes 9 0 0 0.05 0.16 170

M6a �30 124 No Yes No 15 0 2 0.11 0.31 556

M7 �2883 �2883 No No No 18.6b 20 82c 5.58 13.20 10 000

M8 124 124 Yes Yes Yes 0 0 0 0.09 0.34 264

Note: We report the running time in seconds, the log-likelihood score (for TreeMix and OrientAGraph methods only) and the topological error (triplet distance)

between the model admixture graph and the estimated admixture graph (we also note whether the correct admixture graph topology was returned). Running time

is averaged across 100 runs for TreeMix and OrientAGraph.
aIndicates that miqograph cannot get the topology correct, because of the position of the admixture event(s).
bIndicates there was a difference in the log-likelihood score or triplet distance for the graphs returned on different population orders, in which case, we report the

average.
cIndicates that miqograph did not complete within the time limit of 10 000 s (2.78 h) and thus was not solved to optimality.
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most 7 populations at the leaves and 2 admixture events (see Table
1). On these datasets, miqograph was slower than either
OrientAGraph and TreeMix but still solved its problem to optimal-
ity. miqograph did not solve its problem to optimality within the
allowed time frame for our study (10 000 s) on the remaining two
model datasets, with 10 populations and 2 admixture events. On
these datasets, there was noticeable slow down in the running time
of OrientAGraph compared to TreeMix. These results are expected
as OrientAGraph is the same as TreeMix but does more work; we
discuss the issue of scalability in Section 7.

6.2 Simulated datasets
We used genome-scale datasets simulated from models M1, M5 and
M6 to evaluate whether the trends observed for TreeMix and
OrientAGraph on model datasets (representing infinite data)
extended to the case of finite data (Fig. 4). This was the case:
OrientAGraph recovered the true topology, and TreeMix recovered
an incorrect topology, on simulated datasets with >1000 loci (Fig.
4). For M5 and M6, both TreeMix and OrientAGraph sometimes
failed to recover the true topology for smaller numbers of loci
(�1000 loci), likely due to differences between the estimated f2-sta-
tistics and the expected f2-statistics for the true admixture graph.

7 Conclusions and future work

In this work, we proposed a new search strategy based on network
orientation and explored its utility in the context of STB-ML meth-
ods that take f-statistics as input. Our current implementation,
referred to as OrientAGraph, relies on an exhaustive search for an
MLNO. This is compounded by finding a tree-based labeling, as
OrientAGraph is implemented on top of TreeMix, which requires
such a labeling to evaluate its likelihood function. This points to the
broader challenge of fitting numerical parameters from f-statistics in
an automated fashion. Scalability might be improved by implement-
ing a procedure for fitting model parameters that does not require a
base tree (e.g. admixturegraph). However, this does not address the
fact that there are inherent limitations in terms of parameter identifi-
ability. As shown by Lipson (2020), it is possible for two admixture
graphs with different topologies to fit the observed f-statistics per-
fectly and thus have the same likelihood score [Equation (1)]. We
worked to mitigate the issue of parameter identifiability in our case
study and computational experiments in two ways: first, we eval-
uated whether differences in topological accuracy corresponded to
differences in likelihood scores and residuals, and second, we
selected model admixture graphs based on the topological consider-
ations discussed by Lipson (2020).

Beyond the likelihood function, method performance can be
impacted by error or bias in the input data and the search heuristic.
In this work, we focused on the search heuristic by considering the

case of infinite data (as well as finite data) and by performing some
additional experiments. For example, we found that MLNO was un-

necessary to recover true admixture graph topology N� when
TreeMix was given a base tree of N� as its starting tree. We also
confirmed that the NJ tree for the f2-statistics implied by the true ad-

mixture graph was not a base tree of N�, so the issue is not specific
to searching for an ML starting tree. One possibility is that methods

based f2-statistics are particularly susceptible to bad starting trees
given the information content of their input. This could explain why
a recent study by Cao et al. (2019) found an STB-ML method that

takes estimated genealogical trees as input to be relatively accurate.
Genealogical trees have more information content, especially when

rooted; however, estimating them accurately is challenging from
both a computational and statistical perspective. Furthermore, likeli-
hood functions based genealogical trees are far more computational-

ly intensive than those based on f-statistics. In any case, exploring
the utility of MLNO for ML methods that use different inputs and/
or Bayesian methods that sample (rather than hill climb) network

space are interesting directions for future research.
Another important direction is scalability. OrientAGraph, while ef-

ficient for the admixture graphs considered here, will not scale to large
numbers of populations and/or admixture events. In this case, we need

to constrain the search for an MLNO, perhaps by maintaining a set of
nodes that are required to be admixed across iterations. For example, in
iteration i, our search of the orientation neighborhood of Ni can be con-

strained to OðjVðNiÞjÞ networks, if the subset of nodes that are
admixed in network Ni�1 are required to be admixed in network Ni.

This amounts to reorientating network Ni ‘around’ the ith edge add-
ition only. Such a heuristic seems promising in the scenario that admix-
ture events are sufficiently decoupled (e.g. the network is level-1) but

may not be effective otherwise. Broadly speaking, developing fully auto-
mated inference methods that are accurate yet scalable under complex
admixture scenarios is an important direction for future work.
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Fig. 4. Results from simulated data ranging from 100 loci to 3000 loci. Note that we are showing averages across runs of TreeMix for each population order (120 combina-

tions for M1 and M5 and 720 combinations for M6). On these datasets, the results are consistent across runs so we only show the average. While we show both log-likelihood

and triplet distance, we do not expect these measures to be fully correlated (i.e. lower triplet score may not imply lower log-likelihood.)
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