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Fucoidan represents fucose-rich sulfated polysaccharides derived from brown

seaweeds, which exerts various biological activities applicable for functional foods and

therapeutic agents. The objective of the present study was to investigate in vivo effects of

fucoidan extracted from Okinawa mozuku (Cladosiphon okamuranus), common edible

seaweed in Japan, on immune responses and microbiota composition in zebrafish. We

treated larvae and adult zebrafish with Okinawa mozuku (OM) fucoidan by immersion

(100 and 500µg/mL, 3 days) and by feeding (3 weeks), respectively. The effect of

OM fucoidan on immune responses in zebrafish larvae was evaluated by live imaging

of neutrophils and macrophages as well as quantitative polymerase chain reaction

of pro- and anti-inflammatory cytokine genes. Whole microbiota of zebrafish larvae

and intestinal microbiota of adult zebrafish treated with OM fucoidan were analyzed

by Illumina MiSeq pair-end sequencing of the V3–V4 region of 16S rRNA genes.

Fucoidan treatment only slightly affected the composition of the larvae microbiota and the

number of neutrophils andmacrophages, while pro- and anti-inflammatory cytokine gene

expression levels were upregulated in the larvae treated with 500µg/mL OM fucoidan.

In contrast, feeding of OM fucoidan clearly altered the intestinal microbiota composition

of adult zebrafish, which was characterized by the emergence and predominance of

multiple bacterial operational taxonomic units (OTUs) affiliated with Rhizobiaceae and

Comamonadaceae at the expense of E. coli-related Enterobacteriaceae, the dominant

OTUs throughout the studied samples. These changes were accompanied by decreased

expression levels of pro-inflammatory cytokine il1b in the intestines of the adult zebrafish.

Our current study provides the first insights into in vivo modulatory effects of fucoidan

on microbiota and immune responses of unchallenged zebrafish, which underscores the

potential of fucoidan to play a modulatory role in the diet–microbiota–host interplay.
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INTRODUCTION

Fucoidan represents polysaccharides consisting of α-(1→3) or
α-(1→4) -linked L-fucose residues with sulfate substitutions,
which occasionally contain acetate, glucuronic acid, and
monosaccharides such as mannose and galactose (1). Fucoidan
from different algal origins has been reported to exhibit unique
properties such as antiinflammatory, antiallergic, antitumor, or
antiviral effects (2, 3) and is therefore recognized as a prospective
ingredient for functional foods and for therapeutic agents (3, 4).
Although beneficial effects of fucoidan have been well-studied
and described, daily intake of fucoidan from brown seaweed is
still not common in Western countries. In Japan, daily seaweed
consumption can exceed ∼5 g/day (5) and the brown seaweed
mozuku represents one of the most common edible seaweeds,
which is usually consumed raw. Okinawa mozuku (Cladosiphon
okamuranus) is exclusively cultivated and used in the traditional
cuisine on the Okinawan Islands in Japan, a region that is
well-known for its high prevalence of centenarians and the
general healthy states of its elderly population (6). Fucoidan
extracted from Okinawa mozuku (OM fucoidan) has a simple
structure with a backbone of α-(1→3) fucopyranose, substituted
with sulfate and α-glucuronic acid at ∼50 and 17% of its
residues, respectively (7). Similar to what has been shown for
fucoidan derived from other origins, OM fucoidan has been
reported to exert antitumor and antiviral effects. In a murine
model, antitumor activity has been attributed to the fucoidan-
mediated stimulation of macrophages and natural killer cells
(8, 9), while antiviral activities seem to be more complex and
may involve both host–virus and virus–fucoidan interactions.
Previous studies have reported antiviral activities of OM fucoidan
against human T-cell leukemia virus type 1 (HTLV-1) (10, 11),
dengue virus type 2 (12), hepatitis C (13), Newcastle disease virus
(DSV) in poultry (14, 15), and canine distemper virus (CDV)
(16). Collectively, these studies support the high potential of OM
fucoidan as a therapeutic agent in viral infections.

Meanwhile, effects of OM fucoidan on the intestinal
microbiota remain poorly understood. Polysaccharides such as
fucoidan have a potential to not only mechanistically interfere
with host–microbiota interactions but also to serve as nutrition
for bacteria constituting the microbiota (17, 18). Since no
enzymes digesting fucoidan have been found in animal intestinal
tracts, fucoidan can reach the lower intestinal tract intact and
may confer beneficial effects on microbiota as prebiotics (19–
21). Importantly, some studies have suggested that bioactivities
of fucoidan may be attributable to its modulatory effects
on gut microbiota. A recent study has shown that fucoidan
from Undaria pinnatifida can affect host lipid metabolism by
modulating the gut microbiota composition (22), which may also
explain the effect of OM fucoidan to ameliorate dyslipidemia
in rodents (23). Other studies have reported that fucoidan
from sea cucumber (Acaudina molpadioides) and hijiki seaweed
(Sargassum fusiforme) can relieve symptoms of diabetes by
modulating gut microbiota (24, 25).

Considering possible interactions between microbiota and
host immune responses, it is crucial to evaluate host immunity
and microbiota simultaneously to elucidate the prebiotic

potential OM fucoidan (18). Zebrafish offer an ideal in vivo
model to investigate how fucoidan affects host immunity and
microbiota under normal (unchallenged) conditions because of
their compatibility with live visualization (26). Using a double-
transgenic zebrafish model combined with next-generation
sequencing of 16S rRNA genes, we have recently shown that
microbiota modulation by antibiotics can significantly affect host
inflammatory immune responses in zebrafish larvae immersed
in saponin (27). In this study, we exploited this approach to
investigate how OM fucoidan can affect immune response and
microbiota composition of zebrafish larvae. We also investigated
the effect of OM fucoidan on immune responses and intestinal
microbiota of adult zebrafish, which were fed with OM fucoidan
for 3 weeks.

MATERIALS AND METHODS

Ethics Statement
The present study was approved by the Dutch Committee
on Animal Welfare and the Animal Welfare Body (IvD) of
Wageningen University, The Netherlands. Furthermore, we
adhere to our standard biosecurity and institutional safety
procedures at Wageningen University and Research.

Zebrafish and Fucoidan
Tg (mpeg1:mCherry/mpx:eGFPi114) (28, 29) and wild-type
zebrafish were maintained in Zebtec family tanks (Tecniplast,
Buguggiate, Italy) under continuous flow-through at 28◦C
(14/10-h light/dark cycle) and fed daily with Tetramin Flakes
(Tetra, Melle, Germany). For the experiments using zebrafish
larvae, embryos were obtained from the adult transgenic
zebrafish by natural spawning and raised with embryo medium
(E3) water as described previously (27). OM fucoidan powder
(>95% pure fucoidan) extracted from C. okamuranus as
described previously (30) was provided by South Product Co.,
Ltd., Okinawa, Japan. The characteristics of this fucoidan were as
follows: average molecular weight of 49.8 kDa, L-fucose content
of 52.7%, uronic acid content of 18.0%, and sulfate ion content of
17.6%. TheOM fucoidan powder was stored at room temperature
until use. Fucoidan treatment of larvae and adult zebrafish
was performed as follows: the zebrafish larvae (3 days post
fertilization; dpf) were randomly distributed in six-well plates (n
= 8 fish/well) and kept in different concentrations (0, 100, and
500µg/mL of E3 water) of OM fucoidan (immersion) until 6
dpf. Ten adult zebrafish were maintained in two separate tanks
in a continuous flow and temperature-controlled (28◦C) system
and fed once daily with Tetramin Flakes (control group) or a
combination of the flakes and OM fucoidan at the ratio of 1:1
(fucoidan group) over 3 weeks.

In vivo Imaging of Neutrophils and
Macrophages in Zebrafish Larvae
Tg (mpeg1:mCherry/mpx:eGFPi114) zebrafish larvae were
anesthetized with MS-222 (tricaine methane sulfonate) solution
and embedded in 1% low melting point agarose (Thermo Fisher
Scientific, Waltham, MA, USA), as previously described (27).
Larvae were imaged as whole mounts with a Leica M205 FA
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Fluorescence Stereo Microscope. Neutrophils and macrophages
in the intestinal region of each specimen were quantified by
counting the total number of cells per defined area using the cell
counter plugin available in ImageJ R© software (31).

Relative Gene Expression by Quantitative
Polymerase Chain Reaction
Zebrafish were euthanized with MS-222 and the whole larvae
(five or six fish per 1.5-mL tube) were preserved in RNA laterTM

at −20◦C. Adult zebrafish were anesthetized with MS-222 and
intestines were isolated by dissection and were preserved in
RNA laterTM at −20◦C. Total RNA was isolated from larvae
or intestinal samples from adult zebrafish using the RNeasy R©

Micro Kit (QIAGEN, Venlo, The Netherlands) according to
the manufacturer’s instructions. After quantifying RNA by a
NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA), cDNA was generated from 1 µg of
RNA using SuperscriptTM III First Strand Synthesis Systems
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
instructions. The diluted cDNA corresponding to 125 ng of
RNA was used as a template for each reaction of quantitative
polymerase chain reaction (qPCR) using the ABsoluteTM qPCR
SYBR R© Green Mix (Thermo Fisher Scientific, Waltham, MA,
USA) as previously described (27). The sequences of the primer
used in this study can be found in Table S1. The amplification
data of each sample were normalized to the reference gene
elf1α and calculated using the Pfaffl quantification method with
efficiency correction (32), as described by Forlenza et al. (33).
The statistical significance of differences between the control and
fucoidan-treated groups was assessed by a one-way analysis of
variance (ANOVA) test using R version 3.5.3 (34) where <0.05
was regarded as significant.

16S rRNA-Based Analyses of Zebrafish
Microbiota
Zebrafish were euthanized with MS-222 and the whole larvae
(four fish per 1.5-mL tube) were washed with sterilized
phosphate-buffered saline and preserved at −20◦C. Adult
zebrafish were euthanized with MS-222 and the intestines were
isolated by dissection. The intestinal contents were preserved in
InhibitEX Buffer supplied in the QIAamp R© DNA Fast Stool Mini
Kit (QIAGEN, Venlo, The Netherlands) at −20◦C. Total DNA
was isolated from the whole larvae or intestines of adult zebrafish
using the QIAamp R© DNA Fast Stool Mini Kit according to the
manufacturer’s instructions. Pair-end sequencing was performed
using Illumina MiSeq (BaseClear, Leiden, The Netherlands)
using amplicons generated with the primer pair 341F−785R
that target the V3–V4 variable region of the 16S rRNA gene of
most bacteria (35). Raw Illumina sequencing reads were pair-
ended, end-trimmed, filtered, and clustered into operational
taxonomic units (OTUs) using the microbial genomic module
3.0 implemented in the CLC Bio Genomics Workbench v7.5.1
(Qiagen, Venlo, The Netherlands), 16S Microbiome Pipeline
in the EZBioCloud web server (36), or the MICCA pipeline
(37), for which OTU assignment was performed using the
SILVA ribosomal RNA reference database [release 128, 97%

similarity threshold, (38)], the EZBioCloud database (36), and
the Ribosomal Database Project (RDP) classifier [version 2.11,
97% identity threshold, (39)], respectively. After confirming
the reproducibility of the core microbiota composition of each
sample, OTU tables in BIOM format generated by the CLC Bio
Genomics Workbench was used for statistical analyses of the
diversity and richness (alpha- and beta-diversity) implemented

in MicrobiomeAnalyst© using the default filtering parameter
settings (40). Significantly different taxa between control and
fucoidan-treated group were identified by differential abundance
(DESeq2) analysis by R version 3.5.3 (34) and by Linear
Discriminant Analysis Effect Size (LEfSe) analysis implemented
with EZBioCloud (36, 41).

Statistical Analysis
The quantified data collected from the fluorescent in vivo
imaging of the zebrafish larvae and qPCR was analyzed using
Student’s t-test assuming unequal variation as well as one-way
analysis of variance (ANOVA) test using Microsoft Excel R© and
R version 3.5.3 (34), where <0.05 was regarded as significant.
The indices of α-diversity and β-diversity for comparing
compositional structure of microbiota of each larva and adult
zebrafish group were calculated on a species-level summarization
of the rarefied OTU tables generated as described in the
preceding text. Chao1 and Abundance-based Coverage Estimator
(ACE) as well as Shannon and Simpson indices were used to
measure the species-level community richness and species level
community evenness, respectively, and each index was calculated

using the online module of Microbiomeanalyst© (40). The plots
of β-diversity indicating dissimilarities between samples were
produced by principal coordinates analyses (PCoA) calculated
using the Bray–Curtis dissimilarity index implemented in

Microbiomeanalyst© (40).

RESULTS

Effect of OM Fucoidan on Innate Immunity
of Zebrafish Larvae
Zebrafish larvae (3−6 dpf) treated with OM fucoidan (0, 100,
and 500µg/mL of E3 water) by immersion showed normal
development without visible signs of damage relative to untreated
controls (data not shown). To investigate whether the treatment
with OM fucoidan affected cellular immunity of zebrafish
larvae, the numbers of neutrophils (mpx:GFP) and macrophages
(mpeg1:mCherry) in the intestinal area of the control and the
fucoidan-treated larvae were compared. There was no observable
difference between the live-imaged control and the fucoidan-
treated larvae (Figure 1A). The cell counts of neutrophils and
macrophages in fucoidan-treated zebrafish larvae tended to be
reduced compared to the control, but the difference was not
significant (P > 0.1, Figure 1B).

Using the same experimental setup, we performed qPCR
to measure the relative expression levels of selected genes
representing host immune cell responses in the fucoidan
(500µg/mL) -treated zebrafish larvae and the untreated control.
The relative gene expression levels of pro- (il1b, tnfa) and
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FIGURE 1 | Effect of OM fucoidan on lymphocyte recruitment to the intestinal region of zebrafish larvae. (A) Representative pictures of 6 dpf zebrafish larvae

(mpeg:mCherry, mpx:GFP) displaying neutrophils (green) and macrophages (red). F100, the zebrafish larvae treated with 100µg/mL OM fucoidan from 3 dpf for 3

days; F500, the zebrafish larvae treated with 500µg/mL OM fucoidan from 3 dpf for 3 days. (B) Quantification of neutrophils and macrophages in the intestinal area of

larval zebrafish. Control, no treatment (n = 14); F100, treated with 100µg/mL (n = 13); F500, treated with 500µg/mL (n = 17).

antiinflammatory (il10) cytokines as well as mmp9 were
moderately (1.7–2.2 fold) upregulated in the larvae treated with
500µg/mL of fucoidan (Figure 2A). No significant difference
was observed for cxcl-8a (Figure 2A) and gene transcripts for
il-17f, il-22, and tnfb were not detected in our samples (data
not shown).

Adult zebrafish fed with OM fucoidan for 3 weeks did

not show visible changes in fitness and behavior compared to
controls fed the Tetramin Flakes only (data not shown). Immune
responses of the adult zebrafish intestines were examined by
quantitative PCR using primers specific for il1b, il-10, cxcl-8a,

tnfa, and mmp9. Overall, there was no significant difference
between the fucoidan-fed zebrafish and the control, except for
il1b, which was expressed at slightly decreased levels (0.63-
fold) in the fucoidan-fed zebrafish compared to the control
(Figure 2B).

Effect of OM Fucoidan on Microbiota
Diversity and Composition of Larval and
Adult Zebrafish
The effects of OM fucoidan on diversity of larval and adult
zebrafish microbiota were analyzed by 16S rRNA gene amplicon
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FIGURE 2 | Relative gene expression of immune genes of zebrafish treated with OM fucoidan. (A) Control, 6 dpf zebrafish larvae; Fucoidan, 6 dpf zebrafish larvae

immersed in 500µg/mL fucoidan from 3 dpf for 3 days. (B) Control, intestinal samples of adult zebrafish fed with standard fish meal for 3 weeks; Fucoidan, intestinal

samples of adult zebrafish fed with OM fucoidan meal (Tetramin fish flakes: OM fucoidan = 1:1). The asterisk denotes significant differences from the control samples

(P < 0.05, 1-way ANOVA).

sequencing.Whole-bodyDNA samples of pools of 6 dpf zebrafish
larvae were obtained from the three groups (n = 4 per group;
immersion in 0, 100, and 500µg/mL of OM fucoidan in E3 water)
and used for Illumina MiSeq sequencing of 16S rRNA genes. For
adult zebrafish, intestinal DNA from each of the two groups (n=
5 per group; control vs. OM-fucoidan fed) was used. A summary
of the sequencing results is shown in Table S2 and the rarefaction
curves of all samples, except one sample (WO3, a control sample
of zebrafish larvae), reached saturation (Figure S1).

In microbiota of zebrafish larvae, no significant differences
were observed in the species richness (Chao1, P = 0.47265;
ACE; P= 0.74339; Figure 3A) or the species evenness (Shannon,
P = 0.96621; Simpson, P = 0.96058; Figure 3B) between the
control and fucoidan-treated fish, regardless of the fucoidan
concentrations. In intestinal microbiota of adult zebrafish, the
species richness was also not affected (Chao1, P = 0.88482; ACE;
P = 0.90299; Figure 3C), while the species evenness tended to
be moderately increased in the fucoidan-fed zebrafish (Shannon,
P = 0.079088; Simpson, P = 0.078456; Figure 3D). β-Diversity
analyses showed no significant association between fucoidan
treatment and microbiota composition of zebrafish larvae (P <

0.49845; Figure 3E), which was in contrast to adult zebrafish, in
which fucoidan-feeding was moderately associated with changes
in the species composition of intestinal microbiota (P < 0.023,
Figure 3F). Collectively, these results indicate that the treatments
with OM fucoidan affected the diversity and composition of

intestinal microbiota of adult zebrafish, but not the larvae
zebrafish microbiota.

Taxonomic assignment of OTUs generated from each
sample was performed using EzBioCloud database (https://
www.ezbiocloud.net), which offers a high genus and species-
level resolution (36). Consistent with our previous work (27),
microbiota of zebrafish larvae was predominated (>95%) by
Enterobacteriaceae (Figure 4A), which were affiliated with the
Escherichia coli group (Figure S2, Table S3). Consistent with
the diversity analyses (Figure 3), the relative abundance of each
bacterial species and OTUs were similar between the larvae
samples and did not reflect an effect of OM fucoidan (Figure 4A,
Figure S2). In addition, DESeq2 and LEfSe analyses failed to
identify significantly different taxa between the control and
fucoidan-treated zebrafish larvae.

In contrast, a significant difference was observed in the
intestinal microbiota between the control and fucoidan-fed adult
zebrafish (Figures 4B,C, Figure S3). The class to species-level
composition of intestinal microbiota of fucoidan-fed zebrafish
was clearly different from the control (Figure S3), and this
difference is characterized by the emergence and increase of
relative abundance of several bacterial groups affiliated with
Comamonadaceae and Rhizobiaceae (Figure 4B, Figure S3). At
the genus and species level, these families were represented by
unclassified genus of Comamonadaceae [AB076847, (42)] and
the genus Shinella granuli group (Rhizobiaceae) (Figure 4C,
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FIGURE 3 | Effect of OM fucoidan on the diversity of larvae zebrafish microbiota and adult zebrafish intestinal microbiota. Species-level community richness (A,C) and

species level community evenness (B,D) were compared between larvae zebrafish samples (A, B, E; F100, the zebrafish larvae treated with 100µg/mL OM fucoidan

from 3 dpf for 3 days; F500, the zebrafish larvae treated with 500µg/mL OM fucoidan from 3 dpf for 3 days) and adult zebrafish intestinal samples (C, D, F; Fucoidan

[Tetramin fish flakes: OM fucoidan = 1:1] for 3 weeks). Beta-diversity of larval (E) and adult intestinal (F) microbiota compared by the principal coordinates analyses

(PCoA) based on Bray–Curtis dissimilarity index.
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FIGURE 4 | Effects of OM fucoidan on the bacterial community structure of larvae zebrafish microbiota and adult zebrafish intestinal microbiota. (A) Composition of

family-level bacterial groups in the larvae zebrafish microbiota (F100, the zebrafish larvae treated with 100µg/mL OM fucoidan from 3 dpf for 3 days; F500, the

zebrafish larvae treated with 500µg/mL OM fucoidan from 3 dpf for 3 days.). (B) Composition of family-level bacterial groups in the adult zebrafish intestinal

microbiota. (C) Composition of genus-level bacterial groups in adult zebrafish intestinal microbiota. (B,C) Fucoidan [Tetramin fish flakes: OM fucoidan = 1:1] for 3

weeks). The taxonomic assignment is based on the latest EZbioCloud database (36). Taxa representing <0.1% of the total community are not visualized.
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Figure S3). The predominant families Comamonadaceae and
Rhizobiaceae were also identified as the significantly different
taxa represented in the fucoidan-fed zebrafish by the DESeq2
and LEfSe analyses (Figures 5A,B). Interestingly, both analyses
revealed that the increase of Comamonadaceae and Rhizobiaceae
were concomitant with the decrease of Enterobacteriaceae
(Figures 5A,B, Figure S3). LEfSe analysis also found that
unclassified groups of Rhizobiales and Betaproteobacteria
were significantly associated with the fucoidan-feeding, while
Flavobacteriia (phylum Bacteroides) were negatively affected
(Figure 5B).

DISCUSSION

Our current study showed that fucoidan derived from Japanese
brown seaweed C. okamuranus has the potential to modulate
the intestinal microbiota of adult zebrafish. The profound
compositional change associated with the fucoidan-feeding in
adult zebrafish can be characterized by the increased abundance
of bacterial groups affiliated with Comamonadaceae and
Rhizobiaceae and a decreased abundance of Enterobacteriaceae.
Although non-pathogenic bacteria of the E. coli species have
been proposed to confer a protective effect on zebrafish larvae
via lipopolysaccharide (LPS) tolerance and acid production
(43, 44), numerous studies have reported proinflammatory
effects of Enterobacteriaceae in fish (45, 46). In addition,
Enterobacteriaceae are thought to be responsible for the spread
of antimicrobial resistance in aquatic environments (47). In
this context, it is intriguing that the relative expression of
il1b, a proinflammatory cytokine, was moderately downregulated
in the fucoidan- fed adult zebrafish (Figure 2B), which
suggests that OM fucoidan may have directly or indirectly
suppressed the dominance of Enterobacteriaceae that can induce
proinflammatory responses. This type of diet–microbiota–
host interplay is likely to play a crucial role in pro- and
antiinflammatory states in animal intestines [(48) for review],
and it is therefore of great interest further investigate in future
studies on the mechanism that OM fucoidan decreases the
relative abundance of Enterobacteriaceae in the fish intestine with
regard to how it may impact the health of the fish population.

While metabolic and physiological properties of the intestinal
bacteria of adult zebrafish that responded to the fucoidan feeding
are yet to be determined, the increase of Comamonadaceae and
Rhizobiaceae suggests their involvement in the degradation of
OM fucoidan. Interestingly, Comamonadaceae and Rhizobiaceae
have been frequently found in a nitrogen removal process in
wastewater treatment systems called solid-phase denitrification
(49), where solid biodegradable polymers are used as carbon
sources for denitrifying bacteria (50). This system is also
applicable for nitrogen removal in aquaculture, where increased
nitrate concentration poses negative effects on fish (51). Indeed,
the unclassified Comamonadaceae [AB076847, (42)] and Shinella
spp., the intestinal abundance of which increased in response
to the fucoidan feeding of adult zebrafish in our current
study, have been reported to belong to denitrifying bacteria
possessing biodegrading abilities of diverse compounds including
biopolymers and xenobiotics (42, 52, 53). Therefore, it seems
plausible that OM fucoidan may serve as a carbon source for

intestinal bacteria of adult zebrafish, and identification of the
degradation pathways involved awaits further investigation

Although a large body of studies has documented that the host
innate immunity plays significant roles for shaping microbiota
and vice versa (26, 54), our current results imply that the
compositional structure of microbiota is not strongly correlated
to the expression patterns of host immune genes. Feeding of
OM fucoidan for 3 weeks profoundly altered gut microbiota
composition in adult zebrafish; however, the analysis of a selected
set of immune genes only showed a slight reduction in the
expression of il1b. In contrast, the exposure of zebrafish larvae to
OM fucoidan resulted in changes in expression of immune genes
(il1b, il10, tnfa, and mmp9) but did not affect the microbiota
composition. These results might be partly explained by the
timing and duration of the exposure. Since larval feeding starts
in the immersion window, it is expected that the immune system
of these developing larvae is responding to novel antigens that
it is exposed to. In contrast, in adult fish, the immune system
has fully developed and a proper homeostasis is reached at the
mucosal surfaces such as the intestines (55). Furthermore, since
we only evaluated the immune response in the intestines at 3
weeks after feeding, the initial immune modulatory effect of
primary exposure to fucoidan might have been missed, while the
microbiota had 3 weeks to adapt to the new substrate provided.
Future studies will include multiple time points to address early
vs. late immune modulatory effects at different time points in
life (of fish).

Furthermore, as has been shown in a study by Burns et al.
using innate immune-deficient Myd88 knockout zebrafish (56),
the gut microbiota composition can be better explained by
the interhost dispersal effect, i.e., transmission and sharing
microbiota among hosts, than immune gene expression patterns.
Also, Stagaman et al. have reported that the effects of adaptive
immunity on microbiota composition can be overwhelmed
by other factors derived from co-housing within the same
tank (57). Our study also reflected this phenomenon, since
all adult zebrafish fed with OM fucoidan showed the same
compositional changes in the relative abundance of specific
bacterial groups (Figures 4B,C, Figure S3). The interhost
dispersal of Comamonadaceae and Rhizobiaceae among adult
zebrafish associated with the fucoidan-feeding suggests that
these specific bacterial groups are subject to filtering by local
host environments. Further studies are warranted to determine
whether the interhost dispersal and OM fucoidan reciprocally
affected the microbial composition.

In contrast to previous studies reporting inhibitory effects of
fucoidan on inflammatory responses of injury zebrafish models
(58, 59), the influence of OM fucoidan treatments on the baseline
zebrafish immune responses were rather mild in our current
study. In addition, while a previous study has implied a high
concentration of fucoidan may be cytotoxic (60), immersion of
zebrafish larvae (3–6 dpf) in OM fucoidan at concentrations
of 100 and 500µg/mL did not affect their fitness. In previous
studies using LPS-challenged zebrafish models (58, 59), the
antiinflammation effects of fucoidan may be rather explained
by the interference of LPS–host interaction rather than direct
modulation of host immunity. Another interpretation of the less
profound effect on the baseline immune response of zebrafish to
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FIGURE 5 | Significantly different taxa in the adult zebrafish intestinal microbiota associated with the OM fucoidan treatment. (A) Differently abundant bacterial families

between the intestinal microbiota of the control and OM fucoidan-fed adult zebrafish, identified by differential abundance analysis using DESeq2 in R. The taxonomy

assignment of the OTU dataset used is based on the RDP classifier (version 2.11, 97% identity threshold, 39). (B) Specific bacterial groups positively (green)- and

negatively (red)- associated with OM fucoidan treatment. Identification of the significantly different taxa and LDA score calculation were performed by Linear

discriminant analysis effect size (LEfSe) tool implemented with EZBioCloud (36). The taxonomic assignment is based on the latest EZbioCloud database (36).
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fucoidan is that zebrafish immunity may have evolved to become
tolerant to the constituents of blown algae abundant in their
original habitats (61).

Our current finding that OM fucoidan modulated the gut
microbiota composition of zebrafish is in line with studies
using rodents (22, 23). The improvement of diabetic symptoms
attributed to the modulation of gut microbiota by fucoidan
that have been shown in previous studies (24, 25) implies that
fucoidan feeding and the subsequent alteration of intestinal
microbiota may also affect metabolic properties of fish. Future
studies toward a better understanding of the commonalities
between intestinal microbial metabolism and host responses
shared by fish and animals (62, 63) will help us to evaluate the
potential of OM fucoidan as a new prebiotic in aquaculture (64).

CONCLUSIONS

Treatment with OM fucoidan moderately modulated the
relative expression of innate immune genes in larvae zebrafish,
while no change in microbiota composition was observed. In
adult zebrafish, feeding OM fucoidan increased the relative
abundance of Comamonadaceae and Rhizobiaceae at the
expense of Enterobacteriaceae, which was accompanied by a
slight decrease of relative expression of a proinflammatory
gene il1b, which suggests a potential of OM fucoidan to
shift the microbial composition to an antiinflammatory
state by selectively suppressing populations of bacteria that
are associated with proinflammatory responses. To our
knowledge, this is the first study to describe in vivo modulatory
effects of fucoidan on microbiota and immune responses of
unchallenged zebrafish.
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