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Acute lung injury (ALI) is a life-threatening syndrome that causes high morbidity and mortality worldwide. ALI is characterized
by increased permeability of the alveolar-capillary membrane, edema, uncontrolled neutrophils migration to the lung, and diffuse
alveolar damage, leading to acute hypoxemic respiratory failure. Although corticosteroids remain the mainstay of ALI treatment,
they cause significant side effects. Agents of natural origin, such as medicinal plants and their secondary metabolites, mainly those
with very few side effects, could be excellent alternatives for ALI treatment. Several studies, including our own, have demonstrated
that plant extracts and/or secondary metabolites isolated from them reduce most ALI phenotypes in experimental animal models,
including neutrophil recruitment to the lung, the production of pro-inflammatory cytokines and chemokines, edema, and vascular
permeability. In this review, we summarized these studies and described the anti-inflammatory activity of various plant extracts,
such as Ginkgo biloba and Punica granatum, and such secondary metabolites as epigallocatechin-3-gallate and ellagic acid. In
addition, we highlight the medical potential of these extracts and plant-derived compounds for treating of ALI.

1. Introduction

Acute lung injury (ALI) and its severe form, acute respiratory
distress syndrome (ARDS), were first described in 1967 by
Ashbaugh et al. [1] in patients with acute onset of tachypnea
and hypoxia and the loss of compliance after a variety of
stimuli [2–5]. According to the American-European Consen-
sus Conference (AECC) ARDS was recognized as the most
severe form of acute lung injury (ALI), a form of diffuse
alveolar injury. In addition, the Berlin definitionmodified the
AECC definition and divided ALI into the independent cate-
gories of ALI non-ARDS and ARDS alone [6, 7]. ALI is a life-
threatening syndrome that causes high morbidity and mor-
tality [8–12]; however, the worldwide incidence is variable,
reaching, for example, 64.2 to 78.9 cases/100,000 person-
years in the United States and 17 cases/100,000 person-
years in Northern Europe, with an estimated 74,500 deaths

annually [13]. Patients admitted to intensive care units are
most affected by ALI (1 in 10) [14]. However, individuals with
multiple comorbidities, chronic alcohol abuse, or chronic
lung disease also present a high risk of developing ALI [15,
16]. The causes of ALI may be direct, such as pneumonia,
inhalation injury, aspiration of gastric contents, inhalation
injury, chest trauma, and near drowning, or indirect, such as
sepsis, burns, pancreatitis, fat embolism, hypovolemia, and
blood transfusion [8, 14]. The pathogenesis of ALI involves
increased permeability of the alveolar-capillary membrane,
accumulation of protein-rich fluid in the airspaces, pul-
monary edema, and pulmonary infiltration of neutrophils,
mainly bilateral, resulting in poor lung compliance, diffuse
alveolar damage, and, consequently, acute hypoxemic respi-
ratory failure [8, 17–23].

The inflammatory process of ALI can be classified into
three stages: exudative, proliferative, and fibrotic stages [4,
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9, 14]. The exudative stage is characterized by intense neu-
trophilic infiltrate, edema, and protein-rich fluid due to pul-
monary capillary leakage [14]. The proliferative stage ensues
as a consequence, the development of which is marked by
proliferation and phenotypic changes in type II alveolar cells
and fibroblasts [20]. In the absence of recovery, the fibrotic
stage develops, which is characterized by diffuse fibrosis and
modulation of the structural architecture remodeling of the
lung. These stages characterize the chronic phase of ALI,
leading to the formation of fibrotic scarring in the lung [9, 14].

Although inflammation is essential for the maintenance
of tissue homeostasis and protection against infections,
uncontrolled inflammation may contribute to lung damage,
a characteristic phenomenon of several inflammatory disor-
ders, including ALI [24–26]. In ALI airway inflammation,
neutrophils are the first cells to be recruited and are the
predominant cause of tissue damage [25, 27, 28], and their
persistence is associated with a poor ALI prognosis [27–
29]. The increased accumulation of neutrophils is associated
with the exacerbation/amplification of inflammation and,
consequently, of lung lesions due to the release of a complex
network of proinflammatory mediators, such as cytokines
(interleukin (IL)-1𝛽, tumor necrosis factor (TNF)-𝛼, IL-6,
and IL-8), chemokines chemokine (C-X-C motif) ligand
(CXCL)-8, CXCL-1, CXCL-5, and chemokine (C-C motif)
ligand (CCL)-2), proteases (elastases, collagenases, cathepsin
G, andmetalloproteinases), and oxidants (hydrogen peroxide
and superoxide), and the accumulation of necrotic material
[4, 24–26, 28–31]. Interestingly, an increase in such anti-
inflammatory cytokines as IL-10 is also observed in ALI
[32–34]. Thus, the balance of proinflammatory and anti-
inflammatory mediators could coordinate the evolution or
resolution of ALI. The resolution of inflammation is an
active process and requires the activation of endogenous
mechanisms, such as the biosynthesis of lipid mediators with
proresolution activity, interaction between cells (hematopoi-
etic and/or structural cells), and activation of cellular pro-
cesses (e.g., apoptosis, phagocytosis) tomaintain homeostasis
[35–38]. Resolution includes the steps of (a) the inhibition of
polymorphonuclear cell (neutrophil) infiltration, (b) return
to normal vascular permeability, (c) clearance of poly-
morphonuclear cells (mainly by apoptosis), (d) infiltration
of monocytes/alternatively activated macrophages, and (e)
removal of apoptotic neutrophils, microorganisms, allergens,
and foreign agents by macrophages [36, 38–42]. Clearly,
resident and recruitedmacrophages play an important role in
the clearance of injured tissues, debris, and apoptotic cells and
are therefore important for the resolution of inflammation
[36, 38]. Specifically, the resolution in ALI is characterized
by the removal of neutrophils in the lung and the restoration
of epithelial barrier function [38, 43]. Animal models have
not been developed that fully to resemble human ALI but are
quite useful for the better understanding of airway inflamma-
tion and the development of ALI [18, 44]. ALI experimental
models in mouse, rat, rabbit, and guinea pigs are reported in
the literature using different triggers, such as lipopolysaccha-
ride (LPS), live bacteria, acid aspiration, and others. A more
detailed description of the most commonly used ALI models
and their characteristics can be found in Table 1.

The considerable progress made through the use of
molecular and cellular assays together with knockout and
transgenic animals has contributed significantly to the under-
standing of the genetic, tissue-specific, and immunological
factors that contribute to the development of ALI [45–52].
Nevertheless, no therapeutic agents have demonstrated a
clear benefit in ALI treatment [41], and corticosteroids have
been used for treatment of ALI for many years [18, 53].
Besides, the disappointing results of a series of clinical trials
treatment of ALI or patients at risk for ARDS using corticos-
teroids as well as the increase of the risk of infection and other
adverse effects, the administration of corticosteroids might
improve the injured tissue due to their anti-inflammatory
effect [54]. Thus, the development of new compounds that
exhibit similar therapeutic potential with reduced adverse
effects is necessary for the continuous treatment of ALI. Fur-
thermore, agents of natural origin that induce very few side
effects should be considered for use as therapeutic substitutes
or as complementary treatments to existing therapies. In
addition, natural compoundsmay even form the basis of new
drugs for the treatment of diseases [55–58]. In the course of a
continued search for bioactive natural products derived from
plants (secondary metabolites), several groups, including our
own, have successfully employed experimental models to
screen the pharmacologic activities of plant extracts and iso-
lated compounds (secondary metabolites) [59–62]. Within
this context, we and others have demonstrated that many
plant extracts and secondary metabolites have the potential
to be used in ALI treatment [8, 60, 63]. In a clinical trial in
patients with severe pulmonary hypertension during extra-
corporeal circulation, Xu et al. [64] demonstrated that com-
posite Rhodiolae (herbal plant) reduced the occurrence rate
of acute lung injury and itsmortality. In addition other studies
were carried out with plant extracts (Table 2) and plant-
derived substances (Table 3) in ALI experimental models.

Ginkgo biloba L. (Ginkgoaceae) is one of the most
well-known plants in Chinese culture and has been used
for therapeutic purposes for approximately 1,000 years. Its
extracts are marketed worldwide to prevent or delay cogni-
tive impairment associated with aging or neurodegenerative
disorders [62, 65, 66]. In addition, G. biloba leaves have been
used for the treatment of airway diseases, such as asthma
and bronchitis [67]. In a bleomycin-induced acute lung injury
rat model, a G. biloba leaf extract (EGb 761) reduced the
responsiveness and diminished the occurrence of further
reduction in the vasoconstrictor response of the pulmonary
artery due to 5-hydroxytryptamine (5-HT). Furthermore,
EGb 761 normalized bleomycin-induced alterations in the
measured lung tissue biochemicalmarkers [68]. Additionally,
in another study, EGb 761 reduced protein leakage, neutrophil
infiltration, myeloperoxidase (MPO, a heme enzyme present
in the primary granules of neutrophils), and metallopro-
teinase (MMP)-9 activities in an LPS-initiated ALI rat model.
These effects were associated with an inhibition of the activa-
tion of the nuclear factor-kappa B (NF-𝜅B) pathway. In LPS-
induced acute lung injury ratmodel,G. biloba extract reduced
the recruitment of leukocytes to bronchoalveolar lavage fluid
(BALF) and the pulmonary permeability. In addition, besides
reducing other parameters,G. biloba extract also reduced the



BioMed Research International 3

Table 1: Animal models of lung injury.

Model Characteristic inflammation Animals References

Acid aspiration Rupture of the alveolar-capillary barrier with
intense neutrophilic infiltrate [23, 56, 105, 106]

Mice
Rats

Rabbits
[42, 56, 107–110]

Bleomycin Acute inflammatory injury, and reversible fibrosis
[23, 111]

Mice
Rats

[112–114]
[20, 115]

Cecal ligation and
puncture

Variable neutrophilic alveolar infiltrate and
increased permeability [23, 43]

Mice
Rats

[111, 116, 117]
[118–120]

Hyperoxia
Epithelial injury and neutrophilic infiltration,
followed by type II cell proliferation and scarring
[23, 121–123]

Mice
Rats

[124–127]
[128]

Intrapulmonary bacteria Increased neutrophilic alveolar infiltrate,
interstitial edema, and permeability [23, 129] Rabbits [129]

Intravenous bacteria Interstitial edema, neutrophils sequestration, and
intravascular congestion [23, 130] Mice [131]

LPS Neutrophilic inflammation with increased
intrapulmonary cytokines [20, 23, 132]

Mice
Rats
Sheep

[20, 45, 59, 70, 132–
135]
[136]

Nonpulmonary
ischemia/reperfusion

Increased microvascular permeability, neutrophils
recruitment, edema, and sequestration in the
lungs [23, 28]

Mice
Rats [28, 137–139]

Oleic acid Neutrophilic inflammation, increased
permeability, and edema [22, 23, 140]

Mice
Rats

[141]
[21, 22, 142]

Peritonitis by cecal
ligation
and puncture

Variable degrees
Neutrophilic alveolar infiltrate
and increased permeability [23, 143]

Rats
Rabbits

[143, 144]
[44]

Pulmonary
ischemia/reperfusion

Increased pulmonary vascular permeability,
neutrophil infiltration, and edema [23, 145]

Mice
Rats

Rabbits

[145–147]
[148]

Table 2: Plants with anti-inflammatory effect on ALI.

Plant Model of ALI Doses Relevant findings Reference
Bathysa cuspidata ALI in rats induced by Paraquat 200 and 400mg/kg ↓ Lung edema [149]

Ginkgo biloba ALI in mice induced by LPS 10, 100, and 1000mg/kg ↓ Leukocytes, PMN,
MPO, and NF-𝜅B [150]

Panax
notoginseng

ALI in rats induced by intestinal
ischemia/reperfusion 100mg/kg ↓ Leukocytes, PMN,

MPO, IL-8, and TNF-𝛼 [151]

Sho-seiryu-to ALI in guinea pigs induced by oleic
acid 3 and 0.75 g/kg ↓ Leukocytes and total

protein [152]

Viola yedoensis ALI in mice induced by LPS 2, 4, and 8mg/kg
↓ Leukocytes, total
protein, lung edema, and
MPO

[153]

blood TNF-𝛼 concentration and MPO in lung tissues [69].
Therefore, G. biloba appears to have potential to be used in
the treatment of inflammation in ALI.

Another plant with antineutrophilic potential is Lafoensia
pacari Jaumes St. Hilaire (Lythraceae), the extract of which
is traditionally used by the population of Mato Grosso state,
Brazil, to treat inflammation and gastric ulcers [70, 71]. In
a clinical trial, however, L. pacari methanolic extract failed
to eradicate Helicobacter pylori in dyspeptic urease-positive
patients, even though the extract was well tolerated, and
about 74% of patients had partial improvement of dyspnea,
and 42% had full improvement of dyspnea in patients treated

with extract of L. pacari [72]. Employing the asthma model
induced by T. canis infection or the ovalbumin-induced
asthma model, our group demonstrated that oral treatment
with an ethanolic extract of L. pacari decreased the number
of eosinophils and neutrophils recruited to BALF [73, 74].
In an attempt to identify the molecule(s) responsible for the
antieosinophil and antineutrophil activity of the L. pacari
extract, we used a mouse model of peritonitis induced by
exposure to the F1 fraction of the H. capsulatum yeast wall
[75].This model of acute and localized eosinophilia and neu-
trophilia was suitable for the bioassay-guided fractionation
of the L. pacari extract, and we were able to isolate and
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chemically characterize ellagic acid (a polyphenol) as the
major active component in the extract [61]. We showed that
L. pacari extract as ellagic acid was able to reduce the number
of eosinophils and neutrophils in thismodel [62].We recently
demonstrated that ellagic acid displayed anti-inflammatory
properties by decreasing the severity of HCl acid-initiated
ALI, accelerating the resolution of inflammation, and
decreasing the cyclooxygenase-2 (COX-2) inhibitor-induced
exacerbation of inflammation [60]. Ellagic acid reduced
several inflammatory parameters, including vascular perme-
ability alterations and neutrophil recruitment to BALF and
the lung. In addition, ellagic acid reduced the proinflam-
matory cytokine IL-6 and increased the anti-inflammatory
cytokine IL-10 in BALF without downregulating the NF-𝜅B
and activator protein 1 (AP-1) signaling pathways [60].

Pomegranate (Punica granatum) extracts, which have
been used for centuries for medical purposes, contain also
ellagic acid, and studies with pomegranate extract have
demonstrated the anti-inflammatory effects in an experi-
mental model of ALI (LPS-initiated) by reducing MPO in
the lungs of mice [76]. Together, these findings suggest that
ellagic acid has potential anti-inflammatory effects for the
resolution of ALI inflammation.

Flavonoids are the best studied class of plant metabolites.
Indeed, the search term “flavonoids” yielded more than
64,786 entries in the U.S. National Library of Medicine’s
Medline database accessed using PubMed in May 2013.
Flavonoids occur naturally in fruits and vegetables, such as
onions, apples, grapes, and nuts and are therefore commonly
part of the human diet [77]. These compounds are also a
component of disease treatment (phytotherapy), as they are
present in the seeds, stems, barks, roots, and/or flowers of
several medicinal plants [78]. Flavonoids have shown a wide
range of therapeutic properties in clinical and preclinical
studies, including, but not limited to, antioxidant, anticancer,
antiinflammatory, and antiallergy activities [79–82]. Lute-
olin, a widely distributed flavonoid, has been reported to
exhibit anti-inflammatory, antioxidant, and anticarcinogenic
activities [83]. Luteolin was reported to reduce several hall-
marks of ALI (LPS-initiated): leukocyte infiltration, histolo-
gical changes, lung tissue edema, protein extravasation,MPO
activity in lung tissue, TNF-𝛼, keratinocyte-derived chemo-
kine (KC), IL-6, and intercellular cell adhesion molecule-1
(ICAM-1) production, as well as inducible nitric oxide syn-
thase (iNOS) and COX-2 expression in the lung [84].
Additionally, the expression of surface markers CD11b
and Ly6G on neutrophils was reduced [85]. Luteolin also
reduced N-Formylmethionyl-leucyl-phenylalanine (fMLP)-
induced neutrophil chemotaxis and respiratory burst after
LPS challenge and reduced LPS-induced activation of theNF-
𝜅B pathway, possibly via mitogen-activated protein (MAP)
kinase (MAPK) and serine/threonine-protein kinases (AKT)
[86]. These findings suggest that luteolin has potential anti-
inflammatory effects for ALI treatment.

Green tea, from Camellia sinensis L. (Theaceae), is widely
consumed around the world and is prepared by drying and
steaming fresh tea leaves. Flavonoids are the major sec-
ondarymetabolites found in green tea, with epigallocatechin-
3-gallate being the most abundant. In acute lung injury

induced by oleic acid in mice, epigallocatechin-3-gallate
reduced the lung index, blood TNF-𝛼 concentration, and the
phosphorylation of p38 MAPK [87]. In another study using
LPS-initiated ALI inmice, epigallocatechin-3-gallate demon-
strated an anti-inflammatory effect by reducing neutrophil
recruitment in the lung and the production of TNF-𝛼 and
macrophage inflammatory protein (MIP)-2, most likely via
reduced extracellular-signal-regulated kinase (ERK)1/2 and
c-Jun N-terminal kinase (JNK) phosphorylation in the lungs
[63]. Therefore, epigallocatechin-3-gallate might constitute
an attractive molecule with potential interest for the treat-
ment of ALI.

The discovery of curcumin, the principal pigment of
turmeric, dates from approximately two centuries ago when
Vogel and Pelletier isolated a pigment of “yellow coloring
matter” from the rhizomes of Curcuma longa (turmeric) [88–
91]. Curcumin is present in the human diet and has been
consumed for medicinal purposes for thousands of years
[92]. This polyphenol has been shown to possess activities
in the animal models of many human diseases. Curcumin
modulates variousmolecules, including transcription factors,
adhesion molecules, cytokines, and chemokines [92]. Cur-
cumin demonstrated a significant anti-inflammatory effect
with a reduction of themainALI phenotypes, which included
the reduction of neutrophil recruitment and activation,
lung edema, inflammatory, and cytokines, most likely via a
reduction of theNF-𝜅B pathway in several ALImodels.These
models include sepsis-induced acute lung injury induced by
cecal ligation and puncture surgery [93, 94], aspiration of
polyethylene glycol and activated charcoal [95], intestinal
ischemia/reperfusion (I/R) [96], bleomycin-induced lung
injury [97], acute inflammation by Klebsiella pneumonia
introduction [98], oleic acid-induced ALI [99], and LPS-
induced acute lung injury [100]. These findings suggest that
curcumin could be an interesting alternative for the ALI
treatment.

The alkaloid theophylline is one of the oldest drugs in use
in the management of obstructive airway diseases of diverse
etiologies [101, 102], despite its weakness as a bronchodilator.
However, the use of this alkaloid is often limited due to
concerns regarding dose-related adverse effects, numerous
drug interactions, and a narrow therapeutic index. In a
chronic inflammatory lung injury model induced by LPS in
guinea pigs, theophylline improved the airway injury and
airway hyperreactivity induced by the repetitive exposure
to LPS [103]. These findings suggest that theophylline has
potential anti-inflammatory effects for the treatment of ALI
inflammation.

In conclusion, ALI is a disease with high morbidity
and mortality, and the current disease outcome has yet to
be improved by pharmacologic treatment. Natural products
and plant derivatives used in folk medicine are of vast
medical importance due to their potential as a source of
molecules with pharmacologic properties. Although active
plant-derived secondary metabolites can be randomly dis-
covered, the process is laborious, with a success rate on
the order of 1 new product per 10,000 plants screened
[62, 104]. In this review, we reviewed the effect of some
plant extracts and their components on ALI experimental
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models. The important benefits obtained with curcumin,
ellagic acid, and Ginkgo biloba extract reveal powerful effects
in reducing most ALI phenotypes, including inflammatory
infiltrate, vascular permeability, and edema. As outlined in
this review, we propose that there are several extracts of plants
and compounds isolated from them with anti-inflammatory
effects in ALI. So, they demonstrate potential to be used in
the preliminary testing in humans which can provide a new
alternative for ALI therapy.
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venous transplantation of mesenchymal stem cells attenuates
oleic acid induced acute lung injury in rats,” Chinese Medical
Journal, vol. 8, pp. 125–136, 2012.

[20] A. T. Reddy, S. P. Lakshmi, and R. C. Reddy, “The nitrated
fatty acid 10-nitro-oleate diminishes severity of LPS-induced
acute lung injury in mice,” PPAR Research, vol. 2012, Article ID
617063, 12 pages, 2012.

[21] J. Grommes, S.Vijayan,M.Drechsler et al., “Simvastatin reduces
endotoxin-induced acute lung,” PLoS ONE, vol. 7, Article ID
e38917, 2012.



8 BioMed Research International

[22] H. Inoue, Y. Nakagawa, M. Ikemura, E. Usugi, and M. Nata,
“Molecular-biological analysis of acute lung injury (ALI) in-
duced by heat exposure and/or intravenous administration of
oleic acid,” Legal Medicine, vol. 6, pp. 304–312, 2012.

[23] G. Matute-Bello, C. W. Frevert, and T. R. Martin, “Animal
models of acute lung injury,” American Journal of Physiology—
Lung Cellular and Molecular Physiology, vol. 295, no. 3, pp.
L379–L399, 2008.

[24] H. Ehrentraut, E. T. Clambey, E. N. McNamee et al., “CD73+
regulatory T cells contribute to adenosine-mediated resolution
of acute lung injury,”TheFASEB Journal, vol. 27, no. 6, pp. 2207–
2219, 2013.

[25] M. Bhargava and C. H. Wendt, “Biomarkers in acute lung
injury,” Translational Research, vol. 159, no. 4, pp. 205–217, 2012.

[26] D. El Kebir, P. Gjorstrup, and J. G. Filep, “Resolvin E1 pro-
motes phagocytosis-induced neutrophil apoptosis and acceler-
ates resolution of pulmonary inflammation,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 109, no. 37, pp. 14983–14988, 2012.

[27] R. P. Baughman, K. L. Gunther, M. C. Rashkin, D. A. Keeton,
and E. N. Pattishall, “Changes in the inflammatory response of
the lung during acute respiratory distress syndrome: prognostic
indicators,” American Journal of Respiratory and Critical Care
Medicine, vol. 154, no. 1, pp. 76–81, 1996.

[28] S. Matsuo, W. L. Yang, M. Aziz, A. Jacob, and P. Wang, “Cyclic
arginine-glycine-aspartate attenuates acute lung injury in mice
after intestinal ischemia/reperfusion,” The Journal of Critical
Care, vol. 17, pp. 5–19, 2013.

[29] J. Grommes and O. Soehnlein, “Contribution of neutrophils to
acute lung injury,”Molecular Medicine, vol. 17, no. 3-4, pp. 293–
307, 2011.

[30] M. A. Freudenberg, S. Tchaptchet, S. Keck et al., “Lipopolysac-
charide sensing an important factor in the innate immune res-
ponse to Gram-negative bacterial infections: benefits and haz-
ards of LPS hypersensitivity,” Immunobiology, vol. 213, no. 3-4,
pp. 193–203, 2008.
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