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Surrogate endpoints play an important role in drug development when they
can be used to measure treatment effect early compared to the final clinical
outcome and to predict clinical benefit or harm. Such endpoints are assessed
for their predictive value of clinical benefit by investigating the surrogate rela-
tionship between treatment effects on the surrogate and final outcomes using
meta-analytic methods. When surrogate relationships vary across treatment
classes, such validation may fail due to limited data within each treatment
class. In this paper, two alternative Bayesian meta-analytic methods are intro-
duced which allow for borrowing of information from other treatment classes
when exploring the surrogacy in a particular class. The first approach extends
a standard model for the evaluation of surrogate endpoints to a hierarchical
meta-analysis model assuming full exchangeability of surrogate relationships
across all the treatment classes, thus facilitating borrowing of information across
the classes. The second method is able to relax this assumption by allowing
for partial exchangeability of surrogate relationships across treatment classes to
avoid excessive borrowing of information from distinctly different classes. We
carried out a simulation study to assess the proposed methods in nine data sce-
narios and compared them with subgroup analysis using the standard model
within each treatment class. We also applied the methods to an illustrative
example in colorectal cancer which led to obtaining the parameters describing
the surrogate relationships with higher precision.
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1 INTRODUCTION

New advances in science have led to discovering of promising therapies which often are targeted to specific patient
populations, for example, defined by a genetic biomarker. This leads to clinical trials of smaller size, while the increased
effectiveness of these therapies reduces the number of events or deaths and consequently lead to measurement of treat-
ment effect on overall survival (OS) with large uncertainty. Therefore, surrogate endpoints allowing the measurement
of treatment effect with higher precision have been investigated to accelerate the availability of these treatments to the
patients. These alternative endpoints often can be considered a cost-effective replacement of final clinical outcome, as
they are particularly useful when they can be measured earlier, easier, more frequently compared to the final clinical
endpoint or if they require smaller sample size and shorter follow up times. 1

Potential surrogate endpoints have been investigated as candidate endpoints in clinical trials in a number of disease
areas. However, before these candidate endpoints are used, either as primary endpoints in trial design or in regulatory
decision-making, they need to be validated.2 In practice, the most common approach to validate a candidate outcome is
to examine whether it satisfies three levels of association, proposed by the International Conference on Harmonisation
Guidelines on Statistical Principles for Clinical Trials.3 First, the biological plausibility of the association of the surro-
gate and final outcomes is investigated which involves biological rather than statistical considerations. Furthermore, the
individual-level association is evaluated to establish whether the candidate surrogate endpoint can be used to predict the
course of the disease in an individual patient. Last but not least, the study-level association is investigated to ensure that
the treatment effects on the final outcome can be predicted from the effect on the surrogate endpoint. Study-level associ-
ation requires data from a number of randomized controlled trials (RCTs) and can be investigated carrying out a bivariate
meta-analysis.4-7 In this paper we focus on the third level of association only.

A bivariate meta-analytical method that was developed by Daniels and Hughes4 can be used to validate a candidate
surrogate endpoint, by evaluating the association pattern between the treatment effects on the surrogate and the final
outcomes, and to predict treatment effects on the final clinical outcome from the effects on surrogate endpoint. This
method, implemented in a Bayesian framework, can be used to evaluate a surrogate endpoint in a disease area overall, or
in each treatment class separately through a subgroup analysis.

Traditionally, surrogate relationships between treatment effects on a surrogate endpoint and treatment effects on a
final outcome have been investigated in a disease area using data from all trials regardless of treatment classes or trials
of the same class of treatments. For instance, in advance colorectal cancer (aCRC) progression-free survival (PFS), tumor
response (TR) or time to progression have been investigated as potential surrogate endpoints for OS.8-11 In previous work,
Buyse et al8 found a strong association between treatment effects on PFS and OS in this disease area, by including in
their meta-analysis studies on one treatment class only (modern chemotherapy). More recently, Ciani et al10 investigated
the surrogate relationship in aCRC across all modern treatments, including a range of targeted therapies, which led to
suboptimal surrogate relationship in this disease area. They concluded that in aCRC the association patterns could vary
across treatment classes and a surrogate relationship observed in a specific treatment class may not directly apply across
other treatment classes or lines of treatment. This may be particularly important for targeted treatments used only in a
subset of population. For example anti-EGFR treatments are recommended for patients without a KRAS/panRAS muta-
tion as these mutations are associated with resistance to the anti-EGFR therapies12,13 and the association pattern might
be different for this particular treatment class in this subset of population with this unique characteristic. Furthermore,
Giessen et al9 who investigated the surrogate relationships in aCRC including all available treatments and subgroups
of therapies, inferred that for validation of surrogacy in targeted treatments such as anti-EGFR therapies or anti-VEGF
treatments further research is required once more data become available. Consequently, the assumption that a surro-
gate relationship remains the same across different treatment classes or lines of treatment does not seem reasonable in
aCRC, which may be the case in other disease areas. Therefore, potential differences in surrogate relationships across
classes should be investigated. This can be achieved by performing subgroup analysis using a standard model (eg, Daniels
and Hughes model4) or extending the standard model by adding another level to the hierarchical structure of the model
for a surrogate relationship accounting for differences between treatment classes. In this paper, we propose two new
methods which allow different degrees of borrowing of information for surrogate relationships across treatment classes
aiming to obtain estimates of surrogate relationships with higher precision.14-16 The first approach assumes full exchange-
ability of the parameters describing the surrogate relationships exploiting the similarity of surrogate relationships and
borrowing information across treatment classes. The second method is able to relax this assumption, by allowing for
partial exchangeability17 of surrogate relationships across treatment classes to avoid excessive borrowing of information



PAPANIKOS et al. 1105

from distinctly different treatment classes. In this model, the parameters describing surrogate relationships can be either
exchangeable or nonexchangeable giving more flexibility when the assumption of exchangeability is not reasonable.

The modeling techniques were demonstrated using an example in advanced colorectal cancer where the surrogate
relationships may vary across treatment classes.10 To assess models' performance and compare them with subgroup anal-
ysis we carried out a simulation study. In the remainder of this paper, we present the standard model in Section 2 , the
two proposed models are introduced in Section 3, the results of the simulation study are demonstrated in Section 5 and
the illustrative example as well as the results from its analysis are presented in Section 6. The paper concludes with a
discussion in Section 7.

2 STANDARD SURROGACY MODEL

To investigate surrogate relationships within treatment classes using aggregate data, we performed subgroup analysis
adopting a standard surrogacy model that was introduced by Daniels and Hughes4 for the study-level evaluation of poten-
tial surrogate markers. Equation (1) corresponds to the within-study model where Y1i, Y2i are the estimates of treatment
effects on surrogate endpoint and on the final outcome (eg, log odds ratios for TR and log hazard ratio for OS). These
effects follow a bivariate normal distribution with 𝜇1i and 𝜇2i corresponding to the true treatment effects on the surrogate
and the final clinical outcome, respectively, while, 𝜎1i, 𝜎2i, and 𝜌wi are the within-study SDs for both outcomes and the
within-study correlations between the treatment effects on the two outcomes for each study i.

(
Y1i
Y2i

)
∼ N

((
𝜇1i
𝜇2i

)
,

(
𝜎2

1i 𝜎1i𝜎2i𝜌wi
𝜎1i𝜎2i𝜌wi 𝜎2

2i

))
. (1)

𝜇2i|𝜇1i ∼ N(𝜆0 + 𝜆1𝜇1i, 𝜓
2). (2)

At the between-studies level (2), the true effects on the surrogate endpoint 𝜇1i are modeled as fixed effects, and the
true effects on the final outcome 𝜇2i have linear relationship with the true effects on the surrogate 𝜇1i. This relationship
plays a very important role as it can be used to predict 𝜇2i from known 𝜇1i in a new study i. The parameters 𝜆0, 𝜆1, and
𝜓2 correspond to the intercept, the slope, and the conditional variance of the linear model and measure the shape of the
relationship and the strength of association between the treatment effects on the surrogate endpoint and the effects on
the final outcome.

In the Bayesian framework, the Daniels and Hughes model was implemented by assuming no prior knowledge about
surrogate relationship by using vague prior distributions. This allows the data to dominate the posterior distribution even
if the dataset is relatively small. The following prior distributions can be used: 𝜇1i ∼ N(0, a), 𝜆0 ∼ N(0, a), 𝜆1 ∼ N(0, a),𝜓 ∼
N(0, b)I(0, ), where N(0, b)I(0, ) denotes a normal distribution truncated18 at the mean𝜇 = 0 with SD s = b. The parameters
a, b are chosen to be sufficiently large and depend on the scale of data.

By adapting this method in our research, we applied this standard model to subsets of data that consist of only one class
of treatment examining the surrogate relationship of each subgroup separately, taking motivation from similar analyses in
clinical trials.19,20 This kind of analysis is very practical when association patterns in a given disease area are different and
the treatment classes consist of many studies. By performing subgroup analysis using the standard model, we explored
potential differences in the association patterns across treatment classes and use them as a reference for results obtained
with the newly developed methods.

2.1 Criteria for surrogacy

As we mentioned previously, the parameters 𝜆0, 𝜆1,𝜓2 play a very important role, as they are used to evaluate surrogacy. A
good surrogate relationship should imply that 𝜆1 ≠ 0 as slope establishes the association between treatment effects on the
surrogate and the final outcome. Subsequently, having 𝜓2 = 0 implies that 𝜇2i could be perfectly predicted given 𝜇1i. The
parameter 𝜆0 corresponds to the intercept and is expected to be zero for a good surrogate relationship. This ensures that
no treatment effect on the surrogate endpoint will imply no effect on the final outcome. These three criteria proposed by
Daniels & Hughes,4 will be referred to as surrogacy criteria in the remainder of this paper. A simple way to examine these
surrogacy criteria is to check whether or not zero is included in the 95% credible intervals (CrIs) of 𝜆0, 𝜆1 and to compute
the Bayes factor for the hypothesis H1: 𝜓2 = 0. The model with 𝜓2 = 0 is a nested model within the standard model,21 so
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in order to compare these models, Bayes factors can be computed using the Savage Dickey density ratio.22 To implement
the Savage Dickey density ratio, proper prior distributions for 𝜓 are needed. In our research a moderately informative
half normal prior distribution N(0, 2)I(0, ) was used for the conditional SD. A strong association pattern requires zero to
be included in the CrI of 𝜆0, zero not to be included in the CrI of 𝜆1 and the Bayes factor of 𝜓2 to be greater than 3.3.23 In
this paper we used the evaluation framework proposed by Daniels and Hughes. However, there are other definitions and
criteria for surrogacy in the literature. Detail review of other evaluation frameworks can be found in Lassere et al.7

2.2 Cross-validation

One of the main aims of this paper was to explore whether the two hierarchical methods, that we propose in the next
section, improve the predictions of treatment effect on the final outcome (by reducing bias and/or uncertainty) compared
to subgroup analysis using the standard model. To evaluate this, a cross-validation procedure was carried out. It is a similar
to the ”leave-one-out” procedure described by Daniels and Hughes4 and it is repeated as many times as the number of
studies in the dataset. In a simulated data scenario, this can be used to draw inferences about predicting the true effect
on the final endpoint 𝜇2i in a ”new” study i; however, in a real-data scenario true effects are unknown and therefore, we
can only compare the observed values Y2i with their predicted intervals. For each study i (i = 1,… ,N), treatment effect
on the final endpoint Y2i is omitted and assumed unknown. This effect is then predicted from the observed effect on the
surrogate endpoint Y1i and by taking into account the treatment effects on both outcomes from the remaining studies.
In a Bayesian framework it can be achieved by performing Markov chain Monte Carlo (MCMC) simulation. The mean
predicted effect is equal to the true effect �̂�2i predicted by MCMC simulation and the variance of the predicted effect is
equal to 𝜎2

2i + var(�̂�2i|Y1i, 𝜎1i,Y1(−i),Y2(−i)) where Y1,2(−i) denote the observed treatment effects from the remaining studies
without the study that is omitted in ith iteration.4 We then checked whether the 95% predictive interval (constructed using
the variance) included the observed value of the treatment difference on the final outcome.

3 METHODS FOR SURROGATE ENDPOINT EVALUATION
INCORPORATING AGGREGATE DATA FROM DIFFERENT TREATMENT
CLASSES

When subgroup analysis is used to investigate the study-level surrogate relationships within treatment classes the val-
idation process may fail due to limited data resulting in estimates of the parameters describing surrogate relationships
obtained with considerable uncertainty.19 We propose two hierarchical models to investigate surrogate relationships
within treatment classes allowing different degrees of borrowing of information about the parameters of interest, as
alternative approaches to subgroup analysis with the standard model. These models were developed to investigate the
study-level association and therefore they can only be applied to aggregate data (eg, logHR or logOR). They allow for the
association patterns to vary across classes taking advantage of the attractive statistical properties of exchangeability. 14-16

3.1 Hierarchical model with full exchangeability

Our first approach extends the standard model accounting for differences in study-level surrogacy across different treat-
ment classes.24-26 Similarly as in the standard model, at the within-study level we assume that correlated and normally
distributed observed treatment effects Y1ij and Y2ij (eg, logHR or logOR) in each study i estimate the true treatment effects
𝜇1ij and 𝜇2ij on the surrogate and final outcomes, respectively. In addition, by introducing index j we account for the
differences between the classes.

(
Y1ij
Y2ij

)
∼ N

((
𝜇1ij
𝜇2ij

)
,

(
𝜎2

1ij 𝜎1ij𝜎2ij𝜌wij

𝜎1ij𝜎2ij𝜌wij 𝜎2
2ij

))
𝜇2ij|𝜇1ij ∼ N(𝜆0j + 𝜆1j𝜇1ij, 𝜓

2
j ) (3)

𝜆0j ∼ N(𝛽0, 𝜉
2
0 ), 𝜆1j ∼ N(𝛽1, 𝜉

2
1 ).
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The parameters 𝜎1ij, 𝜎2ij, and 𝜌wij correspond to the within-study SDs and within-study correlations for each
study i in treatment class j. The observed estimates Y1ij, Y2ij, 𝜎1ij, 𝜎2ij are aggregate data extracted from systematic
review RCTs while, the within-study correlations 𝜌wij can be calculated using a bootstrapping method from individual
patient data (IPD). Similarly as in the standard model, the true effects 𝜇1ij on the surrogate endpoint are modeled as
fixed effects.

In contrast to the standard surrogacy model, this method assumes unique surrogate relationships between true treat-
ment effects on the surrogate endpoint and the final outcome across treatment classes in a single model, allowing for
borrowing of information across them. Each relationship between the true effects on the surrogate endpoint 𝜇1ij and the
final outcome 𝜇2ij is described by a linear model where, 𝜆0j denotes the intercept of the jth treatment class and 𝜆1j estab-
lishes the relationship between treatment effects on surrogate and final outcomes within the treatment class j. To evaluate
whether a candidate endpoint is considered a valid surrogate endpoint in a given treatment class, all three surrogacy
criteria need to be met for this particular class. Implementing this model in the Bayesian framework, we place non-
informative prior distributions on the model parameters such as: 𝛽0, 𝛽1 ∼ N(0, a) and 𝜉0, 𝜉1 ∼ N(0, b)I(0, ), 𝜇1ij ∼ N(0, a)
and 𝜓j ∼ N(0, b)I(0, ). Similarly as in the standard model a, b are chosen to be sufficiently large and depend on the
scale of data.

F-EX model extends the standard model (described in Section 2) by including an additional layer of hierarchy
to the linear relationship between true effects on the surrogate and the final outcome, assuming that slopes and
intercepts are fully exchangeable across treatment classes. This can be implemented by placing common normal dis-
tributions on 𝜆0j and 𝜆1j with means and variances 𝛽0, 𝜉2

0 and 𝛽1, 𝜉2
1 , leading to borrowing of information across

treatment classes. Hierarchical models have desirable statistical properties that allow us to improve our inferences
taking advantage of borrowing of information from other treatment classes. The exchangeable estimates, however,
are shrunk toward the means 𝛽0, 𝛽1 and the amount of shrinkage depends on the number of studies within each
class, the between treatment class heterogeneity17 and the number of treatment classes. Although these statisti-
cal properties are very attractive in terms of potential reduction of uncertainty around the parameters of interest,
they are advantageous only when the assumption of exchangeability is reasonable, otherwise there is a danger of
excessive shrinkage.

3.2 Hierarchical model with partial exchangeability

F-EX method can be extended into a method with partial exchangeability (P-EX) similar to the method pro-
posed by Neuenschwander et al.17 This model is able to relax the assumption of exchangeability allowing the
parameters of interest for each class to be either exchangeable with all or some of the parameters from other
treatment classes or nonexchangeable. The proposed method is more flexible compared to F-EX model, in par-
ticular in data scenarios where the assumption of exchangeability is not reasonable for some of the treatment
classes.

The within study and the between studies levels of this model are exactly the same as in the method with full exchange-
ability (F-EX) where, Y1ij, Y2ij are the treatment effects on the surrogate and final clinical outcomes and they follow
a bivariate normal distribution with mean values corresponding to the true treatment effects 𝜇1ij and 𝜇2ij on the two
outcomes.

(
Y1ij
Y2ij

)
∼ N

((
𝜇1ij
𝜇2ij

)
,

(
𝜎2

1ij 𝜎1ij𝜎2ij𝜌wij

𝜎1ij𝜎2ij𝜌wij 𝜎2
2ij

))
𝜇2ij|𝜇1ij ∼ N(𝜆0j + 𝜆1j𝜇1ij, 𝜓

2
j )

𝜆0j ∼ N(𝛽0, 𝜉
2
0 ) (4)

𝜆1j =
{
𝜆1j ∼ N(𝛽1, 𝜉

2
1 ) if pj = 1

𝜆1j ∼ N(0, b) if pj = 0

However, the parameters of slopes are modeled in a different way compared to those of F-EX model. In this approach
two possibilities arise for these parameters for each treatment class j. When pj = 1 the parameter 𝜆1j can be exchangeable
with some or all the parameters of the slopes from the other treatment classes via an exchangeable component. It follows
a common normal distribution with other slopes as in F-EX model. On the other hand, when pj = 0 the slope can be
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nonexchangeable with any slopes from the other treatment classes. In this case a vague prior distribution can be placed on
the parameter, as in the standard model. The method evaluates the degree of borrowing of information of each parameter
𝜆1j by using these two components with respective mixture weights.

The main advantage of this method is that it allows the degree of exchangeability to be inferred from the
data. In each MCMC iteration, the sampler chooses between the two components by using a Bernoulli distribu-
tion pj ∼ Bernoulli(𝜋j). By calculating the posterior mean of this Bernoulli distribution we derive the mixture weights
of each treatment class. The hyper-parameters 𝜋j of the Bernoulli prior distribution can be either fixed or, in a
fully Bayesian framework, they can follow a prior distribution, for example, a Beta distribution 𝜋j ∼ Beta(1, 1). We
have used fixed 𝜋j, since placing a prior distribution required longer chains to converge and provided almost the
same results.

In a special case where pj = 1 for all treatment classes, P-EX model reduces to full exchangeability model as it
uses only the exchangeable component. Having pj = 0 for all treatment classes makes the P-EX model equivalent
to subgroup analysis using the standard model as only the nonexchangeable component is used to estimate 𝜆1j in
this case. In a Bayesian framework vague prior distributions can be placed on the parameters 𝛽0, 𝛽1, 𝜉0, 𝜉1, 𝜇1ij as in
F-EX model.

4 SOFTWARE IMPLEMENTATION AND COMPUTING

All models were implemented in OpenBUGS27 where posterior estimates were obtained using MCMC simula-
tions performing 50 000 iterations (after discarding 20 000 iterations as burn-in period). The OpenBUGS code of
F-EX and P-EX models can be found in Appendix S1 (Sections D3, D4). Convergence was assessed visually
by checking the history, chains and autocorrelation plots using graphical tools in OpenBUGS and R. All esti-
mates are presented as means with corresponding 95% CrIs. The median was used only for the estimates of
the conditional variances as a measure of central tendency since their posterior distributions were very skewed.
The cross-validation procedure was performed in R using R2OpenBUGS27 package to execute OpenBUGS code
multiple times.

5 SIMULATION STUDY

The proposed hierarchical methods allow different levels of borrowing of information for the parameters of inter-
est. F-EX model assumes exchangeability of slopes while, the P-EX model allows for partial exchangeability of
these parameters. We carried out a simulation study to assess the performance of the hierarchical methods and
to compare them with subgroup analysis conducted using the standard model. We evaluated the performance of
the methods in distinct data scenarios generated assuming different strengths of association within classes, dif-
ferent levels of similarity of the association patterns across classes and different number of studies per class. We
evaluated the models' ability to identify treatment classes with strong association patterns and to make predictions
of the treatment effect on the final outcome in a new study from a treatment effect measured on the surrogate
endpoint.

5.1 Data generation process and scenarios

We simulated data under nine different scenarios generating 1000 replications for each scenario. Each replication
included average treatment effects on the surrogate and the final outcome (and corresponding SEs and within-study cor-
relations) from a number of studies of treatments belonging to five treatment classes. We assumed that the data in each
treatment class had a different heterogeneity pattern. Therefore, to have a control over such heterogeneity patterns when
simulating the data we needed to make an assumption about the distribution of the true effects both on the surrogate and
the final endpoints. The standard model by Daniels and Hughes assumes fixed effect for the true effects on the surrogate
endpoint (no common distribution) making difficult to control the heterogeneity patterns when simulating the data. To
avoid this issue, we simulated data using a product normal formulation of bivariate random effect meta-analysis (BRMA)
(Equation (5)), assuming normal random effects on the surrogate endpoint. Apart from this assumption, this method is
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the same as Daniels and Hughes model using a bivariate normal distribution to describe the within-study variability and
a linear relationship to model the association between the surrogate and the final outcome.

(
Y1ij
Y2ij

)
∼ N

((
𝜇1ij
𝜇2ij

)
,

(
𝜎2

1ij 𝜎1ij𝜎2ij𝜌wij

𝜎1ij𝜎2ij𝜌wij 𝜎2
2ij

))
𝜇1ij ∼ N(𝜂1j, 𝜓

2
1j) (5)

𝜇2ij|𝜇1ij ∼ N(𝜂2ij, 𝜓
2
2j)

𝜂2ij = 𝜆0j + 𝜆1j𝜇1ij

𝜓1j =
𝜓2j

|𝜆1j|√(1∕𝜌2
bj) − 1

.

Simulating data from this model, however, can lead to results obtained with increased uncertainty, as the models used
to analyze the data make fewer distributional assumptions.

To generate the data, we pursued the following steps:

1. Set the number of classes N = 5.
2. Simulate the data for each class separately using BRMA model (Equation 5) under three main designs.
3. Create three sets of scenarios: two with fixed number of studies (nj = 16 and nj = 8, j = 1,…,5) per treatment class and

one with unbalanced classes (n1 = 4,n2 = 8,n3 = 6,n4 = 10,n5 = 7). We applied the three sets of scenarios to each
design. In total, we have nine scenarios (3 designs × 3 sets = 9 scenarios).

4. Simulate the true effects using model (Equation 5)

The values of the parameters are listed in Table 1 and a short description of each design can be found below:
Design 1:
In the first design, our aim was to illustrate the properties of exchangeability. We simulated data in five treatment

classes assuming high degree of similarity for their slopes and intercepts. The data in each treatment class were simulated
assuming strong association (see surrogacy criteria in Section 2.1) for each individual class but weak overall.

Design 2:
The second design illustrates the case where there is a treatment class with very different association pattern (slope)

compared to the other classes. This implies that the assumption of exchangeability is in doubt for this parameter in this
particular class. Similarly as in the first scenario, we assumed strong association for each individual class.

Design 3:
The last design focuses on the association patterns of strengths that vary across treatment classes, investigating

whether the proposed methods can estimate a strong association pattern better compared to subgroup analysis with
the standard model and whether they can distinguish between the different association patterns despite borrowing of

T A B L E 1 Simulation designs First Design Second Design Third Design

𝜆11 = 0.40, 𝜌b1 = 0.89 𝜆11 = 0.60, 𝜌b1 = 0.93 𝜆11 = 0.40, 𝜌b1 = 0.90

𝜆12 = 0.45, 𝜌b2 = 0.90 𝜆12 = 1.55, 𝜌b2 = 0.99 𝜆12 = 0.50, 𝜌b2 = 0.70

𝜆13 = 0.50, 𝜌b3 = 0.91 𝜆13 = 1.60, 𝜌b3 = 0.99 𝜆13 = 0.60, 𝜌b3 = 0.93

𝜆14 = 0.55, 𝜌b4 = 0.92 𝜆14 = 1.65, 𝜌b4 = 0.99 𝜆14 = 0.70, 𝜌b4 = 0.75

𝜆15 = 0.60, 𝜌b5 = 0.93 𝜆15 = 1.70, 𝜌b5 = 0.99 𝜆15 = 0.80, 𝜌b5 = 0.95

𝜆0j = 0 𝜆0j = 0 𝜆0j = 0

𝜎1ij,2ij = 0.1 𝜎1ij,2ij = 0.1 𝜎1ij,2ij = 0.1

𝜌wij = 0.4 𝜌wij = 0.4 𝜌wij = 0.4

𝜓2j = 0.08 𝜓2j = 0.08 𝜓21,23,25 = 0.08

𝜓22,24 = 0.30

𝜂1j = 0.3 𝜂1j = 0.3 𝜂1j = 0.3
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information across treatment classes. To achieve this, we generated three out of five treatment classes with strong
association and the remaining two classes with a weak association.

5.2 Performance measures

To evaluate the goodness of fit of the models, we calculated the coverage probability of the 95% CrIs of 𝜆1j and the 95%
predictive intervals of 𝜇2ij. The absolute bias and the root mean square error (RMSE) of �̂�1j and �̂�2ij were also monitored
and reported in the tables. In order to investigate potential decrease in the degree of uncertainty of the estimates as a
result of borrowing of information across treatment classes, we calculated ratios of the width of the 95% CrIs. The width
ratio w

𝜆
FEX ,(PEX)
1j

/w
𝜆

subgr
1j

was defined as the ratio of the widths of the CrIs of 𝜆1j from F-EX or P-EX to the width of the CrIs of
𝜆1j from subgroup analysis using the standard model. Similarly, the width ratio w

𝜇
FEX,(PEX)
2ij

/w
𝜇

subgr
2ij

was the ratio of the 95%
predictive intervals of the true effects 𝜇2ij from F-EX or P-EX to the width of the predictive intervals of 𝜇2ij from subgroup
analysis using the standard model. We also monitored the largest Monte Carlo error (MCE) of the simulations as an index
of accuracy of the Monte Carlo samples.

Furthermore, a cross-validation procedure was applied to each method across the simulated data scenarios. In the
simulation study, the true effect on the final endpoint 𝜇2ij was known, since it had been simulated ,therefore the
cross-validation procedure was applied on the true effects (in real data scenarios we compare the predicted effect with
the observed effect) by checking whether the simulated value of the true effect �̂�2ij was included in the predictive interval
of 𝜇2ij.

5.3 Results

All the tables in the results section list the performance of the posterior means of �̂�1j, the performance of the posterior
means of �̂�2ij as well as the probabilities of estimating a strong association pattern (see definition in Section 2.1) for each
class across methods. The following section presents the results of the analysis by reporting the coverage probabilities of
the CrIs of 𝜆1j and 𝜇2ij for each scenario (by taking the mean of coverage probabilities across classes), the overall absolute
bias and RMSE of �̂�1j and �̂�2ij, the width ratios of 𝜆1j and 𝜇2ij for each scenario (by calculating the mean of the width ratios
of 𝜆1j across classes and the mean of the width ratios of 𝜇2ij across studies and classes), the MCE and the probability to
estimate a strong association pattern by fitting each model. Detailed results for the performance of �̂�1j and �̂�2ij for each
class separately and across methods are listed in Appendix S1 (see Sections B and C).

5.3.1 Performance of the estimates �̂�1j

Table 2 presents the results across the nine scenarios reporting averages of the measures we monitored for �̂�1j over the
five classes of treatment. The performance of the models varied in terms of the coverage probability of the 95% CrIs of 𝜆1j
across scenarios. In the scenarios 1, 4, and 7 where the number of studies per class was relatively high, the models achieved
95% coverage probabilities. However, in the scenarios where the number of studies was smaller the coverage probability
was higher due to increased uncertainty and likely to the fact that the model we used in the generation process was
slightly different from models used to fit the data. MCEs were small across most of the scenarios implying good accuracy
of the Monte Carlo samples and that convergence was achieved in those scenarios across all the methods. However, in
scenarios where the data were limited (scenarios 3, 6, and 9) subgroup analysis with the standard model yielded larger
MCEs. This implies that subgroup analysis requires longer chains to achieve the same level of convergence as the other
two models.

In the first three scenarios (first design), where the treatment classes were very similar in terms of patterns (simi-
lar slopes), F-EX and P-EX were superior compared to subgroup analysis as they gave posterior means of slopes with
lower absolute bias, RMSE and reduced uncertainty (narrower 95% CrIs) due to borrowing of information across classes.
P-EX model achieved almost the same level of borrowing of information as F-EX model, with mixtures weights were
very close to 1 across treatment classes (see details in the Section D1 in Appendix S1 where the mixture weights are
listed). Overall, the proposed hierarchical models performed better compared to subgroup analysis but the difference
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T A B L E 3 Probabilities of estimating a strong association pattern per class in the third design

Scenario
Number of Studies
Across Classes Treatment Classes Subgroup Analysis F-EX Model P-EX Model

Seventh Fixed (nj = 16) First class 0.82 0.84 0.84

Second classa 0.00 0.00 0.00

Third class 0.83 0.85 0.85

Fourth classa 0.00 0.00 0.00

Fifth class 0.80 0.80 0.80

Eighth Fixed (nj = 8) First class 0.78 0.89 0.89

Second classa 0.04 0.05 0.05

Third class 0.80 0.90 0.90

Fourth classa 0.06 0.06 0.06

Fifth class 0.85 0.87 0.86

Ninth Unbalanced First class 0.06 0.82 0.80

(n1 = 4,n2 = 8, Second classa 0.06 0.07 0.07

n3 = 6,n4 = 10, Third class 0.65 0.91 0.91

n5 = 7) Fourth classa 0.03 0.03 0.03

Fifth class 0.82 0.89 0.89

Abbreviations: F-EX, full exchangeability; P-EX, partial exchangeability.
aTreatment classes with weak association pattern.

was more pronounced in the scenarios with small number of studies. In the second design (scenarios 4, 5, and 6), where
the exchangeability assumption was not reasonable for one of the classes, P-EX model yielded the most robust results.
The model resulted in the posterior means with the smallest absolue bias and RMSE, reducing the degree of borrowing
of information for the class with the distinctly different (the mixture weights in this class were p1 = 0.56, p1 = 0.31 and
p1 = 0.80 respectively) while it still borrowed almost the same level of information across the remaining classes as F-EX
model (p2, p3, p4, p5 ≈ 0.97). On the other hand, F-EX performed poorer compared to the other methods in scenario 6
with unbalanced and relatively small number of studies per class, leading to more biased results. This indicates that F-EX
model is not appropriate when the assumption of exchangeability is not reasonable. Subgroup analysis using the standard
model achieved decent performance only in the forth scenario where there were sufficient data. In the third design (sce-
narios 7, 8, and 9) the proposed models achieved superior performance compared to subgroup analysis for the estimates
of 𝜆1j, similarly as in the first three scenarios.

The last column of Table 2 shows the probabilities of estimating a strong association pattern across the data scenarios
and models. F-EX and P-EX methods estimated the surrogacy (based on the three surrogacy criteria) better compared
to subgroup analysis across all scenarios. In the first design (scenarios 1, 2, and 3) where the association was designed
to be strong for all the classes, F-EX and P-EX models predicted a strong association pattern in more than 85% of the
simulations. Subgroup analysis predicted the 81% of them in the first scenario but its performance reduced noticeably
in the second and third scenario where the data were more sparse. In the second design (scenarios 4, 5, and 6) with
strong association patterns across all classes, P-EX and F-EX estimated more than 87% of the association patterns across
these three scenarios. Subgroup analysis performed well only in the fourth scenario predicting the 89% of the association
patterns but its performance gradually reduced as the number of studies was decreased in scenario 5 and 6.

Table 3 presents the results from the last three scenarios (third design), where the surrogate relationships varied across
classes. F-EX and P-EX methods were able to estimate a strong association pattern with higher probability compared
to subgroup analysis in the classes where the association was designed to be strong. At the same time, the methods
successfully identified classes with strong association patterns from a mixture of classes with weak and strong association
patterns, even for the scenarios with relatively few studies per class where subgroup analysis failed almost completely to
identify. The probabilities of estimating a strong association per class in designs 1 and 2 are presented in Appendix S1 (see
sections B1, B2, B3, B4, B5, B6).
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T A B L E 4 Performance of �̂�2ij

Scenario
Number of Studies
Across Classes Methods

Coverage
(Mean)

Absolute Bias
(Mean) RMSE

Width Ratio
(Mean) MCE

First design

First Fixed (nj = 16) Subgroup analysis 0.95 0.09 0.11 0.003

F-EX model 0.95 0.08 0.10 0.93 0.002

P-EX model 0.95 0.08 0.10 0.93 0.002

Second Fixed (nj = 8) Subgroup Analysis 0.98 0.11 0.13 0.010

F-EX model 0.98 0.08 0.10 0.80 0.004

P-EX model 0.98 0.08 0.10 0.80 0.004

Third Unbalanced Subgroup analysis 0.99 0.12 0.18 0.023

(n1 = 4,n2 = 8,n3 = 6, F-EX model 0.99 0.08 0.11 0.67 0.005

n4 = 10,n5 = 7) P-EX model 0.99 0.09 0.11 0.68 0.008

Second design

Fourth Fixed (nj = 16) Subgroup analysis 0.95 0.13 0.18 0.009

F-EX model 0.95 0.13 0.18 0.97 0.008

P-EX model 0.96 0.12 0.17 0.96 0.008

Fifth Fixed (nj = 8) Subgroup analysis 0.99 0.16 0.20 0.015

F-EX model 0.98 0.15 0.19 0.92 0.009

P-EX model 0.98 0.14 0.18 0.87 0.008

Sixth Unbalanced Subgroup analysis 0.99 0.18 0.23 0.021

(n1 = 4,n2 = 8,n3 = 6, F-EX model 0.99 0.18 0.22 0.80 0.009

n4 = 10,n5 = 7) P-EX model 0.99 0.15 0.19 0.77 0.010

Third Design

Seventh Fixed (nj = 16) Subgroup analysis 0.95 0.16 0.23 0.006

F-EX model 0.95 0.16 0.22 0.96 0.004

P-EX model 0.95 0.16 0.22 0.96 0.004

Eighth Fixed (nj = 8) Subgroup analysis 0.98 0.18 0.26 0.017

F-EX model 0.97 0.16 0.22 0.85 0.006

P-EX model 0.97 0.16 0.22 0.85 0.006

Ninth Unbalanced Subgroup analysis 0.98 0.20 0.28 0.027

(n1 = 4,n2 = 8,n3 = 6, F-EX model 0.97 0.17 0.21 0.72 0.008

n4 = 10,n5 = 7) P-EX model 0.97 0.17 0.21 0.72 0.009

Abbreviations: F-EX, full exchangeability; MCE, Monte Carlo errors; P-EX, partial exchangeability; RMSE, root mean square error.

5.3.2 Performance of predictions �̂�2ij

Table 4 shows the results from cross-validation procedure which resulted in the posterior means (�̂�2ij) and 95% predictive
intervals of the true effects 𝜇2ij. It presents the same measures as Table 2 averaged over the five classes. In scenarios 1, 4,
and 7, the models achieved 95% coverage due to the large amount of data, however, in the remaining scenarios where the
number of studies was smaller the models yielded higher coverages probabilities. F-EX and P-EX had small MCEs across
all scenarios, however, subgroup analysis gave on average significantly larger MCEs compared to the proposed methods
in scenarios 3, 6, and 9 (see details in Sections C3, C6, C9 in Appendix S1). This indicates that subgroup analysis with
the standard model requires longer chains for its posteriors to achieve the same level of convergence as the other two
methods.
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In the first three scenarios, F-EX and P-EX models outperformed subgroup analysis in terms of the absolute bias,
RMSE and the uncertainty of �̂�2ij. However, there was no winner between them as both methods had almost the same
degree of borrowing of information resulting in 7%, 20%, and 33% narrower predictive intervals compared to subgroup
analysis across these three scenarios, respectively. In the scenarios 4 ,5, and 6 (second design), P-EX yielded posterior
means with the smallest absolute bias, RMSE and CrIs with the smallest width ratio across classes. Furthermore, P-EX
method gave the most robust results for the ”extreme” treatment class reducing by 44%, 69%, and 20% the borrowing of
information in this class across the scenarios (see the mixture weights in Section D1 in Appendix S1). In the sixth scenario
F-EX performed poorer compared to P-EX model leading to biased results especially for the treatment class where the
surrogacy was different and the exchangeability assumption unreasonable (first class in the Section C6 of Appendix S1).
Subgroup analysis performed almost equally well as the P-EX model in the 4th scenario where the number of studies
per class was relatively large. The last three scenarios (third design) gave similar results as the first three in terms of the
uncertainty, the absolute bias and the RMSE of �̂�2ij. F-EX P-EX models performed equally well, while subgroup analysis
with the standard model was the worst approach resulting in inflated predictive intervals, larger RMSE and worse MCE
in all cases.

5.4 Discussion of the results

The aim of the simulation study was to illustrate and assess the performance of the methods under different scenarios.
The models gave 95% coverage probabilities in the scenarios 1, 4, and 7 where the number of studies was sufficiently
large (16 for each class). However, in the remaining scenarios the coverage probabilities were higher than 95%, which
means that the methods derived more conservative CrIs of parameters than expected. This is largely due to the sparsity
of the data in these scenarios but may also be partly due to different models being used to simulate and analyze the data
as explained in Section 5.1. In the first design (scenarios 1, 2, and 3) where the assumption of exchangeability was rea-
sonable, F-EX and P-EX models performed better than the subgroup analysis giving on average narrower 95% CrIs of 𝜆1j
and 95% predictive intervals of 𝜇2ij. This indicates that P-EX model successfully identified the correct level of borrowing
of information inferring that the mixture weights should be very close to 1. P-EX model was the best choice in all the
scenarios of the second design (scenarios 4, 5, and 6) where there was a treatment class with distinctly different slope.
It reduced the degree of borrowing of information for the ”extreme” treatment class, giving the most accurate posterior
means of the slopes. Moreover, P-EX model was the best choice in terms of predictions of the true effect on the final end-
point, reducing the width of predictive intervals by 4%, 13%, and 23% compared to subgroup analysis in each scenario,
respectively. Last but not least, the proposed methods estimated the strong association patterns better compared to sub-
group analysis across all data scenarios. In particular, in scenarios 3, 6, and 9, where the data were sparse, the proposed
hierarchical methods were able to estimate surrogacy significantly better compared to the subgroup analysis. This illus-
trates well the benefits of using hierarchical methods when data are limited. Furthermore, as illustrated by scenarios 7,
8, and 9, F-EX and P-EX could easily distinguish between the different association patterns as they identified treatment
classes with strong association patterns and at the same time did not overestimate the strength of the association in the
classes where the association was designed to be weak.

6 APPLICATION: ADVANCED COLORECTAL CANCER

6.1 Data

We illustrate the proposed methodology in an example in aCRC. The data were obtained from a systematic review
conducted by Ciani et al10 which included 101 RCTs published between 2003 and 2013, evaluating multiple interven-
tions in aCRC. The review consist of trials that report treatment effects on OS or/and on alternative endpoints such
as PFS, TR. OS was defined as the time from randomization to time of death, PFS was set as the time from random-
ization to tumor progression or death from any cause. TR was estimated using objective tumor measurements which
are measured using imaging methods and determined according to the Response Evaluation Criteria in Solid Tumors
guidelines28 or the World Health Organization recommendations.29 The RCTs in the systematic review contain five treat-
ment classes: the class of chemotherapies, the anti-epidermal growth factor receptor (Anti-EGFR) monoclonal antibodies
class, angiogenesis inhibitors, other molecular-targeted agents and intrahepatic arterial chemotherapies .
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F I G U R E 1 Scatterplots of treatment
effects on progression-free survival-overall
survival and tumor
response-progression-free survival [Color
figure can be viewed at
wileyonlinelibrary.com]
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Ciani et al10 investigated surrogate relationships between treatment effects on potential surrogate endpoints (TR
and PFS) and on the final clinical outcome (OS). They found that the surrogate relationships between treatment effects
on these endpoints were suboptimal. Furthermore, they stated that PFS was an acceptable surrogate endpoint for OS,
whereas TR should not be used as a surrogate endpoint for this final outcome. They concluded that good surrogacy
observed in previous studies, that included traditional chemotherapy trials in aCRC may not apply directly across other
classes of treatments. More details about the studies and how the systematic review was designed can be found in Ciani
et al.10 We refer these data as ”Ciani data” in the remainder of this paper.

In our example, we focused on a subset of these data examining the surrogacy between treatment effects on TR and
PFS and treatment effects on PFS and OS including data from three treatment classes. We obtained data from 35 studies
reporting treatment effect on PFS and OS where, 15 of them belonged to the chemotherapy treatment class, nine of
them investigated anti-EGFR therapies and 11 anti-angiogenic treatments. To investigate surrogate relationships between
treatment effects on TR and PFS we used data from 35 studies reporting treatment effects on these endpoints; 17 of
them investigated chemotherapies, 8 and 10 studies anti-EGFR and anti-angiogenic treatments respectively. TR can be
evaluated as a surrogate endpoint to treatment effect on PFS, as treatment effects on TR is typically measured earlier
compared to treatment effects on PFS.

Figure 1 provides a graphical representation of the dataset we used. It illustrates the association patterns between the
treatment effects across classes on each pair of outcomes.

IPD were available from four RCTs,30-33 which were used to estimate the within-study correlations. By applying a
bootstrap method (see Section A in Appendix S1) we estimated two sets of within-study correlations: for each of the two
pairs of outcomes one correlation corresponding to each treatment class. We assumed that within treatment classes the
within-study correlations are the same across studies.

6.2 Scale of the outcomes

The treatment effects on OS and PFS were modeled on the log hazard ratio scale logHR(OS), logHR(PFS), whereas
the treatment effects on TR were modeled on log odds ratio logOR(TR) scale. We retrieved the corresponding SEs of
logHR(PFS) and logHR(OS) on PFS and OS from the 95% confidence intervals and by using the standard formulae for the
SEs of logOR(TR) .

6.3 Results of data analysis

The first aim of our analysis was to explore potential differences in association patterns across treatment classes. To inves-
tigate this, we applied the two proposed models and subgroup analysis using standard model to the data and derived
posterior distributions for the parameters of the surrogate relationships for each treatment class. We obtained the poste-
riors mean of the intercepts �̂�0j, the slopes �̂�1j and posterior median of conditional variances �̂�2

j with corresponding 95%
CrIs across treatment classes. By checking the surrogacy criteria (described in Section 2.1) we were able to infer whether or
not a candidate endpoint is a valid surrogate in each treatment class. We carried out a cross-validation procedure (Section
2.2) to investigate how well the models predict the true treatment effect on the final clinical outcome. The measures we

http://wileyonlinelibrary.com
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monitored were the absolute error of the predictions, the ratios of the width of the 95% predictive intervals from P-EX or
F-EX to the width of the 95% predicted interval obtained from subgroup analysis and the largest MCE.

6.3.1 Results across models and treatment classes

Subgroup analysis with the standard model
The results of subgroup analysis presented in the first two columns of Table 5 showed strong association between

the treatment effects on PFS and the effects on OS in the class of chemotherapies and the anti-angiogenic treatment
class with all three criteria for surrogacy satisfied (the 95% CrIs of 𝜆01 and 𝜆03 included zero, the 95% CrIs of 𝜆11 and
𝜆13 did not contain zero and there was substantial evidence using Bayes factors in favor of the hypotheses H1 ∶ 𝜓2

1 = 0,
and H1 ∶ 𝜓2

3 = 0 (see details about Bayes factors Section D2 in Appendix S1)). In contrast, we can infer that the surro-
gate relationship between treatment effects on PFS and the effects on OS in the anti-EGFR treatment class was weak,
as the 95% CrI of the posterior distribution of the slope included zero. Investigating the surrogacy on TR-PFS pair
we found a similar pattern, thus we can infer that there was an acceptable surrogate relationship between treatment
effects on TR and PFS in the chemotherapy and the anti-angiogenic classes. The relationship was negative overall, since
the slopes were negative across classes. On the other hand, the surrogacy criteria indicated poor surrogacy between
the treatment effects on TR and the treatment effects on PFS for anti-EGFR class, since the 95% CrI of the slope 𝜆12
included zero.

F-EX model
The results of F-EX model are presented in columns 3 and 4 of Table 5. For the PFS-OS pair of outcomes, the asso-

ciation patterns were very similar in the anti-angiogenic and chemotherapy treatment classes as both classes satisfied
the surrogacy criteria and the slopes were of similar magnitude. The 95% CrIs of the intercepts 𝜆01 and 𝜆03 included
zero indicating that zero treatment effect on the surrogate implies zero treatment effect on the final outcome for these
two classes. The intervals of the slopes 𝜆11 and 𝜆13 did not contain zero indicating positive association as the two
slopes were positive. The conditional variances in these two classes were small indicating strong association which
was supported by the analysis using Bayes factors (see details about the Bayes factors in Section D2 in Appendix S1).
On the other hand, the association was weak in the anti-EGFR treatment class failing to meet one of the criteria, as
the 95% CrI of the slope 𝜆12 included zero. On the contrary, for TR-PFS pair of outcomes all three surrogacy criteria
were satisfied across all the treatment classes taking advantage of the assumption of exchangeability of the parame-
ters 𝜆0j and 𝜆1j. This implies that TR was an acceptable surrogate endpoint for PFS across treatment classes in this
data set.

P-EX model
P-EX model allows the parameters of slope of each treatment class to be either exchangeable or nonexchangeable with

parameters of slopes from other classes yielding parameters with partial exchangeability. For both pairs of outcomes, fixed
values for the hyper-parameters 𝜋j = (0.5, 0.5, 0.5) were chosen assuming that exchangeability and nonexchangeability
were a priori equally likely.

As in the case of F-EX model, the surrogacy criteria were estimated for each class separately and then a cross-validation
procedure followed, however, for this model we also monitored the mixture weights by calculating the posterior means
of pj in order to measure the degree of borrowing of information across classes (Table 5 columns 5, 6). For the PFS-OS
pair, the weights increased from their prior values (𝜋j = 0.5) to 0.968 in the class of chemotherapy, to 0.965 in the
anti-EGFR class and to 0.966 in the anti-angiogenic treatment class indicating that borrowing of information was reduced
approximately 3.5% for each class compared to F-EX model. Looking at the results from P-EX model we drew the
same inferences as from F-EX model, inferring that the association patterns were strong in the anti-angiogenic and
the chemotherapy classes, but weak in the anti-EGFR treatment class where the 95% CrI of the slope 𝜆12 included
zero. In contrast to this, for TR-PFS pair the mixture weights were smaller than on PFS-OS pair due to the slightly
larger between treatment class heterogeneity. There was 7.1% reduction in borrowing of information in anti-angiogenic
class compared to F-EX models, while the weights for the chemotherapies and anti-EGFR agents were 0.944 and
0.95, respectively. All three surrogacy criteria were fulfilled across treatment classes despite the decrease in levels of
borrowing of information, indicating that TR was an acceptable surrogate for PFS across treatment classes in the
Ciani data.
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T A B L E 6 Predictions of 𝜇2ij across treatments and models

Chemotherapy Anti-EGFR Anti-angiogenic Overall

Models Measures PFS-OS TR-PFS PFS-OS TR-PFS PFS-OS TR-PFS PFS-OS TR-PFS

Standard model Performance of 95%
predictive intervals

1.000 0.941 0.888 1.000 1.000 1.000 0.971 0.971

Absolute error (median) 0.047 0.108 0.140 0.132 0.099 0.145 0.090 0.123

MCE (max) 0.002 0.004 0.006 0.004 0.003 0.004 0.003 0.004

F-EX Performance of 95%
predictive intervals

1.000 0.941 1.000 1.000 1.000 1.000 1.000 0.971

Absolute error (median) 0.041 0.104 0.102 0.112 0.123 0.206 0.089 0.128

Width ratio (median) 0.988 0.985 0.862 0.968 0.930 0.997 0.950 0.987

MCE (max) 0.002 0.004 0.005 0.005 0.003 0.003 0.003 0.004

P-EX Performance of 95%
predictive intervals

1.000 0.941 1.000 1.000 1.000 1.000 1.000 0.971

Absolute error (median) 0.041 0.104 0.126 0.114 0.109 0.206 0.092 0.128

Width ratio (median) 0.989 0.989 0.864 0.975 0.931 0.999 0.957 0.990

MCE (max) 0.002 0.004 0.005 0.005 0.003 0.003 0.003 0.004

Abbreviations: F-EX, full exchangeability; MCE, Monte Carlo error; OS, overall survival; P-EX, partial exchangeability; PFS, progression-free survival; TR,
tumor response.

6.3.2 Results of the cross-validation procedure

After estimating the surrogacy criteria across treatment classes, we carried out cross-validation procedure to predict the
treatment effects 𝜇2i on the final outcome. The results in Table 6 showed that the cross-validation procedure of subgroup
analysis with the standard model gave predictive intervals of the effects on the final outcome containing the correspond-
ing observed estimates Y2i in the 97% of the studies for both pairs of outcomes confirming good fit of the model. The
cross-validation procedure yielded the most accurate posterior means of the true effects on the final endpoint (small abso-
lute error) in the treatment class of chemotherapies, where the number of the available studies was large and performed
poorly in terms of accuracy of predictions in the anti-EGFR class (large absolute error) where the surrogacy was weak and
the number of studies small. Similarly, subgroup analysis with the standard model was less accurate in targeted treatment
classes for the TR-PFS pair of outcomes where the number of studies was smaller.

The results from the cross-validation procedure of F-EX model showed that the method fitted the data well. All of the
predicted intervals of 𝜇2ij contained the observed values of the treatment effects on the final outcome on PFS-OS pair and
all but one on TR-PFS pair. The cross-validation procedure yielded the posterior means of 𝜇2ij with the smallest absolute
error in chemotherapy treatment class on PFS-OS pair and performed equally well in terms of its accuracy in the other two
classes. In contrast to this, higher absolute error were observed in the anti-angiogenic class on TR-PFS pair indicating that
the assumption of exchangeability of the parameters describing the surrogate relationships was fairly strong and it was
likely to cause ”overshrinkage” in this particular class. The results obtained for the width ratios imply that F-EX method
gave intervals of the true effect on the final endpoint with smaller degree of uncertainty compared to subgroup analysis.
There was a small decrease in the uncertainty of the predictions of 𝜇2ij on PFS-OS pair for the chemotherapy treatment
class, as the cross-validation procedure of F-EX model yielded 1.2% narrower intervals compared to subgroup analysis.
Furthermore, significantly reduced uncertainty was observed in the other two treatment classes for PFS-OS pair, 13.8% in
the anti-EGFR treatment class and 7% in the anti-angiogenic, where the number of studies was smaller. On the contrary,
very limited decrease in the degree of uncertainty was observed for the TR-PFS pair of outcomes across all classes. Overall
on this pair, the predictive intervals were only 1.3% narrower compared to subgroup analysis. The benefit was small (3.2%
reduction of the width of the predictive interval) even for the anti-EGFR treatment class where there were only 8 studies
for this pair.

Focusing on the results from the cross-validation procedure using P-EX model, all the intervals of the predicted treat-
ment effects on the final outcome contained the observed treatment effects on PFS-OS pair and all but one on the TR-PFS
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pair. The absolute error was smaller in chemotherapy treatment class for the PFS-OS pair where the number of stud-
ies was large and significantly higher in the other two classes. In contrast to this, the cross-validation procedure with
P-EX gave almost equally accurate estimates in the anti-EGFR and the chemotherapy treatment classes on TR-PFS pair.
However, the absolute error was higher in the anti-angiogenic treatment class where the association was much stronger
compared to the other two classes indicating potential excessive borrowing of information from the other classes. This is
likely due to the assumption of full exchangeability of the intercepts.

The method predicted the effects on the final outcome with reduced uncertainty giving more precise estimates (�̂�2ij)
compared to subgroup analysis in the anti-EGFR class on PFS-OS pair reducing the uncertainty by 13.6%. On the other
hand, the predicted effects �̂�2ij had almost the same degree of uncertainty as those from subgroup analysis for TR-PFS
pair. The intervals were only 1% narrower on average across all classes compared to the subgroup analysis.

6.4 Comparison of the results from F-EX, P-EX, and those from subgroup analysis

Figure 2 presents 95% CrIs of the slopes 𝜆1j and intercepts 𝜆0j across the treatment classes and methods of estimation.
Comparing the aforementioned methods in regards to the surrogacy criteria on the PFS-OS pair, we can conclude that
F-EX model estimated the parameters of the surrogate relationships with reduced uncertainty compared to the subgroup
analysis and P-EX model taking advantage of borrowing of information across classes. P-EX relaxes the assumption of
exchangeability reducing the effect of borrowing of information on average by 3.6%. It gave narrower CrIs of the param-
eters of interest compared to subgroup analysis but slightly larger than those obtained form F-EX model. Furthermore,
both F-EX and P-EX methods can distinguish between the different association patterns avoiding to give over-shrunk esti-
mates of the slopes and the intercepts, although they allow different degrees of borrowing of information for the slopes.
In particular, this pair of outcomes (PFS-OS) illustrates well the impact of number of studies per class on the degree of
borrowing of information. In general, borrowing of information is determined by the number of studies within treatment
classes, between treatment classes heterogeneity, as well as the number of treatment classes. In this case, the fewer stud-
ies we have within a treatment class, the bigger is the impact of borrowing of information resulting in higher reduction
in uncertainty of the estimates of surrogate relationships. This effect was particularly strong for the anti-EGFR treatment
class.

On the other hand, TR-PFS pair is a good example to illustrate the performance of the hierarchical methods when
between treatment class heterogeneity is relatively large. In this case, subgroup analysis performed equally well as the pro-
posed methods in terms of uncertainty of the CrIs of the paramaters describing the surrogate relationships. For instance
by fitting F-EX and P-EX models, we did not observe any decrease in uncertainty around 𝜆1j and 𝜆0j across classes. This is
because the between treatment classes heterogeneity was relatively large for TR-PFS pair and hence there was not much
shrinkage. Furthermore, using subgroup analysis, the surrogacy criteria failed in the anti-EGFR class (zero was included
in the 95% CrI of the slope) where only eight studies available). However, the 95% CrI in the anti-EGFR class just con-
tains zero and overlaps substantially with the 95% CrI of the slope for chemotherapy treatment class. By applying P-EX
and F-EX models, we were able to draw different inferences for the surrogacy in the anti-EGFR class as these methods

F I G U R E 2 95% Credible intervals
of 𝜆1j and 𝜆0j for the progression-free
survival-overall survival pair of outcomes
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allow for borrowing of information for the parameters describing the surrogate relationships from the other classes. As
illustrated in Figure 3, both hierarchical models moved the 95% CrI of the slope in the direction of the CrIs of the other
two classes resulting in the surrogacy criteria being satisfied across all treatment classes.

When carrying out cross-validation procedure, we wish to ensure that not only predictive intervals contain the
observed values but also that they are sufficiently narrow. In general, adding a hierarchical structure to slopes and inter-
cepts reduces the uncertainty and leads to more precise predictions compared to those obtained from subgroup analysis.
For the PFS-OS pair of outcomes, the accuracy of the predictions was very similar across all methods (similar absolute
error) but the uncertainty varied depending on the level of borrowing of information. F-EX model gave on average the
most precise estimates (�̂�2ij) having the narrowest 95% predictive intervals of the effect on the final outcome (smallest
width ratio seen in Tables 3, 5, and 6) reducing the overall uncertainly by 5%. The benefit was smaller in the chemother-
apy class where the number of studies was much larger compared to the anti-EGFR treatment class where we had only
eight studies available. Overall, P-EX performed better than subgroup analysis and equally well with F-EX regarding the
uncertainty of the predictions. This indicates that the assumption of exchangeability seems to be plausible for this pair of
outcomes and P-EX model was able to identify this.

For the TR-PFS pair, subgroup analysis with the standard model was a robust approach in terms of the accuracy of its
predictions. Although the overall absolute error was very similar across models, F-EX and P-EX yielded higher absolute
error compared to subgroup analysis in the anti-angiogenic class. This implies that the posterior means of the true effects
were to some extent ”overshrunk” due to excessive borrowing of information from the other classes. P-EX model was
implemented allowing for partial exchangeability of the slopes only, this decision is likely to affect the performance of the
model in terms of its predictions on TR-PFS pair of outcomes. However, the model can be extended allowing for partial
exchangeability also of the intercepts or the conditional variances and different combinations of these assumptions can be
explored and models compared using deviance information criterion (DIC). Similarly, there was no significant decrease in
the degree of uncertainty of the estimates �̂�2ij of F-EX and P-EX models. The results indicate that the hierarchical methods
performed slightly better compared to subgroup analysis in terms of uncertainty only in the class of chemotherapy and
the anti-EGFR treatment class giving 1.5% and 3% narrower predictive intervals, respectively. This kind of behavior might
be caused by the relatively large between treatment class heterogeneity and the assumption of full exchangeability of
the intercepts.

7 DISCUSSION

We developed two hierarchical models allowing to account for distinct treatment classes when examining the sur-
rogate relationships. The proposed models may be particularly useful in surrogate endpoint evaluation in complex
diseases where different treatment classes of different mechanism of action and potential different association pat-
terns within those classes exist. These models investigate potential differences in study-level surrogacy across treatment
classes in a particular disease area and can help to identify treatment classes with strong association patters, even
when data are relatively sparse. F-EX model is somewhat restrictive, assuming full exchangeability of the parameters
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describing the surrogate relationships across treatment classes. In many situations the assumption of exchangeability
may be too strong given the heterogeneity between treatment classes. In such circumstances, a more flexible model
such as P-EX may be a better choice. P-EX model can infer an appropriate level of borrowing of information from the
data, reducing the degree of borrowing of information through the mixture weights, thus relaxing the assumption of
exchangeability when it is not fully reasonable. It evaluates whether the association pattern between treatment effects
(logHR or logOR) on the surrogate and the final endpoint in a specific treatment class differs from the other patterns in
other classes.

F-EX model is appropriate only when the degree of similarity of surrogate relationships is relatively high. It can offer
substantial gains in precision, reduced RMSE of the posterior means of the parameters describing surrogate relationships
and it can improve the predictions of the true effects on the final endpoint. For example, F-EX model gave posterior means
of the slopes and predicted effects with reduced uncertainty (smaller CrIs) compared to subgroup analysis for the first
simulated data scenario and for the illustrative example on PFS-OS pair where the parameters describing the surrogate
relationship were similar and the assumption of full exchangeability was reasonable. These findings are consistent with
the results from other hierarchical Bayesian methods which assume full exchangeability and were developed in other
research areas.24,25 However, P-EX model achieves the same degree of borrowing of information in such data scenarios
making less assumptions compared to F-EX model. P-EX model regulates the degree of borrowing of information using its
exchangeable and nonexchangeable components with respective mixture weights. For instance, when between treatment
class heterogeneity is relatively large or there is a treatment class with distinctly different pattern, P-EX model has the
advantage of avoiding the excessive borrowing of information, as illustrated in the second design of the simulation study.
All the above illustrate the benefits of partial exchangeability, as described by Neuenschwander et al17 in their work.
Subgroup analysis using the standard model is a simple approach which performs well when there are sufficient data
available for each treatment class, but it produces estimates with higher bias and uncertainty when data within a treatment
class are limited.

Although the proposed methods provide additional robustness to the CrIs and the posterior means of the parameters
describing the surrogate relationships compared to subgroup analysis, potential limitations should always be kept in
mind. First, in real data scenarios it can be challenging to find datasets with sufficient number of treatment classes. The
small number of treatment classes can affect the performance of hierarchical methods substantially34 reducing the impact
of borrowing of information. For instance, fitting P-EX model to the illustrative example (in aCRC with three treatment
classes) led to a situation where in some of the MCMC iterations only one class was deemed exchangeable by the model
which is not possible since there were no other classes to exchange information with. However, in our example it did not
affect the performance of the model as it occurred only in the 0.5% of the MCMC iterations. On the other hand, there is
no upper limit to the number of classes we can have. In general, the more classes the better it is for the models to borrow
information across them.

Another limitation of the illustrative example is that treatment switching was applied in a subset of trials in
this dataset. Patients were allowed to switch from the treatment that was initially assigned to them to the other
treatment arm in the trial. Most commonly patients switched after progression from control to experimental arm
in particular, if there was sufficient evidence during the trial that the experimental treatment was better than
control.35 Treatment switching has diminishing effect on the difference in treatment effects on OS when applying
intention-to-treat analysis, and the effect is often obtained with larger uncertainty. This makes the estimation of sur-
rogacy between treatment effects on the surrogate and treatment effects on the final outcome very challenging. Many
adjustment methods have been proposed, however, their validity is often questionable.35 Additionally, the evaluation
of PFS as a surrogate endpoint is distinctive compared to other surrogate endpoints as PFS can be considered as
nested outcome within OS outcome. These factors may explain the different findings for the two pairs of outcomes
(PFS-OS and TR-OS).

Furthermore, as it was mentioned in Section 6, each treatment class consist of studies with multiple treatment com-
parisons. According to Daniels and Hughes4 and Shanafelt et al36 different treatment comparisons and the use of active or
inactive control interventions may influence the surrogate relationship. This could potentially be resolved by classifying
treatment according the treatment class comparison (eg, anti-angiogenic therapies versus chemotherapy) which poten-
tially would lead to more treatment classes, but with reduced number of studies per class. To continue with the same
issue, in this paper the treatment classes were defined according to the class of the experimental treatment regardless of
the control. Alternatively, we could classify them according to the treatment contrasts taking into account the class of the
control group, however, this could result in fewer studies per class. A network meta-analysis model was developed for
this problem by Bujkiewicz et al.37
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Additionally, the evaluation framework proposed by Daniels and Hughes (see Section 2.1) examine whether zero is
contained in the CrIs of 𝜆1 and 𝜆0. However, the sparsity of data may lead to increased uncertainty around the intercept
and slope. This increased uncertainty is also likely to manifest itself in increased conditional variance, thus invalidating
the third criterion. Unsurprisingly, for sparse data it is unlikely that all the surrogacy criteria hold and this problem is
more likely to occur in subgroup analyses. Our proposed methods alleviate this problem as shown in some of the scenarios
of the simulation study. However, we used the criteria mainly for the purpose of model comparison. In real-life scenarios,
when evaluating a potential surrogate endpoint for use in clinical trials or regulatory decision-making, the decision of
whether the surrogate endpoint may be used to make the prediction of the clinical benefit should be based on the balance
between the strength of the surrogate relationship and the need for the decision to be made about the effectiveness of the
new treatment.38 Moreover, the strength (or weakness) of the surrogate relationship will manifest itself in the width of
the predicted interval of the treatment effect on the final outcome. A larger interval around the intercept and slope will
result in a larger interval around the predicted effect and hence increased uncertainty about the regulatory or clinical
decision made based on such prediction. The implication of this is that perhaps we do not need precise surrogacy criteria
and instead we need only look at the predictions.37 The quality of predictions can be evaluated through a cross-validation
procedure (see Section 2.2).

A possible extension of these methods is to add another layer of hierarchy accounting for the different treat-
ments within a treatment class. However, a relatively large number of studies for each treatment and number of
treatments per class would be required to fit such model. As we mentioned in Section 6.4, P-EX model could also
be extended by making additional partial-exchangeability assumptions about the intercepts and the conditional vari-
ances, however, this may lead to over-parameterizing the model. Furthermore, taking advantage of the setting proposed
by Bujkiewicz et al,39 both hierarchical models can be extended to allow for modeling multiple surrogate endpoints
(or the same surrogate endpoint but reported at multiple time points) as joint predictors of treatment effect on the
final outcome.

Further research is also needed to extend the proposed methodology to binomial data or to time to event data where
the assumption of normality is not plausible. Moreover, to overcome the convergence issues caused by vague prior dis-
tributions on the hyper-parameter of the mixture weights (𝜋j), alternative prior distributions should be developed by
extending the P-EX in a similar way as proposed by Kaizer et al.40

In summary, we developed hierarchical Bayesian methods for evaluating surrogate relationships within treatment
classes while borrowing of information for surrogate relationships across treatment classes. We believe that the proposed
methods have a lot of potential for improving the validation of surrogate endpoints in the era of personalized medicine,
where the surrogacy may depend on the mechanism of action of specific targeted therapies.
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