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Abstract

During pancreatic development, transcription factor cascades gradually commit precursor populations to the different
endocrine cell fate pathways. Although mutational analyses have defined the functions of many individual pancreatic
transcription factors, the integrative transcription factor networks required to regulate lineage specification, as well as their
sites of action, are poorly understood. In this study, we investigated where and how the transcription factors Nkx2.2 and
Neurod1 genetically interact to differentially regulate endocrine cell specification. In an Nkx2.2 null background, we
conditionally deleted Neurod1 in the Pdx1+ pancreatic progenitor cells, the Neurog3+ endocrine progenitor cells, or the
glucagon+ alpha cells. These studies determined that, in the absence of Nkx2.2 activity, removal of Neurod1 from the Pdx1+
or Neurog3+ progenitor populations is sufficient to reestablish the specification of the PP and epsilon cell lineages.
Alternatively, in the absence of Nkx2.2, removal of Neurod1 from the Pdx1+ pancreatic progenitor population, but not the
Neurog3+ endocrine progenitor cells, restores alpha cell specification. Subsequent in vitro reporter assays demonstrated
that Nkx2.2 represses Neurod1 in alpha cells. Based on these findings, we conclude that, although Nkx2.2 and Neurod1 are
both necessary to promote beta cell differentiation, Nkx2.2 must repress Neurod1 in a Pdx1+ pancreatic progenitor
population to appropriately commit a subset of Neurog3+ endocrine progenitor cells to the alpha cell lineage. These results
are consistent with the proposed idea that Neurog3+ endocrine progenitor cells represent a heterogeneous population of
unipotent cells, each restricted to a particular endocrine lineage.
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Introduction

The destruction or dysfunction of the insulin-producing beta

cells of the pancreas contributes to a family of metabolic diseases

known as diabetes mellitus. Given that the specification of the

three major cell types in the pancreas, endocrine, exocrine and

ductal cells, occurs in the embryo, understanding the normal

course of pancreas development will ultimately facilitate the

generation of insulin-producing beta cells from alternative cell

sources for beta cell replacement therapies [1,2,3]. Single knockout

mouse models have determined the relative importance of many

transcription factors in the process of endocrine cell specification

and differentiation. Of particular significance, deletion of the basic

helix-loop-helix transcription factor Neurogenin3 (Neurog3; Ngn3)

results in the loss of the hormone-producing cell types [4].

Subsequent lineage tracing experiments confirm that hormone-

expressing endocrine cell types, including alpha cells (expressing

glucagon), beta cells (insulin), delta cells (somatostatin), epsilon

cells (ghrelin), and PP cells (pancreatic polypeptide), are Neurog3-

derived [5,6].

A recent study suggested that each Neurog3+ endocrine

progenitor cell within the population is destined to become a

single hormone+ cell type [7]. The idea that endocrine progenitor

cells are unipotent implies that the transcription factor code

responsible for the differentiation of each hormone+ cell type may

be delineated before endocrine progenitors are specified. In

support of this hypothesis, forced expression of factors within the

Pdx1+ pancreatic progenitor cells can affect the resulting

complement of differentiated endocrine cells [8,9,10]. Ultimately,

the proper timing and location of transcription factor expression

and function during pancreas development is essential for the

appropriate differentiation of all the hormone-expressing endo-

crine cells.

The homeobox transcription factor Nkx2.2 is a particularly

interesting pancreatic regulatory protein due to its dynamic

expression pattern and cell-specific regulatory activities. Nkx2.2
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is widely expressed throughout the early undifferentiated pancre-

atic epithelium, but gradually becomes restricted to beta cells and

a large subset of alpha and PP cells [11,12]. Despite its early and

widespread expression, deletion of Nkx2.2 specifically affects later

endocrine lineage specification: beta cells do not form, alpha and

PP cell numbers are decreased, and there is a significant increase

in the ghrelin cell population. Furthermore, while Nkx2.2 is

expressed in both glucagon+ alpha cells and insulin+ beta cells

[13] and the physical interaction of Nkx2.2 with the co-repressor

Groucho3 (Grg3; Tle3) occurs in both cell types, the recruitment

of a repressor complex to the promoter of the homeobox

transcription factor Arx occurs in beta, but not alpha cells [14],

presumably due to cell-specific and/or promoter-specific protein

interactions. Disruption of the Nkx2.2/Grg3 interaction results in

the mis-specification of islet cell types and the subsequent trans-

differentiation of beta cells into alpha cells [14]. Studies of other

developmental systems, including muscle and CNS, have also

provided examples of how a single transcription factor can

differentially regulate cell specification [15,16,17,18]. Altogether

these studies demonstrate that cell-specific transcription factor

regulation plays a fundamental role in cell fate determination and

the maintenance of cell identity.

While single knockout mouse models can uncover the role of a

specific factor in the process of cell fate determination [19,20,21],

compound deletion mutants demonstrate how multiple transcrip-

tion factors work together to permit or restrict the differentiation

of specific lineages. Whereas the deletion of Arx results in the loss

of alpha cells and an increase in beta and delta cells [19,22],

deletion of Nkx2.2 affects all islet cell types in the pancreas except

the delta cell population [12]. Interestingly, simultaneous deletion

of these two factors revealed for the first time that Nkx2.2 was

required to repress somatostatin in the ghrelin-expressing epsilon

cell lineage [23,24]. Furthermore, the simultaneous deletion of

Nkx2.2 and the beta cell transcription factor Neurod1 identified an

unexpected epistatic relationship between these factors that

regulates the formation of the non-beta cell types [25]. While

deletion of Neurod1 does not affect the formation of alpha or beta

cells, alpha cells are reduced late in development and beta cells

undergo catastrophic apoptosis by birth [26]. In contrast, the null

mutation of Nkx2.2 results in a severe reduction in alpha cells,

and beta cells are completely absent [12,27]. Despite the

expression of Nkx2.2 and Neurod1 in beta cells [13,26,28] and

the severe phenotypes associated with beta cells in both single

knockout mice [12,26], the simultaneous deletion of Neurod1 and

Nkx2.2 did not alter the beta cell phenotype but rather restored

alpha cell and PP cell formation, while simultaneously reducing

the ghrelin-expressing epsilon cells, which are over abundant in

the Nkx2.2 null pancreas [25]. These examples demonstrate that

deciphering the complex pancreatic gene regulatory network will

provide valuable insight into the cellular processes required to

generate each islet cell type, and will facilitate the in vitro

differentiation of functional insulin-producing cells for therapeu-

tic purposes.

The Nkx2.22/2;Neurod12/2 (Nkx2.2null;Neurod1null) compound

mutant provides a useful model for how two transcription factors

coordinately regulate the specification of multiple endocrine cell

types. Our study aimed to dissect the cooperative roles of Nkx2.2

and Neurod1, and determine specifically where and how these

factors work together to permit endocrine cell formation in the

pancreas. The result of this analysis demonstrated that in the

absence of Nkx2.2, deletion of Neurod1 in the Pdx1+ pancreatic

progenitors resulted in restoration of the alpha, PP and epsilon

cells; however, deletion of Neurod1 from the Neurog3+ endocrine

progenitor cells restored the PP and epsilon cells, but only a small

population of alpha cells. Using in vitro reporter assays we also

showed that Nkx2.2 repressed Neurod1 in certain cellular contexts.

Consistent with the idea that Neurog3+ cells are unipotent [7], we

hypothesize that Nkx2.2 must repress Neurod1 in the Pdx1+
pancreatic progenitors early in development to appropriately

prime the Neurog3+ endocrine progenitor cells to become alpha

cells.

Results

In the absence of Nkx2.2, Neurod1 deletion in Pdx1+
pancreatic progenitors recapitulates the Nkx2.2null;
Neurod1null double-knockout phenotype

To determine the precise cell type in which the genetic

interaction between Nkx2.2 and Neurod1 is required for

endocrine cell specification, we conditionally removed Neurod1

from different pancreatic cell populations in the absence of

Nkx2.2. We generated a pancreas-specific deletion of

Neurod1 in the Nkx2.2 null background using Pdx1-cre [29]

(Nkx2.22/2;Neurod1flox/flox;Pdx1-cre, denoted as Nkx2.2null;

Neurod1Dpanc). We first confirmed that the single deletion of Neurod1

in the Pdx1+ cells (Neurod1Dpanc) phenocopied the Neurod1null mouse

(Figure 1B, 1F, 1J; Figure S1), displaying the expected reduction in

insulin and glucagon mRNA levels at P0 (Figure 1M; Figure S1)

[26,30]. We also demonstrated that when Neurod1 was deleted

from Pdx1+ cells in the absence of Nkx2.2, the pancreas

phenotype was identical to the Nkx2.2null;Neurod1null mouse [25]

(Figure S1). Specifically, all beta cells were absent, alpha and PP

cells were restored, and epsilon cells, which were overabundant in

the Nkx2.2null, were significantly reduced (Figure 1A–1L; Figure

S1). The partial rescue of the epsilon cells is likely due to the

inability of Neurod1 deletion to restore the balance between the

epsilon and beta cell populations, similar to the Nkx2.2null;Neur-

od1null mice (Figure 1N; Figure S1; [25]). Hormone expression was

quantified using real time PCR and cell numbers were determined

with morphometric analysis; these analyses confirmed that the

Author Summary

Diabetes mellitus is a family of metabolic diseases that can
result from either destruction or dysfunction of the insulin-
producing beta cells of the pancreas. Recent studies have
provided hope that generating insulin-producing cells
from alternative cell sources may be a possible treatment
for diabetes; this includes the observation that pancreatic
glucagon-expressing alpha cells can be converted into
beta cells under certain physiological or genetic condi-
tions. Our study focuses on two essential beta cell
regulatory factors, Nkx2.2 and Neurod1, and demonstrates
how their genetic interactions can promote the develop-
ment of other hormone-expressing cell types, including
alpha cells. We determined that, while Nkx2.2 is required
to activate Neurod1 to promote beta cell formation, Nkx2.2
must prevent expression of Neurod1 to allow alpha cell
formation. Furthermore, the inactivation of Neurod1 must
occur in the earliest pancreatic progenitors, at a stage in
the differentiation process earlier than previously believed.
These studies contribute to our understanding of the
overlapping gene regulatory networks that specify islet
cell types and identify the importance of timing and
cellular context for these regulatory interactions. Further-
more, our data have broad implications regarding the
manipulation of alpha cells or human pluripotent stem
cells to generate insulin-producing beta cells for thera-
peutic purposes.

Regulating the Lineage Potential of Neurog3+ Cells
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observed gene expression and cellular changes were equivalent

between the Nkx2.2null;Neurod1Dpanc and the Nkx2.2null;Neurod1null

(Figure 1M–1O; Figure S1). Moreover, we confirmed that Neurod1

was appropriately deleted in mutants and controls (Figure 1P).

These data demonstrate that in an Nkx2.2 null background the

deletion of Neurod1 in the pancreas progenitors phenocopies the

Nkx2.2null;Neurod1null.

In mice lacking Nkx2.2, removal of Neurod1 from
Neurog3+ endocrine progenitor cells restores relative
ratios of PP and epsilon cells

Given that all hormone-producing endocrine cells are Neurog3-

derived [4,5,6], we hypothesized that the genetic interaction

between Nkx2.2 and Neurod1 would be required within the

Neurog3+ endocrine progenitors to allow for the specification of

Figure 1. Neurod1 deletion in the pancreas progenitors, in an Nkx2.2 null background, phenocopies the Nkx2.2null;Neurod1null double
knockout. Pancreatic tissue from wildtype, Neurod1Dpanc, Nkx2.2null, and Nkx2.2null;Neurod1Dpanc was analyzed by immunofluorescence for expression
of the islet hormones glucagon (gluc), ghrelin (ghr) and insulin (ins) at P0 (A–L; white bar indicates 50 microns; DAPI marks all nuclei). Amylase (amyl)
expression marks exocrine tissue in all genotypes (A–D). The quantitative expression of glucagon (Gcg) (M), ghrelin (Ghr) (N), and pancreatic
polypeptide (Ppy) (O), as well as deletion of Neurod1 (P) was determined by real time PCR using RNA extracted from wildtype, Neurod1Dpanc, Nkx2.2null,
Nkx2.2null;Neurod1Dpanc, and Nkx2.2null;Neurod1null pancreas (P0; N = 3–8). Relative mRNA expression was normalized to the housekeeping gene,
cyclophilinB. Data are represented as mean+/2SEM. * p,0.05; ** p,0.01; *** p,0.001.
doi:10.1371/journal.pgen.1003278.g001
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particular hormone+ cell types. Using the Neurog3-cre allele [31],

we generated an endocrine progenitor cell-specific deletion of

Neurod1 in the Nkx2.2 null background (Nkx2.22/2;

Neurod1flox/flox;Neurog3-cre, denoted as Nkx2.2null;Neurod1Dendo), and

assessed the pancreatic endocrine cell phenotype. To achieve

optimal recombination in the Neurog3-expressing precursor

population, we used the BAC-derived Neurog3-cre allele; Cre is

highly co-expressed with Neurog3 in the embryonic pancreas and

Cre activity is sufficient to lineage-label all pancreatic endocrine

cells in the islet [31]. Importantly, despite the short half-life of

Neurog3 protein, we can detect Cre activity in approximately 75%

of Neurog3-expressing cells (Figure S2B). Similar to the

Nkx2.2null;Neurod1Dpanc and Nkx2.2null;Neurod1null mice, we observed

rescue of PP cells (Figure 2A, 2B), and a large reduction of

ghrelin+ epsilon cells in the Nkx2.2null;Neurod1Dendo compared with

the Nkx2.2null mice (Figure 2C–2H). As seen in the Nkx2.2null;Neur-

od1Dpanc and Nkx2.2null;Neurod1null mice, there was no rescue of the

insulin-producing beta cell population (Figure 2C–2F; Figure S3).

Given this similar phenotype between the Nkx2.2null;Neurod1null,

Nkx2.2null;Neurod1Dpanc and Nkx2.2null;Neurod1Dendo we conclude that

the genetic interaction between Nkx2.2 and Neurod1 is required

in the Neurog3+ cells to permit specification of the PP and epsilon

cell populations.

Neurod1 deletion from Neurog3+ endocrine progenitors,
in an Nkx2.2 null background, is insufficient to restore the
alpha cell population

Changes in the beta, PP and epsilon cell populations were

identical when Neurod1 was deleted from either the pancreatic or

endocrine progenitors in the absence of Nkx2.2. However, in

contrast to the Nkx2.2null;Neurod1Dpanc and the Nkx2.2null;Neurod1null,

the glucagon-expressing alpha cell population was only minimally

restored in the Nkx2.2null;Neurod1Dendo (Figure 3A–3D). Morpho-

metric analysis (Figure 3E) and real time PCR for glucagon

expression (Figure 3F) confirmed this observation. We also

established that the partial rescue was not due to incomplete

deletion of Neurod1 by Neurog3-cre, as Neurod1 was reduced at an

early stage of Neurog3 expression; becoming almost undetectable

in the mutant pancreata by P0 (Figure 3G; Figure S4). Taken

together, these data suggest that the genetic interaction between

Nkx2.2 and Neurod1 in Pdx1+ progenitors, prior to Neurog3+
endocrine progenitor formation, is required for complete alpha

cell formation.

Alpha cells are not recovered with deletion of Neurod1
from the glucagon+ cells, in the absence of Nkx2.2

Data from the Nkx2.2null;Neurod1Dpanc and Nkx2.2null;Neurod1Dendo

clearly demonstrate that Neurod1 must be deleted from the Pdx1+
progenitor population and not the Neurog3+ endocrine progenitor

population to allow for complete rescue of alpha cell formation.

Furthermore, the simultaneous loss of Nkx2.2 and Neurod1 was able

to rescue even the earliest glucagon-expressing cell population; the

number of glucagon-expressing cells was equivalent between the

Nkx2.2null;Neurod1null and wildtype littermate controls at E10.5

(Figure 4A–4D; data not shown), Interestingly, the early glucagon-

expressing cells are known to express low levels of Pdx1 (Figure S5;

[24]). To determine whether the alpha cell restoration was due to

deletion of Neurod1 specifically from this glucagon+ (Pdx1low)

population in the absence of Nkx2.2, we deleted Neurod1 in the

glucagon-expressing cells using Glu-cre [32] (Figure S2C, S2D). In

the Nkx2.22/2;Neurod1flox/flox;Glu-cre (denoted as Nkx2.2null;

Neurod1Dalpha), the complement of all hormone-expressing cells in

the pancreas was phenotypically identical to the Nkx2.2null, as

determined by immunofluorescent analysis of islet cell markers

(Figure 5A–5L; data not shown) and real time PCR for

quantitative hormone expression (Figure 5M–5O; Figure S6).

These results suggest that restoration of alpha cells requires the

deletion of Neurod1 in Pdx1+ progenitors that have not yet

committed to the glucagon-expressing lineage. We hypothesize

that Nkx2.2 represses Neurod1 in the Pdx1+ cells to give rise to

Neurog3+ endocrine progenitor cells that are primed to differen-

tiate into the alpha cell fate.

Neurod1 is expressed in a subset of Neurog3+ cells and
glucagon+ cells

Since Neurod1 is a downstream target of Neurog3 [33,34] and

the Neurod1 single knockout phenotype does not manifest until

the end of gestation [26], it was surprising that manipulation of

Neurod1 within the Neurog3+ endocrine progenitors was not

sufficient to rescue the alpha cell fate in the Nkx2.2 null

background. To begin to reconcile these unexpected results, we

re-examined when and where Neurod1 was expressed during

pancreatic development. It was previously reported that Neurod1 is

expressed at E9.5 in the earliest islet precursors, and is often co-

expressed with glucagon [26]. Using the Neurod1 null mouse, which

has a LacZ insertion into the Neurod1 locus [35], we confirmed the

presence of Pdx1+/Neurod1(beta-gal+) cells and glucagon+/

Neurod1(beta-gal+) cells in the earliest pancreatic domain

(Figure 6A; Figure S7A); however, not all glucagon+ cells were

Neurod1+ (Figure 6A, 6E). Consistent with previous reports [28],

this pattern was also evident at E13.5 (Figure 6B, 6E) during the

stage of pancreas development marked by a major wave of

endocrine cell differentiation referred to as the ‘‘secondary

transition’’ [36].

Neurod1 is expressed throughout the epithelial cord region,

overlapping extensively with the Neurog3+ precursor cells (Figure

S7B, S7C). We used expression of the Neurod1:LacZ allele to

identify Neurod1 (beta-gal+) cells that co-expressed Neurog3 at

E9.5 (Figure 6C) and at E13.5 (Figure 6D). Interestingly, the

overlap of Neurog3 and Neurod1 was not exclusive at either age,

and a subset of Neurog3+ cells did not express Neurod1

(Figure 6F). We also detected Neurod1 (beta-gal+) expression in

a small population of Sox9low cells (Figure S7D–S7F), indicating

that Neurod1 expression can be found in cells that are

transitioning into Neurog3 precursor cells [37]. Taken together

these expression analyses identified heterogeneous populations of

Neurog3+ cells and glucagon+ cells based on their expression of

Neurod1, and may suggest that the presence or absence of

Neurod1 could influence downstream cell fate decisions.

Nkx2.2 represses Neurod1 in alpha cells
Our cumulative data suggest that Nkx2.2 may function to

repress Neurod1 in a subset of Pdx1+ pancreatic progenitor cells to

promote specification of the alpha cell fate. We had previously

determined that Nkx2.2 directly activates the Neurod1 promoter in

beta cells, which is consistent with the beta cell phenotypes of the

single and double knockout mice [12,26,28] (Figure 7A). To

determine whether Nkx2.2 could also repress Neurod1 expression in

other (non-beta) cell contexts, we analyzed the effect of Nkx2.2 on

Neurod1 expression in alpha cells in vitro. Utilizing previously

described Neurod1 promoter deletion constructs [28] we deter-

mined that Nkx2.2 repressed the Neurod1 promoter in alphaTC1

cells, which express Nkx2.2 [28] (Figure 7). Specifically, the

repressive activity of Nkx2.2 mapped to the proximal region of the

Neurod1 promoter, which is retained in the NDD2 promoter

construct (Figure 7B). We also determined that, similar to Nkx2.2-

dependent activation of the Neurod1 promoter in beta cells, Nkx2.2

Regulating the Lineage Potential of Neurog3+ Cells
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repression required the presence of at least one of the three Nkx2.2

binding sites; deletion of either region containing these consensus

elements (promoter constructs NDD3, NDD4) resulted in a loss of

Nkx2.2 repression (Figure 7B).

To begin to understand how Nkx2.2 mediates differential cell

context-specific regulatory activities through the same set of

promoter elements, we assessed the ability of Nkx2.2 to recruit

specific cofactors and/or modified histones to the Neurod1

promoter in alpha versus beta cell lines. We previously demon-

strated that Nkx2.2 preferentially recruits Grg3 and a large co-

repressor complex to the inactive Arx promoter in beta cells, but

this complex was not present on the same promoter region in

alpha cells, where Arx was actively transcribed [14]. Surprisingly,

neither Grg3 nor HDAC1 were recruited to the Neurod1 promoter

in either alpha or beta cell lines (data not shown), suggesting that

Nkx2.2 mediates Neurod1 regulation through an alternative

mechanism. Interestingly however, we determined that histone

H3K4me3 preferentially occupied the Neurod1 promoter in beta

cells, and this differential binding was dependent upon the

phosphorylation state of Nkx2.2 (Figure 7C). Histone

H3K27me3 was not significantly present at the Neurod1 promoter

in either alpha or beta cell lines (Figure 7D). These results suggest

Figure 2. The genetic interaction of Nkx2.2 and Neurod1 is required in the Neurog3+ endocrine cells to specify PP and epsilon cells.
Pancreatic polypeptide-expressing PP cells (A) and ghrelin-expressing epsilon cells (G) were quantified by morphometric analysis, comparing
wildtype, Neurod1Dendo, Nkx2.2null, Nkx2.2null;Neurod1Dendo, Nkx2.2null;Neurod1Dpanc, and Nkx2.2null;Neurod1null at P0. Cell numbers were quantified
relative to total pancreas area and displayed normalized to wildtype. Representative sections stained for ghrelin and insulin illustrate the change in
ghrelin-expressing cells between genotypes, and the absence of insulin-expressing cells the Nkx2.2null and Nkx2.2null;Neurod1Dendo (C–F; white bar
indicates 50 microns; DAPI marks all nuclei). The expression of pancreatic polypeptide (Ppy) (B) and ghrelin (Ghr) (H) was determined for all genotypes
by real time PCR (P0; N = 3–7). Relative mRNA expression was normalized to the housekeeping gene, cyclophilinB. Data are represented as mean+/
2SEM. * p,0.05; ** p,0.01; *** p,0.001.
doi:10.1371/journal.pgen.1003278.g002

Regulating the Lineage Potential of Neurog3+ Cells
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that while Nkx2.2 promotes activation of Neurod1 in beta cells [28],

Nkx2.2 appears to prevent the activation of the Neurod1 promoter

in alpha cells. This finding is consistent with the idea that Nkx2.2

is required to prevent expression of Neurod1 in a subset of Pdx1+
progenitor cells and then maintain this repression in ‘‘alpha-cell

competent’’ Neurog3-expressing cells, and subsequently mature

alpha cells.

Discussion

Single deletion mutants have identified the importance of a

number of transcription factors for the process of endocrine cell

differentiation (reviewed in [38]). Interestingly, very few factors

when deleted affect only one islet cell type. Therefore we can

deduce that each regulatory protein has multiple roles during

development and it is likely that different combinations of these

factors must be simultaneously present or absent within the

endocrine progenitor cells to permit the specification of alpha,

beta, delta, epsilon or PP cells. The generation of compound

deletion mutants would assist in deciphering this combinatorial

transcription factor code. One such example is the regulatory

interaction between Nkx2.2 and the alpha cell transcription factor

Arx; simultaneous deletion revealed that these factors differentially

cooperate to affect the specification of several islet cell lineages

[23,24]. In this current study, we explore the relative roles of

Nkx2.2 and the beta cell transcription factor Neurod1. The single

deletion mutants for Nkx2.2 or Neurod1 display alterations in several

islet cell types [12,26]; however, these mutants are noted for their

severe beta cell phenotypes. In particular, Nkx2.2 and Neurod1

Figure 3. Alpha cells are only minimally restored in the
Nkx2.2null;Neurod1Dendo. Pancreatic tissue was analyzed by immuno-
fluorescence for the presence of glucagon-expressing cells at
P0, comparing wildtype (A), Neurod1Dendo (B), Nkx2.2null (C), and
Nkx2.2null;Neurod1Dendo (D). Amylase expression marks exocrine tissue
in all genotypes (A–D; white bar indicates 50 microns; DAPI marks all
nuclei). Glucagon-expressing alpha cells were quantified by

morphometric analysis, relative to total pancreas area and displayed
normalized to wildtype (E). The expression of glucagon (Gcg) (F) and
Neurod1 (G) was measured by real time PCR using RNA from P0
pancreas for all genotypes (N = 3–7). Relative mRNA expression was
normalized to the housekeeping gene, cyclophilinB. Data are repre-
sented as mean+/2SEM. * p,0.05; ** p,0.01; *** p,0.001.
doi:10.1371/journal.pgen.1003278.g003

Figure 4. Alpha cells are present in the early pancreatic domain
of the Nkx2.2null;Neurod1null double-knockout mouse. Sections
from E10.5 wildtype (A) and Nkx2.2null;Neurod1null (B) embryos were
stained for Pdx1 to identify the pancreatic domain. Adjacent sections
were stained for FoxA and glucagon (gluc), to identify alpha cells in the
early pancreatic domain in both the wildtype (C) and Nkx2.2null;
Neurod1null (D). White bar indicates 50 microns. DAPI marks all nuclei.
doi:10.1371/journal.pgen.1003278.g004

Regulating the Lineage Potential of Neurog3+ Cells
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are necessary for beta cell specification and maintenance,

respectively [12,26]. Interestingly, simultaneous deletion of

Nkx2.2 and Neurod1 did not affect the respective beta cell

phenotypes of the single mutants, but rather identified complex

genetic interactions between these factors for the specification of

alpha, PP and epsilon cells [25]. In this set of experiments, we have

determined the cellular locations of the genetic interactions

between Nkx2.2 and Neurod1, and have uncovered a possible

mechanism for how these transcription factors contribute to the

process of alpha cell specification. Given the increasing number of

Figure 5. Alpha cells are not rescued with deletion of Neurod1 in glucagon+ cells, in the absence of Nkx2.2. Pancreatic tissue from
wildtype, Neurod1Dalpha, Nkx2.2null, and Nkx2.2null;Neurod1Dalpha was analyzed by immunofluorescence for expression of the islet hormones glucagon
(gluc), ghrelin (ghr) and insulin (ins) at P0 (A–L; white bar indicates 50 microns; DAPI marks all nuclei). Amylase (amyl) expression marks exocrine
tissue in all genotypes (A–D). The quantitative expression of glucagon (Gcg) (M), ghrelin (Ghr) (N), and pancreatic polypeptide (Ppy) (O) was determined
by real time PCR using RNA extracted from pancreas (P0; N = 3–7). Relative mRNA expression was normalized to the housekeeping gene, cyclophilinB.
Data are represented as mean+/2SEM. * p,0.05; ** p,0.01; *** p,0.001.
doi:10.1371/journal.pgen.1003278.g005
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studies identifying transdifferentiation between alpha cells and

beta cells [10,14,39], refining our understanding of alpha cell

development may provide insight into the unique relationship

between alpha and beta cells, and ultimately aid in understanding

how beta cells develop in both the normal and diseased state.

Knowing that all endocrine cell types are derived from

Neurog3-expressing cells [5,6], we hypothesized that the genetic

interaction between Nkx2.2 and Neurod1 would be required in

the Neurog3+ endocrine progenitors to specify islet cell fates. In

support of this hypothesis, deletion of Neurod1 from the Neurog3+
endocrine progenitor cells in an Nkx2.2 null background

(Nkx2.2null;Neurod1Dendo) was sufficient to rescue the relative ratios

of the ghrelin-expressing epsilon cells and pancreatic polypeptide-

expressing PP cells when compared to the Nkx2.2 null phenotype.

This demonstrates that the genetic interaction between Nkx2.2

and Neurod1 is required within the Neurog3+ endocrine

progenitor population to permit appropriate specification of the

PP and epsilon cell populations. In contrast, although alpha cells

were completely rescued in the Nkx2.2null;Neurod1Dpanc, we observed

only a minimal restoration of glucagon+ cells in the

Nkx2.2null;Neurod1Dendo, suggesting that alpha cell recovery requires

the genetic interaction between Nkx2.2 and Neurod1 to occur

within the Pdx1+ pancreatic progenitors, prior to Neurog3+
endocrine progenitor cell formation. This finding would support

the concept proposed by Degraz and Herrera [7] that the

Neurog3+ endocrine progenitors represent a heterogeneous

population of unipotential cells that are already committed to

become a single hormone-producing cell fate.

If all Neurog3+ progenitors are indeed unipotent, then how do

we explain rescue of the PP and ghrelin cell ratios that resulted

from manipulating gene expression after the Neurog3+ cells are

formed? It is possible that there are both unipotential and

multipotential endocrine progenitor populations. Alternatively the

‘‘pro-PP’’ or ‘‘pro-ghrelin’’ Neurog3+ populations may retain

more plasticity throughout development. The latter explanation is

consistent with the findings of Johansson et al., [9], which

demonstrated that as development proceeds the progenitor cells

are less competent to produce alpha cells and instead favor the

generation of other endocrine cell types. This would suggest that

although the alpha cell fate decision can be made at multiple

points during development, the ability to generate alpha cells is

most robust in the earliest pancreatic progenitors and becomes

restricted over time. Alternatively, it is possible that later born

progenitors retain a certain degree of plasticity that accounts for

their ability to respond to lineage manipulations after Neurog3+
cell specification has occurred.

The inability to rescue alpha cells by simultaneously removing

Nkx2.2 and Neurod1 from the Neurog3+ precursor population,

suggests that the genetic interaction between Nkx2.2 and Neurod1

is required in the Pdx1+ progenitor population, prior to

acquisition of Neurog3 expression. However, it remains possible

that there is a spectrum of Neurog3-cre activity within a Neurog3+
precursor cell, with Cre-based inactivation reaching its peak in the

middle or late in the lifespan an individual cell. If this were the

case, and the genetic interaction between Nkx2.2 and Neurod1 is

required only early in the lifespan of a Neurog3+ precursor to

rescue alpha cells, then Neurog3-cre activity may occur too late

within this population to affect its differentiation potential.

Although we are unable to resolve the kinetics of Cre activity in

the lifespan of a single cell, we can demonstrate co-expression of

Neurog3, Cre and R26R reporter activity, suggesting that

although Neurog3 protein expression is transient, Cre is present

and active in most of the Neurog3+ population during the time

window when Neurog3 is expressed (Figure S2B). Furthermore,

published lineage studies using this Neurog3-cre allele demonstrated

that all endocrine cells of the islet, including the glucagon-

expressing alpha cells, are labeled by a Cre-dependent R26R:LacZ

reporter [31]. This would suggest that even if alpha cells can only

Figure 6. Neurod1 is expressed in a subset of endocrine progenitor cells. Utilizing the Neurod1:LacZ knock-in allele (Neurod1LacZ/+) and
immunofluorescence on tissues sections from E9.5 and E13.5 embryos, the expression pattern of Neurod1 (marked by beta-galactosidase; beta-gal)
and glucagon (A, B), and Neurod1 and Neurog3 (C, D) was determined. DAPI marks all nuclei. All images are confocal. White bar indicates 50 microns.
Boxes denote area magnified for inset, which are +1.75zoom of lower power image. Top and right rectangular panels represent a Z projection of at
least 10 stack pictures at the level of intersection of the red/green crosshairs. (E) The percentage of each of the populations of glucagon+ cells, or (F)
Neurog3+ cells was quantitated at E9.5 and E13.5. Data are represented as mean+/2SEM.
doi:10.1371/journal.pgen.1003278.g006
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Figure 7. Nkx2.2 represses the Neurod1 promoter in alphaTC1 cells. (A) Schematic representation of the Neurod1 minimal promoter, with the
areas previously identified to be activated by Nkx2.2 denoted with grey boxes. (B) Luciferase activity was assessed in alphaTC1 cells transfected with
Neurod1 promoter constructs (NDfull, NDD2, NDD3, NDD4) in addition to pcDNA3 alone or Nkx2.2. Nkx2.2-dependent activity was determined based
on promoter region deletion. Luciferase activity was determined 48 hours post-transfection. Luciferase readings were normalized to Renilla luciferase
values. (C) H3K4me3 is enriched in alpha and beta cells, although at significantly lower levels in alpha cells. The Nkx2.2 dephosphorylated mutant (S-
11-A) results in a significant increase in H3K4me3 enrichment in alpha cells, comparable to levels observed in beta cell. Conversely, the Nkx2.2
phosphorylation mutant (S-11-D) results in a significant decrease in H3K4me3 in beta cells, comparable to levels in alpha cells. (D) The repressive
H3K27me3 mark is not present on the Neurod1 promoter in alpha or beta cells (n = 3). Data was normalized to Gapdh. All data are represented as
mean+/2SEM. * p,0.05.
doi:10.1371/journal.pgen.1003278.g007
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be differentiated from ‘‘young’’ Neurog3+ precursors, there is

sufficient Cre activity at this earliest stage during the lifespan of a

Neurog3+ cell to genetically label the alpha cell population.

Our failure to recover alpha cells by deleting Neurod1 in a

glucagon-expressing population may also be due to the inefficiency

of the Glu-cre allele, especially in Nkx2.2null embryos that have a

severe reduction in alpha cell numbers. However, we detected

similar levels of Glu-cre activity in wildtype and Nkx2.2null

pancreata, which should have been sufficient to permit any

possible alpha cell rescue (Figure S2C–S2D; see Materials and

Methods). Although caveats exist with the use of Cre/lox

technologies, these are currently the best tools available to assess

spatial and temporal protein function.

Interestingly, we do observe some rescue of alpha cells in the

Nkx2.2null; Neurod1Dendo embryos. This could be due to deletion of

Neurod1 in a subset of Neurog3+ progenitors that have not yet

become restricted in their ability to differentiate into alpha cells.

Alternatively, the glucagon-expressing cells recovered in the

Nkx2.2null;Neurod1Dendo may represent alpha cells that form inde-

pendent of Neurog3 function; such an alpha cell population has

been previously documented [40,41]. On the other hand, the

recovered alpha cells may actually represent a distinct subpopu-

lation of glucagon-expressing cells that express Neurod1, which

would be consistent with our identification of a subpopulation of

glucagon+/Neurod1+ cells. While these explanations are not

mutually exclusive, the identification of unique alpha cell markers

and the generation of genetic tools utilizing these markers, would

be necessary to clarify the existence of subpopulations of alpha

cells, as well as the factors involved in the generation of these

distinct populations.

Our findings also suggest that Nkx2.2 must regulate Neurod1

differentially in the Pdx1+ progenitor population in the early

pancreatic epithelium in order to initiate the specification of

different populations of Neurog3-expressing cells. In particular,

the prevention of Neurod1 activation by Nkx2.2 would result in

alpha cell formation, while the activation of Neurod1 by Nkx2.2

results in beta cell formation (Figure 8). This is compatible with

our discovery that not all Neurog3+ cells express Neurod1, and

further supports the idea that the Neurog3+/Nkx2.2+/Neurod1+
cells most likely become beta cells, whereas Neurog3+/Nkx2.2+/

Neurod12 cells would become alpha cells. Ideally, we would test

this hypothesis by quantifying the increase in the number of

Pdx1+/Neurod1+ pancreas progenitors and/or Neurog3+/Neu-

rod1+ endocrine progenitors expected to be observed in the

Nkx2.2null pancreas; however, this analysis is confounded by the

simultaneous loss of the Neurod1+ pro-beta cell progenitor

populations in the Nkx2.2null pancreas. Instead, we used an in vitro

approach to determine whether it was possible for Nkx2.2 to

differentially regulate the Neurod1 promoter in different cellular

contexts. We had previously demonstrated that Neurod1 is activated

by the cooperative binding of Nkx2.2 and Neurog3 specifically in

beta cells [28]. Given the lack of availability of an appropriate

pancreatic progenitor cell line, we reasoned that a genetic

interaction between Nkx2.2 and Neurod1 that was initiated in a

‘‘pro-alpha cell’’ progenitor would be maintained in the mature

alpha cell. We utilized alphaTC1 cells, which express Nkx2.2 [28],

to demonstrate that Nkx2.2 prevents activation of Neurod1 in alpha

cells. Highlighting the complexity of gene regulation, the cell type

specific regulation of Neurod1 by Nkx2.2 appears to function

through a mechanism that is different from Nkx2.2 regulation of

the Arx gene [14]. This may reflect the mechanism by which

Nkx2.2 functions as an activator and a repressor in the same cell

type and/or the presence or absence of cell-specific co-regulatory

proteins. As we gain the molecular tools to study transcriptional

and epigenetic mechanisms in purified primary pancreatic cell

populations, we hope to elucidate the complex regulatory

interactions that are required to form and maintain appropriate

islet-cell specific gene expression.

While the process of endocrine specification likely requires the

concerted action of many factors, our data suggest a mechanism

that involves the differential regulation of Neurod1 by Nkx2.2 in the

Pdx1+ pancreatic progenitor cells to direct the subsequent

endocrine progenitors to become specific islet cell types. The

generation of tools to identify, separate and analyze different

subpopulations of Neurog3+ progenitor cells would conclusively

determine whether each hormone+ endocrine cell type is derived

from a specific unipotent subpopulation of endocrine progenitor

cells, each bearing a unique gene profile.

Using the pancreas as a model system, our study has provided a

prime example of how lineage decisions are established in the

developing epithelium. The cooperative action of multiple

transcription factors within the early progenitor cells can dictate

the fate of subsequent cell lineages. Altering the regulation or

complement of this set of factors within the progenitor populations

can ultimately skew cell lineage specification. These data have

important implications for the current efforts to generate

pancreatic cells in vitro for therapeutic use in diabetic patients.

Understanding the cooperative transcription factor code will make

it possible to initiate the appropriate program in the Pdx1+
pancreatic progenitor cells necessary to correctly prime the

Neurog3+ endocrine progenitor cells and generate pools of

functional, single hormone-expressing islet cell types in vitro.

Materials and Methods

Mice
All experiments involving mice were approved by the Columbia

University Institutional Animal Care and Use Committee and

performed in accordance with the National Institutes of Health

guidelines for the care and use of animals. All mouse strains were

previously generated, and were bred and maintained on an

outbred Black Swiss background (NTac:NIHBS, Taconic). Cell-

specific Neurod1 null mice were generated by intercrossing

Neurod1tm1Kan (Neurod1flox/flox; [42]) and either Tg(Ipf1-cre)1Tuv

(Pdx1-cre; [29]), Tg(Neurog3-cre)C1Able (Neurog3-cre; [31]), or Glu-cre

([32]) mice. Neurod1flox/flox;Pdx1-cre and Neurod1flox/flox;Neurog3-cre

mice died postnatal, similar to the Neurod1 null (data not shown;

[30]). Certain experiments required the use of either Gt(ROSA)26-

Sortm9(CAG-tdTomato)Hze (R26R:Tomato; [43]) or Gt(ROSA)26Sortm1Sor

(R26R:LacZ; [44]) reporter alleles. The Pdx1-cre will delete Neurod1

in all pancreatic progenitor cells; however, the Pdx1 expression

domain also includes a portion of the stomach and the duodenum

[45,46]. We and others have previously reported the early and

relatively non-mosaic activity of the Pdx1-cre allele ([29,47]; Figure

S2A). Previous characterization of the Neurog3-cre allele demon-

strated almost complete co-expression of Neurog3 and Cre and

sufficient Cre activity to lineage label all endocrine cells within an

islet [31]. Consistent with this published analysis, quantification of

cells co-expressing Neurog3 and the LacZ reporter in a Neurog3-

Cre;R26R:LacZ E15.5 embryo indicated 74.82% Cre efficiency

(268 Neurog3+ beta2 gal+/349 total Neurog3+ cells; calculations

were performed as described below (Figure S2B). Similar

assessment of the Glu-cre mice demonstrated that the Glu-cre allele

is active in approximately 30–35% of alpha cells; notably this

degree of activity is unchanged in the Nkx2.2null background,

despite the overall reduction in alpha cell numbers (Figure S2C,

S2D).
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The heterozygous mice (Neurod1flox/+;Pdx1-cre) were crossed to

Nkx2-2tm1Jlr knock-in mice [12] to generate compound heterozy-

gotes. Embryos were collected from timed matings between

Nkx2.2+/2;Neurod1flox/+;Pdx1-cre and Nkx2.2+/2;Neurod1flox/flox or

Nkx2.2+/2;Neurod1flox/+;Neurog3-cre and Nkx2.2+/2;Neurod1flox/flox

or Nkx2.2+/2;Neurod1flox/+;Glu-cre and Nkx2.2+/2;Neurod1flox/flox

mice. Noon on the day of appearance of a vaginal plug was

considered embryonic day (E) 0.5. The experimental genotypes

of wildtype, Nkx2.22/2 (Nkx2.2null), Neurod1flox/flox;

Pdx1-cre (Neurod1Dpanc), Nkx2.22/2;Neurod1flox/flox;Pdx1-cre

(Nkx2.2null;Neurod1Dpanc), Neurod1flox/flox;Neurog3-cre (Neurod1Dendo),

Nkx2.22/2;Neurod1flox/flox;Neurog3-cre (Nkx2.2null;Neurod1Dendo),

Neurod1flox/flox;Glu-cre (Neurod1Dalpha), and Nkx2.22/2;

Neurod1flox/flox;Glu-cre (Nkx2.2null;Neurod1Dalpha) were studied.

Litters were assessed at postnatal day (P) 0. For expression

studies, the Neurod1tm1Jle LacZ knock-in (Neurod1LacZ/+ or

Neurod1null) [35] was used (also in combination with the

Nkx2.2null thereby producing Neurod1null;Nkx2.2null double

knockout embryos; DKO), and embryos were assessed at

E9.5, E10.5, E13.5 and P0. All embryo dissections were

carried out in cold PBS, using a dissecting microscope (Leica

MZ8). A portion of each embryonic tail or yolk sac was

detached from the embryo, digested with proteinase K, and

DNA extracted for genotyping purposes. Genotyping was

carried out with standard conditions and primers as previously

described [12,29,31,32,35,42].

Real-time PCR
Pancreas was dissected from each embryo and stored in

RNAlater (Ambion) until RNA was extracted using the NucleoS-

pin RNAII Kit (Clontech). Subsequently, cDNA was made with

equal amounts of RNA for each sample (Superscript III Kit,

Invitrogen, CA). Real time PCR was performed using TaqMan

gene expression assays (Applied Biosystems) for glucagon

(Mm00801712_m1), ghrelin (Mm00445450_m1), somatostatin

(Mm00436671_m1), insulin1 (Mm01950294_s1), insulin2

Figure 8. A proposed model for the involvement of Nkx2.2 and Neurod1 in alpha and beta cell specification. Taking into account both
our in vivo and in vitro data, we propose that specific combinations of transcription factors acting in the progenitor cells within the early pancreatic
epithelium set up the competency of the unipotent endocrine progenitors to become specific islet cell types. Specifically, we propose a model
whereby Nkx2.2 must repress Neurod1 in a Pdx1+ progenitor, and this repression maintained in the Neurog3+ endocrine progenitor, thereby
permitting glucagon-expressing alpha cell specification. Conversely, activation of Neurod1 by Nkx2.2 permits beta cell formation.
doi:10.1371/journal.pgen.1003278.g008
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(Mm00731595_gH), pancreatic polypeptide (Mm00435889_m1) and

Neurod1 (Mm01280117_m1). CyclophilinB was used as a control

housekeeping gene, and was assayed using a probe and primer set

previously described [25]. A standard two-step real time PCR

program was used for all genes assessed, with an annealing

temperature of 61uC and 40 cycles of amplification (CFX96

RealTime System C1000 Thermal Cycler, Biorad). All gene

expression values were normalized to the internal control gene,

cyclophilinB, and relative quantification was performed using a

standard curve from embryonic age-matched cDNA. Statistical

analyses were conducted with Prism Software (GraphPad

Software, La Jolla, CA) using both the Mann-Whitney test and

the Student t-test. Equivalent results were obtained; t-test results

were reported in all Figures.

Immunofluorescence
Immunofluorescence was performed according to standard

protocols, on E9.5, E10.5, E13.5, E15.5 and P0 whole embryos

that were embedded in OCT, after fixation with 4% PFA and

cryopreservation in 30% sucrose. Transverse frozen sections

(8 mm) were cut and mounted on glass slides. Sections were

stained with rabbit a-ghrelin (1:800; Phoenix Pharmaceuticals,

CA), goat a-ghrelin (1:800; Santa Cruz), guinea pig a-glucagon

(1:1000; Linco/Millipore, MA), guinea pig a-insulin (1:1000;

Millipore), rabbit a-insulin (1:1000; Cell Signaling Technology),

rabbit a-somatostatin (1:200; Phoenix Pharmaceuticals), rabbit a-

pancreatic polypeptide (1:200; Zymed), rabbit a-amylase (1:1000;

Sigma), rabbit a-Pdx1 (1:1000; Millipore), guinea pig a-Pdx1

(1:500; BCBC), rabbit a-Neurog3 (1:500; BCBC), goat a-

Neurog3 (1:500; BCBC), goat a-FoxA (1:1000; Santa Cruz),

rabbit a-sox9 (1:500; Chemicon), and chicken a-beta-galactosi-

dase (1:250; Abcam). Donkey a-guinea pig-Cy2, -Cy3 or -Cy5, a-

rabbit-Cy2 or -Cy3, a-chicken-Cy3, and a-goat Cy2 or -Cy5

secondary antibodies were used (1:400, Jackson ImmunoRe-

search). DAPI (1:1000; Invitrogen) was applied for 30 minutes

following secondary antibody incubation. Images were acquired

on a Leica DM5500 or Leica 510 confocal microscope.

Morphometric analysis was performed by immunostaining every

10th section throughout each embryo (N = 3 or 4 for each

genotype). For quantification of individual hormone-expressing

cells at P0, cell number was assessed versus total pancreas as

defined by amylase area. For quantification of hormone-

expressing cells at E10.5, cell number was assessed versus total

pancreas as defined by Pdx1 area. Pancreas area was calculated

using ImagePro software.

RNA in situ hybridization
RNA in situ hybridization was performed on 8 mm sections

mounted on glass slides as previously described [25] using an

antisense riboprobe transcribed from linearized plasmid. The

riboprobe for Neurod1 was generated from the plasmid

pCS2:MTmNeuroD1 (J. Lee). RNA in situ hybridization was

performed on pancreas tissue sections from Neurod1Dendo and wildtype

littermate controls at E10.5 and Neurog3-cre;R26RLacZ at E15.5.

Luciferase reporter assays
The Neurod1-2.2 kb minimal promoter was fused to the firefly

luciferase open reading frame in the pGL3 Basic vector (Promega).

The alphaTC1 cells were grown in 12-well plates. The design of all

Neurod1 promoter deletion constructs and the transfection condi-

tions were previously described [28]. Firefly luciferase readings

were normalized to Renilla luciferase values. A Student t-test was

performed to determine significance.

Chromatin immunoprecipitation
Point mutations were made to 3xmyc-tagged Nkx2.2 cDNA

using the QuickChange II Site Directed Mutagenesis kit (Agilent

Technologies) with the following primers S-11-A: (FWD) CAA-

CACAAAGACGGGGTTTGCTGTCAAGGACATCTTGGA-

C, (REV) GTCCAAGATGTCCTTGACAGCAAACCCCGT-

CTTTGTGTTG; S-11-D: (FWD) CAACACAAAGACGGG-

GTTTGATGTCAAGGACATCTTGGAC, (REV) GTCCAA-

GATGTCCTTGACATCAAACCCCGTTTTGTGTTG. Wild

type or mutated Nkx2.2 cDNA encoding a triple myc epitope

tag (250 ng) was transfected into betaTC6 or alphaTC1 cells using

X-treme gene HP (Roche) according to manufacturer’s protocol.

Chromatin was prepared using the ChIP-IT express kit (Active

Motif). Immunoprecipitation protocol was modified from Tuteja

et al. [48]. In brief, immunoprecipitation was performed using the

isolated chromatin diluted in ChIP dilution buffer with 5

micrograms of either mouse anti-H3K27me3 (Abcam) or mouse

anti-H3K4me3 (Abcam) antibodies while rotating overnight at

4uC. The following day antibody/chromatin complexes were

pulled down using ChIP grade protein G magnetic beads (Cell

Signaling). After washing, antibody/chromatin complexes were

eluted from the beads and allowed to rotate at room temperature

for 15 minutes. NaCl (5 micromolar) was added to the eluate and

incubated at 65uC overnight. The following day Tris-HCl (1 M,

pH 7.5), EDTA (0.5 M) and proteinase K (10 mg/mL) were

added and allowed to incubate at 37uC for 1 hour. Samples were

then purified using the QIAquick PCR purification kit (Qiagen).

Quantitative analysis of ChIP products was performed using

SYBR Green fluorescence with primers for Gapdh (FWD –

CTCCACGACATACTCAGCACC; REV – TCAACGGCA-

CAGTCAAGGC) or Neurod1 (FWD – AAAGGGTTAATCT-

CTCCTGCGGGT; REV - CATGCGCCATATGGTCTTCC-

CGGT).

Supporting Information

Figure S1 Morphometric and expression analysis of the

Nkx2.2null;Neurod1Dpanc. Glucagon-expressing alpha cells (A), ghre-

lin-expressing epsilon cells (B) and pancreatic polypeptide-

expressing PP cells (C) were quantified by morphometric analysis,

comparing wildtype, Neurod1Dpanc, Nkx2.2null, Nkx2.2null;Neurod1Dpanc,

and Nkx2.2null;Neurod1null at P0. Cell numbers were quantified

relative to total pancreas area and displayed normalized to

wildtype (N = 3–4). The quantitative expression of insulin1 (Ins1)

(D), insulin2 (Ins2) (E), and somatostatin (Sst) (F) was determined by

real time PCR using RNA extracted from wildtype, Neurod1Dpanc,

Nkx2.2null, Nkx2.2null;Neurod1Dpanc, and Nkx2.2null;Neurod1null pancreas

(P0; N = 3–8). Relative mRNA expression was normalized to the

housekeeping gene, cyclophilinB. Data are represented as mean+/

2SEM. * p,0.05; ** p,0.01; *** p,0.001.

(TIF)

Figure S2 Expression analysis in the Pdx1-cre, Neurog3-cre and Glu-

cre alleles. A small population of Neurog3-expressing cells at E12.5

was observed to not co-express beta-gal (A). Individual channels

were separated in side panel to better visualize the Neurog3 cells

that do not express beta-gal. In e15.5 pancreata containing Neurog3-

cre and the R26R;LacZ reporter allele, the majority Neurog3-

expressing cells also express beta-gal, a marker of cre activity (B).

Cells expressing Neurog3, Cre, and beta-gal were also observed,

identifying that both cre expression and cre activity are present

within Neurog3-expressing cells (C; inset). Using the R26R:Tomato

reporter allele, Glu-cre activity was assessed in both the wildtype (D)

and Nkx2.2null;Neurod1Dalpha (E). The glucagon+ cells were not

rescued in this compound mutant, but this was not due to a lack
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of cre activity from the Glu-cre allele. Boxes denote magnified areas

(+1.75zoom of low power image). White bars indicate 50 microns.

(TIF)

Figure S3 Insulin expression in the Nkx2.2null;Neurod1Dendo. The

quantitative expression of insulin1 (Ins1) (A) and insulin2 (Ins2) (B)

was determined by real time PCR using RNA extracted from

wildtype, Neurod1Dendo, Nkx2.2null, and Nkx2.2null;Neurod1Dendo pan-

creas (P0; N = 3–7). Relative mRNA expression was normalized to

the housekeeping gene, cyclophilinB. Data are represented as

mean+/2SEM. * p,0.05; ** p,0.01; *** p,0.001.

(TIF)

Figure S4 Neurod1 inactivation by Neurog3-cre in the early

pancreatic bud. RNA in situ hybridization on pancreas sections

from E10.5 wildtype (A) and Neurod1Dendo (C) embryos

identified a reduction in Neurod1 by Neurog3-cre even at this

early stage of development. Adjacent tissue sections were

stained for Pdx1 (B, D) to identify the pancreas area (encircled

with dashed lines). White bar indicates 50 microns. DAPI

marks all nuclei.

(TIF)

Figure S5 Alpha cells express low levels of Pdx1. A sagittal

section through the dorsal pancreas of a wildtype E10.5 embryo

was stained for Pdx1 and glucagon. Glucagon+ cells were observed

to express low levels of Pdx1. Box denotes area magnified for inset

but was imaged without DAPI; +1.75 zoom of low power image).

White bar indicates 50 microns. DAPI marks all nuclei.

(TIF)

Figure S6 Insulin expression in the Nkx2.2null;Neurod1Dalpha. The

quantitative expression of insulin1 (Ins1) (A) and insulin2 (Ins2) (B)

was determined by real time PCR using RNA extracted from

wildtype, Neurod1Dalpha, Nkx2.2null, and Nkx2.2null;Neurod1Dalpha

pancreas (P0; N = 3–7). Relative mRNA expression was normal-

ized to the housekeeping gene, cyclophilinB. Data are represented as

mean+/2SEM. * p,0.05; ** p,0.01; *** p,0.001.

(TIF)

Figure S7 Neurod1 expression at specific developmental time-

points. Utilizing the Neurod1:LacZ knock-in allele (Neurod1LacZ/+)

and immunofluorescence on tissues sections, Neurod1 (marked by

beta-galactosidase; beta-gal) cells were identified to co-express

Pdx1 at E9.5 (A). The overlap of Neurod1 and Neurog3 expression

was identified at E15.5 by RNA in situ hybridization for Neurod1 (B)

and immunofluorescent staining of Neurog3 (C) on the adjacent

tissue section from a Neurog3-cre;R26R:LacZ embryo. A subset of

Neurod1 cells that co-express Sox9 were also identified at E13.5

(D); the Sox9 (E) and beta-gal (F) channels were separated to

visualize co-expressing cells more clearly. White bars indicate

50 microns. Boxes denote area magnified for inset, which are

+1.75 zoom of lower power image.

(TIF)
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