
polymers

Review

Designing Materials and Processes for Strong Polyacrylonitrile
Precursor Fibers

Hyunchul Ahn 1, Sang Young Yeo 1,* and Byoung-Sun Lee 2,*

����������
�������

Citation: Ahn, H.; Yeo, S.Y.; Lee, B.-S.

Designing Materials and Processes

for Strong Polyacrylonitrile Precursor

Fibers. Polymers 2021, 13, 2863.

https://doi.org/10.3390/

polym13172863

Academic Editor: Vijay

Kumar Thakur

Received: 26 July 2021

Accepted: 23 August 2021

Published: 26 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Advanced Textile R&D Department, Korea Institute of Industrial Technology, 143 Hanggaulro, Sangnok-gu,
Ansan 15588, Gyeonggi, Korea; hahn@kitech.re.kr

2 School of Polymer System/Department of Fiber Convergence Materials Engineering, College of Engineering,
Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin 16890, Gyeonggi, Korea

* Correspondence: miracle@kitech.re.kr (S.Y.Y.); bslee2020@dankook.ac.kr (B.-S.L.)

Abstract: Although polyacrylonitrile (PAN)-based carbon fibers have been successfully commer-
cialized owing to their excellent material properties, their actual mechanical performance is still
much lower than the theoretical values. Meanwhile, there is a growing demand for the use of
superior carbon fibers. As such, many studies have been conducted to improve the mechanical
performance of carbon fibers. Among the various approaches, designing a strong precursor fiber
with a well-developed microstructure and morphology can constitute the most effective strategy to
achieve superior performance. In this review, the efforts used to modulate materials, processing, and
additives to deliver strong precursor fibers were thoroughly investigated. Our work demonstrates
that the design of materials and processes is a fruitful pathway for the enhancement of the mechanical
performance of carbon fibers.

Keywords: polyacrylonitrile (PAN) fiber; mechanical properties; spinning process; microstructure;
carbon fiber

1. Introduction

Carbon fibers have been considered the most promising reinforcement for composites
used in various industries owing to their excellent material properties (e.g., high modulus
(up to 900 GPa), high tensile strength (up to 7 GPa), and low density (1.75–2.00 g/cm3)) [1].
Their excellent mechanical properties encourage mechanical use, and thermal stability
enables high-temperature applications. Remarkable electrical and thermal conductivities
are also useful for expanding the applications of carbon fibers [2]. As such, carbon fibers
have been extensively used in traditional applications, such as high-pressure durable
containers for cutting-edge applications, including automobiles, aerospace, and high-end
sports gears [3–6]. Global demand for carbon fibers is expected to reach 117 kt (kilotons) in
2022 [7], and the compound growth annual rate (CAGR) of the global carbon fiber market
between 2017 and 2023 is 10.6% [8].

Commercially available carbon fibers are based on various precursors, such as poly-
acrylonitrile (PAN), pitch, and rayon [9], and their properties vary according to the precur-
sor fibers [10]. PAN has been used as a precursor owing to its high melting temperature
and high carbon yield in the range of 50–60% [11]. Pitch has emerged as a soft carbon
precursor owing to its inherent aromatic molecular structure [12]. Rayon is another attrac-
tive precursor owing to its low cost [13]. Despite the high cost of the synthetic polymer
precursor, PAN-based carbon fiber occupies the predominant carbon fiber market share of
90% based on its superior mechanical performance [14]. Commercially available carbon
fibers from Toray and Hexcel are also mainly PAN-based products [15,16].

Although the pursuit of eco-friendliness and cost reduction by introducing biomass,
such as lignin and cellulose, is an important research stream [17–21], advancing the PAN-
based carbon fiber performance improvements and expanding their applications is another
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major research stream [22–24]. Despite the high carbon atomic content (>92%) [25], the
mechanical properties of PAN-based carbon fibers are still far below their theoretical values;
specifically, they are less than 10% of the theoretical tensile strength of the carbon–carbon
bond and less than 60% of the theoretical modulus of the graphitic microstructure [26].
This encourages research on advanced carbon fibers from PAN-based precursor fibers. It is
well known that thermal treatments (i.e., stabilization, carbonization, and graphitization)
are key processes used for the determination of the mechanical performance of carbon
fibers: high carbonization (or graphitization) temperature is mainly for high modulus,
while the low carbonization temperature with a long process time is for high strength [27].
However, pursuing both high modulus and strength cannot be achieved by the thermal
treatment itself. Instead, it is necessary to design a strong precursor fiber to simultaneously
achieve both performances. This review examines the recent studies on advanced precursor
fibers for the synthesis of strong carbon fibers ranging from raw materials to the post-
spinning process.

2. Overview of PAN Precursor Design Factors

The design factors and representative characterizations of strong precursor synthesis
are summarized in Figure 1. A strong carbon fiber design can be achieved via a good pre-
cursor fiber with a well-defined microstructure (e.g., high crystallinity, firm orientation, and
low defect density) and morphologies (e.g., uniform diameter, circular cross-section, and
low surface roughness). Crystallographic structures, such as crystallinity and orientation,
were characterized by wide-angle X-ray diffraction (WAXD) [28], and voids or internal
defect structures were examined with the use of small-angle X-ray scattering (SAXS) [29,30].
The surface and cross-sectional morphologies were investigated with the use of scanning
electron microscopy (SEM). These microstructural and morphological features are compli-
cated functions of materials and processing. From one perspective, well-designed materials
can deliver excellent precursors and carbon fibers. It is clear that the polymeric structure
of PAN, such as the copolymeric composition, molecular weight, and polydispersity, is
the main parameter determining the precursor fiber properties. Their thermal properties
are also important because carbon fiber manufacturing is always accompanied by thermal
treatment. Employing adequate types and amounts of additives can be a key approach to
the improvement of the mechanical properties of the precursor and carbon fibers. From
another viewpoint, the processing from the dope preparation to the drawing process is
another determinant of the mechanical performance of the precursor and carbon fibers.
The cause–effect relationship between the factors and mechanical performance is discussed
in detail in the following section.
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3. Raw Polymers
3.1. PAN Structure and Molecular Weight

The molecular structure of polymers is an important factor in determining the mechan-
ical properties of the precursor and carbon fibers. PAN molecules consist of a hydrocarbon
backbone and repeating nitrile chains, as shown in Figure 2. PAN molecular structures are
simple but stereospecific, and these stereospecific polymers often have different thermal,
mechanical, and chemical properties depending on their stereoregularity [31]. Conversely,
the molecular structure is also a crucial factor in the rheological behaviors of the spinning
dope. As such, attempts have been made to manipulate the molecular structures to obtain
the optimum wet spinning process as well as the best mechanical properties of the precur-
sor fibers. First, the simplest approach is to vary the molecular weights of the polymers.
The molecular weight is directly related to the wet-spun precursor fiber morphologies
owing to the effects on the viscosity, aging, and gelation behaviors of the spinning dope [32].
Figure 3 demonstrates the circular-to-cocoon-like cross-sections as the molecular weight
increases. Despite the off-circular morphologies of the high-molecular-weight PAN fibers,
the tensile strength of the precursor and carbon fibers increased with higher molecular
weight owing to the increased crystal size and orientation. This was confirmed multiple
times by other researchers [33,34].
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Although the high-molecular-weight polymer has excellent mechanical properties, the
high molecular weight generally induces increased viscosity and subsequent off-circular
cross-section. A circular cross-section is preferable for preventing unwanted mechanical
deterioration. To achieve this, reversible addition-fragmentation chain-transfer (RAFT)
polymerization has been studied to increase the molecular weight without increasing
the viscosity owing to the reduced polydispersity index (PDI) [35,36]. The improved me-
chanical properties of RAFT-polymerized, high-molecular-weight PAN fibers at a high
concentration of dope were attributed to the improved rheological behaviors owing to
the improvement of the molecular weight distribution [37,38]. Meanwhile, the ultra-high
molecular weight inevitably causes high viscosity and poor spinnability. The low con-
centration and high extrusion pressure during the spinning process were employed to
manufacture ultra-high-molecular-weight PAN fibers [39]. Despite the reduced dope con-
centration, the ultra-high-molecular-weight PAN precursor fibers exhibited extraordinary
tensile properties, averaging 826 ± 129 MPa in strength and 16.5 ± 3.4 GPa in elastic mod-
ulus, with small filament diameters (5.3 ± 0.5 µm), while the diameter and tensile strength
of the typical commercial PAN fibers were ≥6.3 µm and ≤690 MPa, respectively [40]. Thus,
it could be concluded that a PAN polymer with a higher molecular weight is preferable to
achieve better mechanical properties.

3.2. Copolymers

The introduction of comonomers to PAN polymers has been targeting two main
goals: (i) acidic comonomers, such as acrylic acid, methacrylic acid (MA), and itaconic
acid (IA), which were used to improve stabilization by reducing the cyclization tempera-
ture, and (ii) neutral comonomers, such as methyl acrylate (MA) and methyl methacrylate
(MMA), and were employed to improve the solubility, drawability, and spinnability [41–43].
Comonomers, such as monobutyl itaconate (MBI) [44], vinylimidazole (VI) [45], and 2-
acrtlamido-2-methylpropane acid (AMPS) [46], used in electrospun carbon fiber synthesis,
are good candidates for improving the mechanical performance of carbon fibers. Superfi-
cially, introducing acidic comonomers improves spinnability by augmenting hydrophilicity,
but a high content of acidic comonomer content results in reduced molecular weight during
polymerization and poor spinnability [47]. In the meantime, the weakened intermolecular
interactions caused by comonomer incorporation can be either beneficial or detrimental to
the mechanical properties of the precursor fibers because of the improved spinnability and
reduced crystallinity [41]. Such a copolymer also affects the mechanical properties, and
the properties of the fiber vary depending on the copolymer composition under the same
spinning conditions. For example, there was a study reporting a PAN-MA-IA terpolymer
with doubled strength (16.87 cN/dtex) of the commercial-grade copolymer (PAN-MA
(90 wt% AN and 10 wt% MA)) [48]. Thus, it is important to optimize the comonomer
content to achieve strong carbon fiber properties by satisfying multiple aspects: good
spinnability, high crystallinity, and optimum thermal transformable structure.

4. Spinning Process
4.1. Dopes

The viscosity of the dope is one of the most important parameters for determining fiber
morphology and properties. The molecular weight is the primary factor of viscosity [49].
The viscosity is directly related to the fiber morphologies and properties. The concentration
and temperature are also important viscosity parameters [50,51]. Figure 4 shows that
the number and length of the finger-like micrometer voids decreased as the polymer
concentration increased [52], and fewer micrometer pores were preferable to achieve
better mechanical properties. Note that a high concentration of PAN solution can cause
aging effects, such as gelation, owing to entangled polymer molecules and intermolecular
interactions [53].
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The solvent is another important component of the dope. Various studies have
been conducted on the use of dimethyl sulfoxide (DMSO) because DMSO is the most
extensively used solvent for manufacturing commercial carbon fibers [54,55]. Similar to
DMSO, N,N-dimethyl formamide (DMF) and dimethylacetamide (DMAc) can dissolve
PAN, but the rheological behaviors of the solutions with different solvents are not the
same because of the intermolecular interaction between the PAN polymer and the solvent
molecules [56]. By extension, the use of mixed solvents, such as DMSO and DMAc, was
proposed as a potential strategy for the improvement of the mechanical properties that
are based on the reduction of the viscosity and the improvement of spinnability [51].
Conversely, nonsolvents, such as water, have been used to delay the coagulation rate by
reducing the rate of outflow and nonsolvent inflow in a rheological and thermodynamic
manner [52,57,58]. The addition of a nonsolvent also causes rheological behavioral changes,
including gel formation [57–59]. Figure 5 demonstrates the reduced intrinsic viscosity (η)
and increased peak temperatures for PAN/DMSO solutions with higher water content [60].
Void size reduction and subsequent improvement in the mechanical properties were
attributed to the optimum content of the nonsolvent. In fact, the addition of a nonsolvent
to the dope is not the best option for achieving the highest mechanical performance for
commercial use because there were significant voids and flaws associated with phase
separation [61]. It should be mentioned that aqueous PAN solutions were prepared with
the use of highly concentrated salts, such as NaSCN and ZnCl2, in water [62–64]. The use of
water is desirable for protecting the environment and human beings, but the processability
and performance need to be comparable to the as-is commercially major precursor fibers
for replacing organic solvents.
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4.2. Spinning Processes

Precursor fibers are manufactured commercially with the use of a wet spinning process
or dry-jet wet spinning. The fibrous product is made by exchanging the solvents of
the dope with a nonsolvent during the spinning process. The as-spun fibers are then
rinsed several times, dried in air, stretched in steam, and wound at a certain tension.
Fundamentally, inhomogeneous microstructural changes, such as the propagation of the
crystallite orientation and crystallinity, increase from the skin to the core, and the volume
fraction exchanged from the large pores to the small pores are accompanied by wet spinning
and subsequent processes [65]. Thus, the processing parameters are closely related to the
mechanical properties of the precursor fibers. For example, the extrusion rate results
in shear-thinning-induced crystallization as well as surface-defect formation owing to
insufficient coagulation [66]. Increasing the winding speed as a wet spinning process
parameter affects the mechanical properties of the precursor and carbon fibers because of
the insufficient microstructural development with low crystallinity [67].

Gel spinning has been recently used to manufacture high-performance precursor
fibers. The spinning set-up of gel spinning is fundamentally the same as wet spinning, but
the difference mainly originates from the dope phase. Gelation of the dope is known to
result from cross-linking in the presence of a nonsolvent [60,68]. Figure 6 shows the surface
morphologies without (raw dope) and with (gelled dope) interconnected network struc-
tures [69]. Because the PAN dope gelation behavior depends not only on the composition
but also on the thermal history of the solution and the experimental conditions [70–72],
well-established experimental conditions from the dope preparation to the spinning pro-
cess are crucial for controlling the quality and properties of the precursor fibers. The
mechanical properties of the gel-spun fibers are expected to be excellent owing to their
high orientation [73]. Indeed, the pregelled gel-spun fibers exhibited high crystallinity
(e.g., 70.48% [74]) with a desirable cross-section (i.e., circular, low pore density, and little
core/shell difference) (Figure 7) [71,75,76]. Gel-spun PAN fibers with a high molecular
weight of 513,000 g/mol, representing a superb strength of 1.0 ± 0.1 GPa and a modulus of
20.7 ± 1.1 GPa with a breaking strain of 9.4 ± 1.5%, enabled remarkable tensile strength
(5.5–5.8 GPa) and modulus (354–375 GPa) of the carbon fibers [26].

Although ordinary PAN molecules are spun into fibers via a wet spinning process
because of the lack of melting behavior, previous attempts had been expended to enable
the melt spinning process for manufacturing PAN fibers without using solvents, causing
costs and environmental issues. The use of a melting point modifier, which consisted of
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water and acetonitrile, resulted in stable melt viscosities of the PAN copolymer, water, and
acetonitrile mixture [77]. Melt-spun PAN copolymer fibers, which were prepared at a high
copolymer content (e.g., methylacrylate, 15 mol%), exhibited fair mechanical properties,
including a tensile strength of 260 ± 30 MPa, a Young’s modulus of 6.76 ± 1.78 GPa, and a
breaking strain of 17.6 ± 0.84% [75]. Thus, there is still an adequate margin to improve the
mechanical properties of the melt-spun precursor fibers to meet commercial standards.
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Figure 7. Scanning electron microscopy (SEM) images of the cross-section of the pregelled gel-spun
fiber (reprinted with permission from [74], copyright 2011 Elsevier).

Spinning setups were modified to improve the material properties of the precursor
fibers. The dry-jet wet spinning process, schematically described in Figure 8 [76], is
advantageous in the absence of influence of the spinnability by the coagulating conditions
over the conventional wet spinning process owing to the existence of the air gap [78].
An air gap with a high jet-stretch ratio promotes molecular chain alignment and fiber
diameter reduction [79]. Important factors that determine the mechanical properties of
dry-jet wet-spun precursor fibers are the viscosity of the spinning dope, thermodynamic
affinity, and draw ratio during the spinning process, and high viscosity and draw ratio with
low thermodynamic affinity resulted in better mechanical properties [76]. Post-gelation (or
aging) after the spinning process in cold methanol can be another step that can be used to
improve the mechanical performance of dry-jet wet-spun precursor fibers [80].

A novel wet spinning process accompanied by an electrochemical reaction was re-
cently reported in which electrochemical oxidation by the applied electric potential was
designed to induce the plasticization effect of adsorbed water, as shown in Figure 9 [81].
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Demethylation of the PAN copolymer increased the amount of water adsorption, and
the adsorbed water helped reduce the voids and augment the orientation. As such, the
tensile strength, modulus, and breaking strain simultaneously increased by 23.4, 23.5, and
28.1%, respectively, compared with the conventional wet-spun precursor fibers. It could be
expected that additional work, such as coupling the electrochemical wet spinning with gel
spinning, or dry-jet wet spinning, can synergistically improve the mechanical performance
of the precursor fibers.
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4.3. Coagulation

Coagulation is another crucial process because the morphologies of the precursor
fibers are fixed to the protofibers [82]. Coagulation is fundamentally attributed to the
exchange of the outflow solvent and the influent nonsolvent, and the inhomogeneity
of the solvent concentration distribution results in dense skin and loose cores [83–85].
The key parameters of the coagulation step are the composition [86,87], temperature [88],
and time [89] of the coagulation bath. A higher concentration of the solvent in the low-
temperature coagulation bath at around 19 ◦C was preferable because of the improved
morphologies, such as the increased circular cross-section and reduced diameter (Figure 10),
improved molecular orientation, and advanced mechanical performances [90], while there
was an optimum solvent concentration of around 70% where the coagulation temperature
was maintained at 50 ◦C. The crystallinity was maximized, while the defects of the cross-
section and surface were the least at the optimum concentration of 70% [86]. Sufficient
coagulation time is required because a short coagulation time results in a loosely packed
protofiber microstructure [91]. The dry-jet wet-spun precursor fiber demonstrated a smooth
surface owing to the macromolecular recovery before coagulation, while the conventional
wet-spun fibers showed a fibril-structured surface [92]. It is noteworthy that coagulation is
a useful step for the introduction of chemical modifiers, such as ammonium iron sulfate,
for better thermal treatment [93].

Polymers 2021, 13, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 10. Effects of coagulation bath composition at approximately 19 °C on fiber shape and size 
as the fiber progresses down the spinning line [90]. 

4.4. Post-Spinning Process: Drawing and Densifying 
The post-spinning process is mainly designed to densify and align the microstructure 

with superb mechanical properties. Although the microstructure of PAN precursor fibers 
is mostly arranged during the spinning process, the crystalline structural rearrangement 
to more ordered crystals followed by increased tensile strength and modulus are at-
tributed to the densification treatment [94]. In addition, additional drawing (or stretching) 
processes enable high strength, high breaking strain, and high toughness owing to the 
improved molecular orientation [95]. In situ microstructural changes subject to drawing 
conditions showed that the orthorhombic unit cell of the PAN crystalline structures ani-
sotropically transformed to a tetragonal unit cell with a reduced interdistance between 
the PAN molecular chains as the strain increased: (110) and (202) peaks at approximately 
2θ = 17° and 29° shifted to higher angles (Figure 11a), and the lattice parameter ratio (b/a) 
increased linearly (Figure 11b) [96]. The peak positions shifted to slightly higher angles as 
the PANF tensile strain increased, indicating a compact arrangement of PAN molecular 
chains. Moreover, the change in the lattice parameter ratio reveals the microstructural 
change in the orthorhombic unit cells to the tetragonal unit cells as the macroscopic tensile 
strain of PANF increases. The material properties of drawn fibers are highly dependent 
on the processing temperature and drawing ratio; high temperature and high drawing 
ratio are preferable owing to the enhanced chain mobility and improved crystalline ori-
entation [97–99]. The drawing effects on the microstructural changes and mechanical 
property improvements have been demonstrated with the dry-jet wet spinning process 
[100,101]. To determine the most effective drawing process, the microstructures and me-
chanical properties of the wet- and dry-drawn precursor fibers were evaluated, and the 
wet-drawn precursor fiber exhibited better modulus and rigidity, while the dry-drawn 
precursor fiber exhibited slightly higher strength and breaking strain [102]. Therefore, the 
combination of wet and dry drawing processes can help optimize the microstructure and 
mechanical performance. Novel approaches, such as hot stretching in a supercritical car-
bon dioxide (CO2) atmosphere, have also been attempted to improve the crystallinity as 
well as the mechanical properties, but added efforts ought to be expended to employ this 
concept in the continuous process [103]. Based on these efforts, the post-spinning process 
has been set in three stages: (i) wet-fiber stretching (working below the glass transition 
temperature (Tg) in water or water/DMSO mixed solution medium), (ii) high-temperature 
densification (working above Tg), and (iii) steam stretching (working at around Tg in high-
temperature and high-pressure vapor) [104]. 

Figure 10. Effects of coagulation bath composition at approximately 19 ◦C on fiber shape and size as
the fiber progresses down the spinning line [90].

4.4. Post-Spinning Process: Drawing and Densifying

The post-spinning process is mainly designed to densify and align the microstructure
with superb mechanical properties. Although the microstructure of PAN precursor fibers
is mostly arranged during the spinning process, the crystalline structural rearrangement to
more ordered crystals followed by increased tensile strength and modulus are attributed to
the densification treatment [94]. In addition, additional drawing (or stretching) processes
enable high strength, high breaking strain, and high toughness owing to the improved
molecular orientation [95]. In situ microstructural changes subject to drawing conditions
showed that the orthorhombic unit cell of the PAN crystalline structures anisotropically
transformed to a tetragonal unit cell with a reduced interdistance between the PAN molec-
ular chains as the strain increased: (110) and (202) peaks at approximately 2θ = 17◦ and
29◦ shifted to higher angles (Figure 11a), and the lattice parameter ratio (b/a) increased
linearly (Figure 11b) [96]. The peak positions shifted to slightly higher angles as the PANF
tensile strain increased, indicating a compact arrangement of PAN molecular chains. More-
over, the change in the lattice parameter ratio reveals the microstructural change in the
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orthorhombic unit cells to the tetragonal unit cells as the macroscopic tensile strain of
PANF increases. The material properties of drawn fibers are highly dependent on the
processing temperature and drawing ratio; high temperature and high drawing ratio
are preferable owing to the enhanced chain mobility and improved crystalline orienta-
tion [97–99]. The drawing effects on the microstructural changes and mechanical property
improvements have been demonstrated with the dry-jet wet spinning process [100,101].
To determine the most effective drawing process, the microstructures and mechanical
properties of the wet- and dry-drawn precursor fibers were evaluated, and the wet-drawn
precursor fiber exhibited better modulus and rigidity, while the dry-drawn precursor fiber
exhibited slightly higher strength and breaking strain [102]. Therefore, the combination
of wet and dry drawing processes can help optimize the microstructure and mechanical
performance. Novel approaches, such as hot stretching in a supercritical carbon dioxide
(CO2) atmosphere, have also been attempted to improve the crystallinity as well as the
mechanical properties, but added efforts ought to be expended to employ this concept in
the continuous process [103]. Based on these efforts, the post-spinning process has been
set in three stages: (i) wet-fiber stretching (working below the glass transition temperature
(Tg) in water or water/DMSO mixed solution medium), (ii) high-temperature densification
(working above Tg), and (iii) steam stretching (working at around Tg in high-temperature
and high-pressure vapor) [104].
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5. Functional Additives

The mechanical performance of the precursor and carbon fibers can be further im-
proved by compositing with additives. Compositing with graphitic nanocarbons, such as
carbon nanotubes (CNTs) and graphene, is the most easily accessible route used to improve
the precursor and carbon fibers owing to their exceptional mechanical performance (e.g.,
Young’s modulus of ca. 1 TPa and tensile strength of 0.15 TPa from the sp2 hybridized car-
bon basal plane) [105]. The addition of CNTs results in a change in the rheological behavior
as well as an enhancement in the mechanical properties of the precursor fibers [106,107].
Single-wall carbon nanotube (SWNT) 10 wt% composite precursor fiber exhibited a double
Young’s modulus (16.2 ± 0.8 GPa) and 43% increased tensile strength (0.33 ± 0.02 GPa)
in comparison with those of the raw precursor fibers [108]. Young’s modulus and tensile
strength of gel-spun PAN fibers increased to 19.2 ± 2.9 GPa and 1.01 ± 0.07 GPa, respec-
tively, following the addition of four-walled carbon nanotubes (FWNTs) 1 wt%, while those
of the pristine PAN fibers were 16.6 ± 1.6 GPa and 0.80 ± 0.11 GPa [109]. The dispersion
of CNTs in the polymer matrix was an important issue in the 2000s. A careful study
was conducted to determine the dispersion as follows: (i) multiwalled carbon nanotubes
(MWNTs) were chemically treated in a concentrated HNO3/H2SO4 mixture, (ii) NaOH
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was slowly added to the mixture to adjust the pH of the mixture to neutral, (iii) the mixture
was purified by repeated centrifugal sedimentation and ultrasonic dispersion in deionized
water and dried at 40 ◦C in the presence of a vacuum, (iv) the chemically treated MWNT
was dispersed in water at a concentration of 2 mg/mL, (v) PAN polymer was carefully
added to the MWNT-dispersed water, and vi) the mixture was shear homogenized at
20,000 revolutions per minute with the use of a high-shear dispersing emulsifier and dried
at 40 ◦C before the dope preparation [110]. The chemically treated MWNT 0.5 wt% and
1 wt% contained in the dry-jet wet-spun precursor fibers did not affect the circular and
dense cross-sectional morphologies and homogeneity (Figure 12). Instead, the MWNTs
contributed to the crystallinity and crystallite size increase following the improvement in
tensile modulus and strength (i.e., 11.4 and 0.906 GPa) in comparison with those of the raw
precursor fiber (i.e., 7.02 and 0.761 GPa).
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((a,b): 0; (c,d): 0.5 wt%; (e,f): 1.0 wt%) (reprinted with permission from [110], copyright 2011 John
Wiley and Sons).

Graphene (an emerging carbon nanomaterial) has also been composited to the precur-
sor fibers. Graphene oxide-driven graphene via chemical reduction with hydrazine and
ammonia was added to the dope with a concentration of 0.5 wt% in solid content [111].
The use of N-isopropylacrylamide (NIPAM) comonomer and a not fully optimized pro-
cess may cause the unsatisfactory mechanical performances of the raw precursor fibers
(E = 60.3 MPa and σ = 2.9 MPa), but the graphene addition significantly helped improve
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the mechanical performances (E = 68.7 MPa and σ = 3.6 MPa) compared with those of the
raw fibers. Recently, PAN-based precursor fibers that contained small amounts of graphene
prepared through a modified shear exfoliation method exhibited gradual improvement
in the mechanical properties: the modulus increased from 3.5 to 6 GPa, and the strength
increased from 40 to 80 MPa as the graphene content increased from 0 to 0.1 wt% [112].
Surprisingly, the addition of 0.075 wt% graphene to the PAN resulted in the 225% increase
in strength and 184% enhancement in Young’s modulus compared with the raw PAN-based
carbon fibers. Meanwhile, graphene oxides were employed as the mechanical reinforcing
additive [113]. The optimum Young’s modulus (11.24 GPa) and strength (118 MPa) were
exhibited at a graphene oxide concentration of 1 wt%. Even though the graphene (or
graphene oxide) addition effects to the precursor fiber mechanical performance were con-
siderable, the reported mechanical performances are still not close to the well-established
PAN precursor fibers without additives (discussed in Section 3 above).

Organic additives can also be used as mechanical reinforcements. Cellulose nanoma-
terials with high tensile strength (7.5 GPa) and modulus (110–220 GPa) have been applied
as low-cost and biobased alternative reinforcements [114,115]. By compositing cellulose
nanocrystal to the PAN matrix up to 10 wt%, Young’s modulus of the precursor fibers was
increased from 14.5 to 19.6 GPa according to the rule of mixture (Figure 13), and the tensile
strength improved from 624 to 709 MPa owing to the microstructural changes, such as
better chain alignment and crystallinity increases from 50 to 62% [114]. It was confirmed
that the cellulose nanocrystal reinforcements also contributed to the advancement of the
mechanical performance of carbon fibers [115,116]. In fact, the main purpose of the search
for biomass additives, such as cellulose, lignin, and alpaca fiber, is eco-friendliness and
cost effectiveness [114,117–124]. It is inevitable to avoid deterioration of the mechani-
cal performance following the composition with the biomass-derived additives owing
to the low carbon atomic content and ineffective molecular structure that is intended to
be carbonized. As such, little deterioration in mechanical performance is required. A
high-loading cellulose nanocrystal composite (~40 wt%) precursor was designed, and its
mechanical performance was investigated [125]. The comparable mechanical performance
of the high-loading composite precursor to the raw PAN fiber provides a potential for
manufacturing biomass-derived carbon fibers.

Other organic substances have also been used as additives. Acrylamide monomer
was blended in the PAN dope to promote oxidative stabilization. This compound also
caused the increase in the Young’s modulus of the precursor fiber from 3.03 to 5.54 GPa
at an acrylamide concentration of 5 wt% [126]. The increase resulted from the better
molecular orientation owing to the plasticizing effect of the acrylamide, and the mechanical
property enhancement of the precursor fiber was directly translated to the mechanical
performance of the carbon fibers. Blending with polyimide (PI) resulted in improved
mechanical performance, but PAN was used as an additive rather than a matrix [127,128].
Therefore, it is necessary to assess the effects of blending PI as an additive.

Inorganic nanomaterials were also examined for the mechanical reinforcement of
PAN precursor fibers. The addition of 1 wt% silica resulted in a Young’s modulus of
5.94 GPa and a tensile strength of 1.07 MPa, while the raw precursor fiber exhibited
a Young’s modulus of 2.82 GPa and a tensile strength of 0.286 MPa [129]. The flower-
like MoS2-SiO2 nanohybrids/PAN precursor composite showed a 42% increase in tensile
strength (55.9 cN) based on the significantly increased crystallinity (58.42%) as well as
the improved flame retardant performance [130]. Similarly, the nitrogen-phosphorous-
zinc-containing sandwich-like MoS2 hybrids/PAN precursor composites exhibited a 68%
increase in tensile strength (84.6 cN) with increased crystallinity (67.87%) and improved
flame retardant performance [131]. The addition of AgNO3 and ascorbic acid to form the Ag
nanoparticles (25 nm) resulted in a crystallinity change (from 40.9 to 56.4%) and increase in
the mechanical performances (the modulus increased from 583.49 to 850.81 cN/tex, and the
strength increased from 38.92 to 41.17 cN/tex) [132]. The addition of 1 wt% TiO2 and 3 wt%
AgNO3 led to improved mechanical performance as well as multifunctionality: tensile
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strength (8.72 cN/tex), conductivity (10−4 S/cm), antibacterial activity, and photocatalytic
activity [133]. Thus, the addition of inorganic nanomaterials contributes not only to the
improvement of mechanical performance but also to novel functionality.
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The mechanical properties of the PAN precursor fibers are listed in Table 1. From the
thorough investigation of the mechanical performances of the existing research, it can be
concluded that high molecular weight and slow coagulation with an adequate amount of
additive resulted in a superior modulus as well as strength owing to the high crystallinity
with fewer defects. It should be mentioned that numerous attempts have been expended
to improve the mechanical properties by introducing ceramic additives, and the effects
were significant (generally double-digit improvement was represented). However, the
absolute values were far below those of the precursor fibers from well-established spinning
processes. Thus, the effect needs to be re-examined subject to the existing high-strength
PAN fiber spinning processes.
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Table 1. Representative mechanical properties of PAN precursor fiber (DMAc: dimethylacetamide; DMF: N,N-dimethyl
formamide; DMSO: dimethyl sulfoxide; SWNT: single-wall carbon nanotube; MWNT: multiwalled carbon nanotubes).

Researchers Modulus
(GPa)

Strength
(MPa)

Dope
Concentration

(wt%) and Solvent

Spinning
Process

CF
Modulus

(GPa)

CF
Strength

(MPa)
Notes

Morris et al. [40] 16.5 ± 3.4 826 ± 129 6.5%, DMAc Dry-jet gel 345 4300
Ultra-high-molecular-

weight
PAN

Chae et al. [26] 20.7 ± 1.1 1000 ± 100 ~10.5%, DMF Dry-jet gel 375 5800 Low-temp coagulation
get spinning

Alcalá-Sánchez et al.
[48] - 16.87

cN/dtex 20%, DMF Wet - - Terpolymerization

Lee et al. [76] 6.76 ± 1.78 260 ± 30 - Melt 110 1370 Melt spinning
Min et al. [108] 16.2 ± 0.8 330 ± 20 ~13.8%, DMAc Dry-jet wet - - SWNT
Liu et al. [109] 19.2 ± 2.9 1010 ± 70 ~15%, DMF Dry-jet gel - - MWNT
Gao et al. [112] 6.0 80 ~7.5%, DMSO Wet 233 1919 Graphene
Zhao et al. [113] 11.24 118 ± 2 15%, DMF Wet - - Graphene Oxide

Chang et al. [114] 19.6 ± 2.3 709 ± 98 ~ 13.5%, DMF Dry-jet wet - - Cellulose nanocrystals
Yusof et al. [126] 5.54 ± 0.03 - ~18%, DMF Dry-jet wet 35 - Acrylamide

Mataram et al. [129] 5.94 1.07 DMF Dry-jet wet - - Silica
Peng et al. [131] - 19.16 ± 0.45 20%, DMF Wet - - Molybdenum disulfide

Karbownik et al. [132] 850.81 cN/tex 41.47 cN/tex 23%, DMF Wet - - Silver nitrate

6. Conclusions

The current review summarized recent efforts that had been expended to design PAN
precursor fibers for mechanically advanced carbon fibers. Despite more than three decades
of studies and commercialization legacies, the mechanical properties of PAN-based carbon
fibers are still considerably lower than those of the theoretical values. Thus, numerous
attempts have been conducted to improve the microstructural and morphological perfection
of the precursor and carbon fibers that have been based on the increase in the molecular
weight, the introduction of a new copolymer, optimization of the doping composition, the
design of a new spinning process, exploration of the best drawing process, and compositing
additives. The high molecular weight of the PAN and gel spinning process resulted in
extraordinary mechanical performances owing to the considerable improvement in the
microstructures. Other attempts, such as the modified wet spinning process and additive
addition, also contributed to the mechanical performance improvement, but the absolute
strength and modulus were less significant than those from the molecular weight and
gel spinning process. Thus, it is necessary to demonstrate the approaches using the well-
established material and process for validating the actual feasibility. In fact, it is expected
that the theoretical strength and modulus of the carbon fiber can be achieved if the perfect
crystal with the uniaxially aligned PAN molecules along the precursor fiber axis is designed.
In this regard, the enhancing electrostatic attraction between the more electronegative nitrile
group and the less electronegative hydrocarbon backbone can be a key approach to develop
a more compact microstructure with increased orientation enabling closer values of the
carbon fiber mechanical properties to the theoretical values.
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