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Abstract

Intracranial EEG (iEEG) studies have suggested that the conscious perception of pain builds up from successive contributions
of brain networks in less than 1 s. However, the functional organization of cortico-subcortical connections at the multisecond
time scale, and its accordance with iEEG models, remains unknown. Here, we used graph theory with modular analysis of
fMRI data from 60 healthy participants experiencing noxious heat stimuli, of whom 36 also received audio stimulation. Brain
connectivity during pain was organized in four modules matching those identified through iEEG, namely: 1) sensorimotor
(SM), 2) medial fronto-cingulo-parietal (default mode-like), 3) posterior parietal-latero-frontal (central executive-like), and 4)
amygdalo-hippocampal (limbic). Intrinsic overlaps existed between the pain and audio conditions in high-order areas, but
also pain-specific higher small-worldness and connectivity within the sensorimotor module. Neocortical modules were
interrelated via “connector hubs” in dorsolateral frontal, posterior parietal, and anterior insular cortices, the antero-insular
connector being most predominant during pain. These findings provide a mechanistic picture of the brain networks
architecture and support fractal-like similarities between the micro-and macrotemporal dynamics associated with pain. The
anterior insula appears to play an essential role in information integration, possibly by determining priorities for the
processing of information and subsequent entrance into other points of the brain connectome.
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Introduction
The conscious perception of pain is the result of dynamic
interactions of neural activities in distributed brain networks,
rather than the immutable consequence of a noxious event
(Tracey and Mantyh 2007; Kucyi and Davis 2015). Conscious
experiences are not confined to sensory areas, but rather
represented over large, interconnected portions of the cortex
(Aru et al. 2012; Michel et al. 2019). It is commonly admitted
that primary and secondary somatosensory areas (S1, S2) as
well as the posterior operculo-insular region are involved in
the discriminative processing of pain, while the mid- and
anterior cingulate regions, anterior insula, prefrontal, and
posterior parietal areas contribute to cognitive-evaluative
processes, and limbic/paralimbic structures (temporal pole,
amygdala, perigenual cortex) to affective components (Tracey
and Mantyh 2007; Garcia-Larrea and Peyron 2013; Wiech 2016).
Intracranial EEG (iEEG) recordings from human brain have
recently characterized the activation dynamics of a number of
these structures in response to phasic nociceptive input (Bastuji
et al. 2016); this information has helped to develop models
whereby both successive and overlapping waves of activation
(see Fig. 1) sustain the transition from unconscious nociception
to conscious pain (Garcia-Larrea and Bastuji 2018). These models
apply, however, to the first steps of information processing that
develop in less than 1 s. Although the pattern of intra- and
interareal connections in the brain appears largely scale free,
with “fractal” connectivity properties reproducing at short and
long time scales (Nagy et al. 2017; Xue and Bogdan 2017; Racz
et al. 2018), it remains unknown whether the spatiotemporal
coordination described for pain perception at short temporal
scales may be applied to the brain network organization at longer
time periods such as those explored in fMRI-based imaging.

Graph theoretical tools can meet these demands by quan-
tifying the local and global network interconnections and by
providing a formal characterization of the brain topology, beyond
what can be reached by simple functional connectivity analysis
(Bullmore and Sporns 2009; Rubinov and Sporns 2010; Crossley
et al. 2016). Graphs are fairly simple models, by which the brain
connectome is reduced to a collection of “nodes” (brain regions),
“links” (functional connectivity between regions), and “hubs”
(regions with radial multiconnectivity and/or topological impor-
tance; see Glossary in Supplementary Material). The human
brain, as many other complex networks, is characterized by a
combination of “small-world organization” (short paths across
the whole network) and modularity properties (local clustering
of brain regions into strongly interconnected subsets called mod-
ules). This type of organization confers significant advantages in
signal processing (Watts and Strogatz 1998; Bassett and Bullmore
2006). Decomposing brain activity into functional modules of
regions to investigate their interactions, without prioritizing the
connections from a seed-region, appears therefore as a well-
suited approach to study pain—an experience that requires the
spatiotemporal coordination of different brain regional subsets
(Meunier et al. 2010).

Graph analysis of resting-state networks has recently sug-
gested extensive reorganization of sensorimotor networks and
hub topology in patients with chronic pain, as compared with
controls (Mansour et al. 2016; Mano et al. 2018; Kaplan et al. 2019;
Fauchon et al. 2020); the impact of these data is, however, limited
by the absence of knowledge on how these structures are partic-
ipating to the physiological pain experience. Thus, the main aim
of this study was to characterize the functional segregation and
integration of the brain network associated with the experience

of pain in healthy subjects. We tested the hypothesis that the
modular organization of the (sub)cortical nodes during pain can
shape the temporal structure of nociceptive-related activation
previously defined with iEEG (Bastuji et al. 2016). Taking as stand-
point the brain areas identified by human iEEG as being involved
in the transition from nociception to conscious pain (Bastuji
et al. 2016), we used graph theory with modular analysis on
functional magnetic resonance imaging (fMRI) recorded during
noxious heat stimuli. Pain-related modular partitions were based
on the weighted functional correlation matrices during pain,
from two independent sets of fMRI data including 60 healthy
participants, one being used for main analysis (n = 36) and the
second for replication/validation (n = 24). To further assess the
specificity of the network structure in pain, we compared the
connectivity and graph properties to painful stimuli with those
derived from auditory stimulation. Particular attention was paid
to identify hub nodes, since they have a strong influence over
network efficiency and facilitate information transfer among
regions (Power et al. 2013; van den Heuvel and Sporns 2013).

Materials and Methods
Participants

A total of 60 healthy subjects (30 females, 30 males; mean age
in years ±SD: 23.8 ± 4.5), all right handed, were included in the
analyses. The sample included two independent groups of retro-
spective fMRI data, obtained at different times. Group 1 (main
analysis group: n = 36, 18 females, mean age 25.5 ± 6.0 years)
underwent the principal graph analysis, and group 2 (validation
group: n = 24, 12 females, mean age 22 ± 2.9 years) was submitted
to a replication analysis for validation of results obtained in
group 1. There were no significant differences in age or sex
distribution between the 2 groups (P > 0.4), and the methods to
induce experimental pain were the same in both. All participants
in both groups were screened for depression (Beck depression
inventory: Beck et al. 1988) and anxiety state (State–Trait Anxiety
Inventory: Spielberger et al. 1970); had no history of neurological,
psychiatric, or chronic pain disease; and did not take any medi-
cation except contraceptive. All the participants provided written
informed consent, and research procedures were approved by
local and regional Ethics Committees (2012-A01232-41, CHU de
Saint-Étienne, Comité de Protection des Personnes, Sud-Est 1,
France).

Stimuli and Experiments

Thermal noxious stimulations were applied on the dorsum of
the left hand with a 30 × 30 mm contact probe (Pathway Pain
& Sensory Evaluation System, TSA-2001, Medoc Ltd, Advanced
Medical System). Nociceptive thresholds were individually deter-
mined in a pre-experimental phase before fMRI with the meth-
ods of limits. Mean pain thresholds were 46.8 ± 1.08 ◦C in group
1 and 44.1 ± 0.68 ◦C in group 2. In both groups, thermal stim-
uli were set to a baseline warm temperature that increased
toward a painful heat temperature (i.e., rated 6/10 on a 0–10
visual rating scale) maintained for 15 s in group 1 and 25 s
in group 2, including 2.5 s of ramp to reach the plateau, and
2.5 s to return at the baseline (see Fig. 2). Each functional MRI
session comprised 12 noxious heat stimuli delivered at random-
ized interstimulus intervals (mean ISI = 23.0 ± 12.9 s). Participants
in group 1 also received 8 auditory stimuli in each functional
session (mean duration = 27.4 s ± 14.3; [10–50 s]). Auditory stimuli

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa088#supplementary-data
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Figure 1. Summary of temporal dynamics of brain regions identified with stereotactic (iEEG) recordings, network construction and graph metrics during pain. Top: Onset

latencies of nociceptive responses recorded with intracranial iEEG (Reproduced and edited by permission from Bastuji et al. 2016), and their corresponding anatomical

localization based on the Human Connectome project atlas (see Table 1). Bottom: Graph representation of the brain network derived from functional connectivity

matrix. The graph theoretical analysis and modular partition are projected onto the brain graph. Modules are represented in color (blue and green circles) where links

are concentrated inside. Black dots and gray lines represent respectively nodes and links. Hubs are shown in red and categorized into three categories: static hubs (i.e.,

high degree: red sphere), dynamical hubs (i.e., high betweenness centrality: red diamond), and connector hubs (i.e., high between- and within-modular connectivity: red

square).

Figure 2. Experimental design. In both groups, participants received 12 thermal noxious stimulations in each functional session. Group 1$participants (n = 36) received

12 heat pain stimuli of 15 s each (including 5 s of ramps), and 8 auditory stimulations of 27.4 ± 14.3 s, separated by variable interstimulus intervals [12–20 s]. Participants

from group 2 (n = 24, validation cohort), received 12 heat pain stimuli of 25 s each (including 5 s of ramps) no audio stim, and had their gaze fixed on a clock showing the

time passing. Acute pain stimulations were fixed to a temperature inducing an intensity rated 6/10 by all the participants in both groups (see Fauchon et al. 2019).

consisted of short phrases intermingled with pain stimuli (mean
ISI = 51.7 s ± 33.1 s; [12–20 s]) and delivered through earphones
(Nordic Neuro Lab fMRI audio system, Neuro Device, Poland;

same experimental design used in Fauchon et al. 2019). Group 2
received painful stimuli exclusively, while watching a clock that
indicated the stimulus duration.
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Image Acquisition and Data Pre-processing

Blood oxygen level-dependent (BOLD) fMRI signal was recorded
on a 3 Tesla MR scan (Siemens, Erlangen, Germany). T1-weighted
anatomical images were acquired at the beginning of the exper-
iment with MP-RAGE sequence (voxel size 0.9 × 0.9 × 0.9).

fMRI Acquisition Group 1

Prisma Siemens, with 64-channels head coil: T2∗ weighted MR
signals were measured during 5 sessions of 8 min each, using
an interleaved gradient echo-planar imaging (EPI) sequence
(TR = 2200 ms, TE = 30 ms, voxel size = 3.0 × 3.0 × 3.0 mm, flip
angle 90◦, slices/volume 40). A total of 220 EPI volumes were
acquired in each session.

fMRI Acquisition Group 2

Verio Siemens with 12-channels head coil: T2∗ weighted MR
signal were measured during three sessions of 9 min each, using
an interleaved gradient echo-planar imaging (EPI) sequence
(TR = 2560 ms, TE = 45 ms, voxel size = 3.0 × 3.0 × 3.0 mm, flip
angle 90◦, slices/volume 32). A total of 205 EPI volumes were
acquired in each session.

Preprocessing

Identical preprocessing was applied to the 2 datasets, using
Statistical Parametric Mapping software (SPM12, Welcome Trust
Centre for Neuroimaging) running on MATLAB R2014b (Math-
Works, Naticks). The first two functional scans from each BOLD
session were deleted. Preprocessing included motion correction,
co-registration of the structural and functional images and nor-
malization with the segmentation procedure into the Montreal
Neurological Institute (MNI) space. No spatial smoothing was
applied before regional parcellation to avoid increasing artifi-
cially the correlation of signals in atlas-based graph functional
activity (Alakörkkö et al. 2017; Gargouri et al. 2018).

Brain Regions and Time-series Extraction for Cortical
Network Analysis

Graph-based network analysis allows describing the topological
properties of a network, its segregation and integration (i.e., local
and global network interconnections). The patterns obtained
when performing modular detection on fMRI functional connec-
tivity networks are often quite similar to those obtained with
independent component analysis (ICA; Power et al. 2011; Yeo
et al. 2011). However, graph-network based approach allows for
interpretation beyond the simple presence of separate mod-
ules, and provides cues on how these modules are related (e.g.,
through between-module connections), which is not accessible
by other methods such as ICA. A brain graph has the benefit of
providing a conceptually simple model without a priori, where
the brain activity involved in the emergence of pain perception
can be interpreted from an information-processing viewpoint
(see Sporns 2018). Graph analysis was targeted to areas previ-
ously identified with iEEG as being relevant to the experience
of pain. It was therefore based on a network of brain regions
consistently activated during the first second following a noxious
thermal stimulus, and whose temporal and spatial dynamics
could be described using iEEG recordings (Frot et al. 2008, 2014;
Bastuji et al. 2016). Thirty-four regions (17 per hemisphere) were
considered, including insular, posterior and anterior parietal,
prefrontal, cingulate, hippocampal and limbic (amygdala) areas

(see Fig. 1 and Table 1). Regions of interest (ROIs) were defined on
the basis of the position of electrode contacts used to determine
EEG activations (Bastuji et al. 2016), and corresponding to the
HCP atlas parcellation of the brain (Glasser et al. 2016). All the
brain structures included in the analysis have been shown to be
consistently activated by thermal pain stimuli (Apkarian et al.
2005; Tracey and Mantyh 2007; Garcia-Larrea and Peyron 2013;
Wager et al. 2013; Fauchon et al. 2019).

Network Construction: Pain Stimulation-based
Correlation Matrices

Graph analysis was performed under the graphpype functions
of Neuropycon package (Meunier et al. 2020; https://neuropyco
n.github.io/graphpype/.) using the open-source Python package
“nipype” (Gorgolewski et al. 2011). Raw time-series averaged over
the voxels within each ROI were extracted for each subject. Head
movement parameters, as well as average signals in the white
matter and CSF were regressed out from ROI time series, and
residuals were high-pass filtered (>0.01 Hz) to remove the scan-
ner drift component of the signal and then normalized into Z-
score for each session. Functional connectivity (FC) was derived
from time series, to describe patterns of statistical dependence
among neural elements (Smith 2012).

To compute stimulation-based correlation matrices, we used
the methods described by Meunier et al. (2014). The regressors
corresponding to the full duration of experimental stimuli
were considered and convolved with a canonical hemodynamic
response function (HRF). Only the positive and null parts of
the convolved pain regressor (i.e., modeling the onset, end and
duration of the heat noxious stimulation) were used to compute
weighted correlations on pain stimulation. This aims at giving
more influence on periods during which the regressor (i.e., the
pain stimulus) was high, and lower influence when the regressor
was low or null. For each subject, we subsequently generated a
matrix of FC by computing Pearson’s correlations between the
weighted time-courses of every pair of nodes, which resulted
in a set of 34 × 34 symmetric pain-based correlation matrices.
The correlation values were converted to Z-scores using
Fisher’s Z-transform for subsequent graph analysis (Dodel et al.
2005).

A network density threshold was applied on each individ-
ual correlation matrix to ensure the distributed nature of the
brain network (“network sparsity”) and to remove weak corre-
lations (i.e., reduce noise and variability between each connec-
tivity matrices; Power et al. 2010). The threshold level influences
network properties: increasing the density threshold enhances
the number of links in the network and reduces the number of
modules. Hence, applying very low threshold values will produce
a disconnected network while very high values will produce
highly connected network. In order to show the reliability of the
results, the density threshold was applied over a range of values
beginning with connections in the top 10–50% (see Meunier et al.
2009). This range of thresholds was chosen to focus on sparse but
fully connected network with nonrandom aspects, rising until
the network, became more densely connected. The average Z-
correlation matrix was created by averaging the connectivity
matrices of all the participants after thresholding to characterize
the average modular structure during pain. The graph illustra-
tions presented are for 30% link density threshold, since all
nodes are included in the giant connected component, and graph
metrics (e.g., modularity) are stabilized (see Fig. 3 and Results
section). Visualization of anatomical nodes on a brain surface

https://neuropycon.github.io/graphpype/
https://neuropycon.github.io/graphpype/
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Table 1. Brain regions of interest (ROIs or nodes) considered for brain network analysis

ROI (node) name HCP atlas area name MNI coordinates (x, y, z)

Right Left

Parietal operculum (S2) OP1–4 (52, −15, 15) (−51, −17, 15)
Posterior insula (pI) Ig, Pol1, Pol2 (39, −9, 1) (−39, −9, 0)
Anterior insula (aI) AAIC, AVI, MI (36, 15, −4) (−35, 14, −4)
Frontal operculum (Foper) FOP1–5 (40, 11, 6) (−40, 9, 6)
Primary somatosensory cortex (S1) 1, 2, 3a–b (41, −25, 51) (−41, −26, 51)
Supplementary motor area (SMA) SCEF, 6ma, 6mp (14, 0, 63) (−11, −1, 63)
Perigenual ant. cingulate cortex (pACC) a24 (3, 39, 0) (−4, 40, 0)
Anterior cingulate cortex (ACC) p24 (2, 36, 16) (−3, 36, 16)
Mid-cingulate cortex (MCC) a24pr, p24pr, 33pr (3, 7, 36) (−3, 10, 34)
Dorsal post. cingulate cortex (dPCC) 23d, d23ab (1, −29, 35) (−3, −31, 34)
Ventral post. cingulate cortex (vPCC) v23ab (3, −53, 18) (−4, −55, 17)
Post. parietal cortex (PPC) PG(p, s, i), PF(m, t, op), IP0–2 (50, −44, 42) (−49, −47, 41)
Precuneus (Prec) 7m, 31a, 31pv, DVT, 31pd (7, −46, 39) (−7, −44, 39)
Orbito frontal cortex (OFC) 10d, 10v, 10pp (6, 54, −6) (−7, 57, −4)
Middle frontal gyrus (DLPFC) 8c, 9a, 46, 9-46v/d (34, 42, 24) (−35, 40, 24)
Amygdala amyg (22, −3, −21) (−24, −6, −21)
Hippocampus EC, H, PeEc (24, −18, −21) (−24, −18, −22)
Primary auditory cortex (A1/Heschl) A1, (P, M, L)Belt (50, −19, 7) (−48, −21, 5)

Notes: The nodes used in the analyses were defined from iEEG electrodes localization (Bastuji et al. 2016), and the corresponding areas in the HCP atlas (MMP 1.0,
Glasser et al. 2016). These nodes focus on areas for which we know the temporal dynamics in response to nociceptive input. The right and left MNI coordinates of the
17 nodes are reported.

Figure 3. Global graph properties. The two groups of healthy participants, group 1 (n = 36, black lines) and group 2 (validation n = 24, gray lines) showed similar clustering

coefficient, modularity and small-worldness coefficient across the link density thresholds tested, but significantly higher (P < 0.001) than equivalent random networks

(black dotted lines). Data plotted as mean ± SD.

was created using the open-source python software Visbrain
(Combrisson et al. 2019).

Network Topological Features

The computation of graph metrics was mostly based on
“Radatools” software, a set of freely distributed applications
to analyze complex networks (http://deim.urv.cat/&#x007E;
sergio.gomez/radatools.php). The following common global
network properties were computed at various link densities
individually (Rubinov and Sporns 2010): 1) clustering coefficient
(C), a measure of the degree to which nodes in a graph tend
to cluster together; 2) shortest path length (L), defined as the
average minimal number of links needed to reach any node from
each node; 3) modularity (Q), defined as a set of nodes that have
many intramodular connections but sparser intermodular con-
nections, indicating a decomposability of the system into smaller
subsystems (Bullmore and Bassett 2011); and 4) assortativity
(A), or the correlation coefficient between the degree of a node
and the average degree of its neighbors. We also computed

the small-worldness coefficient, which uses a ratio of network
clustering and path length compared to its random network
equivalent [(C/Crandom)/(L/Lrandom)]. Graph network have “small-
world” properties if ratio >1 (Telesford et al. 2011). Small-world
networks show more clustering coefficient than a random graph
but maintain a similar shortest path length (Watts and Strogatz
1998). Though some of these graph metrics may represent
some common information, each property contributes unique
information to the picture of organization during pain. Also see
Glossary of graph terms in Supplementary Material.

Weighted Signed Modularity and Hub Region Detection

Modular decomposition of a graph aims at determining
subgraphs (i.e., modules or communities) whose nodes interact
significantly more strongly together than they do with nodes
belonging to other modules (Fortunato 2010). Several algorithms
have been proposed to detect the modular partition (Newman
2006), and here we used the one described by Gómez et al. (2009),
implemented in Radatools software, which enables the analysis

http://deim.urv.cat/&#x007E;sergio.gomez/radatools.php
http://deim.urv.cat/&#x007E;sergio.gomez/radatools.php
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa088#supplementary-data
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of modular structure in weighted signed graphs. Radatools is one
of the few tools to offer modular partition on weighted signed
networks; it was previously applied in neuroimaging studies
(Meunier et al. 2014). The modularity detection was optimized
across 100 iterations using the sequencing method “tfrf” (i.e.,
“tabu search,” “fast algorithm,” “repository algorithm” and “fast
algorithm”).

Identifying brain regions that play an important or topolog-
ically central role in a network provides insight about where
and how information is mediated between brain networks. Hub
identification have also important clinical implications (Fornito
et al. 2015), since they are known to be more vulnerable in brain
disorders including chronic pain (Mansour et al. 2016). Hubs iden-
tification during the induction of pain was based on four graph
metrics (see Fig. 1 and Glossary in Supplementary Material):
the degree centrality, the betweenness centrality, the within-
module degree, and the participation coefficient. Degree cen-
trality is defined as the sum of links per node. Betweeness
centrality of a node is defined as the density of minimal paths
between two other nodes that pass through it (i.e., the most
direct route between two nodes in the network). Nodes with
high betweenness centrality, lie on many shortest paths medi-
ating a high proportion of information flow, and thus repre-
sent central elements in establishing efficient communication
in the network structure (Joyce et al. 2010). Nodes with a value
of degree and betweenness centrality significantly higher than
a random network (P < 0.01) were respectively categorized as
static hubs and dynamical hubs. To investigate the nodal roles
in intra- and intermodular communications, we measured the
within-module degree (WMD) and the participation coefficient
(PC) (Guimerà and Nunes Amaral 2005; Guimera et al. 2007). The
WMD measures the number of links of a node compared to other
nodes of the same module, whereas the PC quantifies whether
a node is extensively linked to all other modules or not in the
network. Nodes with WMD > 1.0 and high PC > 0.45 (i.e., mean
PC + 1 SD) were defined as “connector hubs” (Meunier et al. 2009).
Connector hubs link different modules together, and thus play a
central role in the network organization during pain.

The significance of network topological properties (i.e., global
and nodal graph metrics and hub status) during pain was
assessed by comparing them to random networks with same
size and number of links, using the same analysis pipeline and
permutation tests. The values in the average connectivity matrix
were shuffled 5000 times, and then computing same pipeline on
the shuffled matrix (thresholding, network properties, modular
decomposition, etc.). This test is preferred because of the
expected non-normal distribution of differences in network
measures. False discovery rate (FDR) correction was applied
(Fornito et al. 2016).

Comparison with the Network Structure Derived From
an Audio Control Condition

Group 1 (n = 36) also received auditory stimuli (n = 8 in each func-
tional session; Fig. 2) separated in time from pain stimuli to allow
comparison of activity (see Fauchon et al. 2019). We assessed the
specificity of the pain modular network by comparing it to the
modular structure derived from neural activity associated with
auditory stimulations. In a previous study (Fauchon et al. 2019),
we showed that these 2 sensory modalities recruited distinct and
common cortical and subcortical areas. Introducing responses
to auditory stimuli was a means of investigating processing

commonalities between two modes of stimuli deeply dissimilar,
hence contributing to understand which networks and nodes
were linked to the processes leading to a perceptual experience,
irrespective of the sensory origin of the stimulus. Thus, the
network structure in audio was used as a control condition to
compare the distribution of connectivity and network properties
in pain. We also added the primary auditory cortex (i.e., A1
including Heschl area, see Table 1) to the previously analyzed
network (resulting of 18 nodes in each hemisphere), as a con-
trol brain region specifically associated with an audio modality.
Using the same methodology and pipeline of analysis, audio and
pain stimulation-based correlation matrices 36 × 36 were com-
puted and thresholded using identical procedures as described
above.

Significant condition differences on functional connectivity
and graph properties between pain and audio, were evaluated
using permutations tests by shuffling 5000 times and comparing
the original difference between conditions to the distribution
of differences after permutation. FDR correction was applied to
avoid false results due to pure chance.

Validation Analysis

The same procedure and analysis pipeline described above was
also applied separately to the second group (n = 24 subjects),
recorded during a separate session and considered here as a
validation cohort. The experimental pain stimuli were longer
(i.e., 25 s) than in group 1, but was calibrated to induce the same
pain intensity rated 6/10 by the participant (Fig. 2). Data were
not recorded in the exact same technical conditions (i.e., type of
scanner, headcoils, number and duration of functional sessions),
but these external differences participated to the generalizability
of the findings. Pain stimulation-based correlation matrices were
created and weighted signed modular analysis was applied an
identical procedure as described above for group 1, in an attempt
to replicate results obtained with the first set of data.

Results
Topological Properties Induced by Acute Nociceptive Inputs

The functional graph network associated with acute pain
stimulation was consistently modular over the entire range
of density thresholds (Fig. 3, 10–50%), meaning that the brain
regions could be reliably segregated into strongly interconnected
modules. These graph networks showed significantly larger
modularity (M (mean at 30% link density ± SD) = 0.40 ± 0.04)
than equivalent random graphs, thus supporting the existence
of a highly modular structure (P < 0.001). Typical features of
small-world organization were found in the structure of pain-
related networks, which were characterized by higher mean
clustering coefficient (C = 0.75 ± 0.1, P < 0.001) and assortativity
value (A = 0.55 ± 0.2, P < 0.001) relative to random networks, but
with similar shortest absolute path length (∼1.2). These features
suggest that the activity of brain regions during pain processing
are more locally clustered compared to random networks,
and have short path lengths linking all nodes even though
most nodes are not neighbors of one another (small-worldness
value = 2.16 ± 0.4). As these measures did not present major
changes across the density thresholds tested, and stabilized at
30%, such value was chosen as representative for the subsequent
results (also see Supplementary Table 1).

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa088#supplementary-data
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Figure 4. Modular structure of functional networks in acute pain stimulation. Top: anatomical representation of average population networks weighted on pain stimuli.

Each module and its intermodular connections are associated with one color: sensory-motor (red), medial fronto-parietal (green), lateral fronto-parietal (orange), limbic

(blue). Gray edges represent intermodular connections and red dots represent the hub regions. Bottom: anatomical representation of significant hubs in each module as

compared to random networks. Static hubs correspond to regions in the network with high centrality degree (red spheres), dynamical hubs are regions with high

betweenness (red diamonds), and connector hubs are regions with high within-modular degree and participation coefficient (red square); (P < 0.05, false-positive

correction).

Human Functional Pain Networks are Modular

The modular organization of our network during pain was made
up of four modules, which varied in size from 4 to 14 nodes
(depicted in Fig. 4). Each module is made of a subset of brain
regions that are strongly interconnected with each other and
sparsely interconnected with regions in other modules. No sig-
nificant interhemispheric differences were found. The largest
module (14 nodes) included S1, S2, posterior and anterior insulae
(pI and aI), frontal operculum (Foper), supplementary motor area
(SMA), and mid cingulate cortex (MCC). These areas are all related
to a sensory-motor network (SM), except for the anterior Insula
(aI), which is active across multiple task domains and showed
here a large number of connections within the network. The
second largest module (12 nodes) included anterior and posterior
midline regions: precuneus (Prec), ventral and dorsal posterior
cingulate cortices (vPCC and dPCC), anterior and perigenual cin-
gulate cortices (ACC and pACC) and medial orbito frontal cortex
(OFC), and was labeled medial fronto-parietal module (med-FP).
A third module (4 nodes), was labeled lateral fronto-parietal (lat-
FP) module, since it mainly included posterior parietal (PPC)
and dorso-lateral prefrontal (DLPFC) areas. The last module (4
nodes) included the amygdala and the hippocampus and was
labeled limbic module. Overall, the 4 modules were highly intra-
connected (from 58–100% intramodular mean coefficient), and
also well interconnected. The SM module was largely connected
with the lateral FP module (25 interlinks), whereas the medial
FP module showed few links (4 interlinks) with the SM and
lateral FP modules. The limbic module had lower intermodular

connections with the other modules across the network (i.e., no
intermodular links at 30% density threshold).

Node Roles and Hubs Detection During Painful Heat

To investigate the local topological structure, we assigned hub
status to nodes by taking into account the quantity and quality
of connections in the modular network. Assessment of the con-
nectivity profile of each node during pain compared to random
networks informed that hub regions were broadly distributed
across the modules (Fig. 4). We defined three categories of hub:
static (high degree), dynamical (high betwenness centrality), and
connector hub (high participation coefficient). The SM module
had numerous inter- and intramodular connections, 9 out of 14
of its constitutive nodes had a high-degree centrality (i.e., an
important number of links) and were categorized as static hubs
(i.e., bilateral Foper, aI, MCC, SMA and left S2; Fig. 4). Thus, the
SM module was highly integrated in the network organization
during pain. Furthermore, the left aI and the right Foper had
also a high betweenness centrality (i.e., shortest path), and were
classified as dynamical hubs putatively playing a key role in
establishing efficient communication in the network. This was
specially the case of the left anterior insula, which had also a
stronger within-module degree (WMD) and participation coeffi-
cient (PC) compared to other nodes. It connected 92% of the nodes
within its module and also had a large number of intermodular
connections with the 2 fronto-parietal modules (i.e., DLPFC, PPC,
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vPCC, pACC, ACC). It was therefore identified as a “connector
hub,” with the potentiality to provide connections between the
SM module and other modules. The three other modules were
also highly intraconnected. A second structure of integration was
identified in the bilateral vPCC in the medial FP module and was
classified as dynamical hub; whereas the lateral FP module had
two important nodes connecting the other modules, the right
PPC and right DLPFC, which were identified as connector hubs
(i.e., high WMD and PC; Fig. 4). None of the nodes in the limbic
module could be identified as a hub (see Supplementary Table 2
for nodal graph values).

Distinct Network Topological Features between Pain
and Audio Stimulation

Significant functional connectivity differences between pain and
audio stimulation are depicted in Figure 5. Comparison of pair-
wise correlations showed that almost half of the nodes signifi-
cantly changed the strength of their FC between the 2 conditions
(P < 0.01, FDR corrected). For the aim of this comparison, we
added as a control region, the primary auditory cortex (A1), which
is commonly activated by audio stimuli. The interhemispheric
correlation of A1 nodes was significantly higher (P = 0.001) in
audio stimulation (r = 0.85) than in pain stimulation (r = 0.63).
Conversely, during pain stimulation, several pairs of connections
were significantly stronger than in the audio condition, including
mainly nodes within the sensorimotor module (e.g., S1, S2, SMA,
pI, aI, Foper). For instance, the correlation strength between
the posterior insula and the anterior insula was significantly
stronger (P = 0.006) in pain (r = 0.72) than in audio (r = 0.52). Higher
FC were also found between the SM module and nodes of the
FP modules (i.e., vPCC, dPCC, DLPFC). Most of the connections of
A1 were lower in pain, including the ones with the limbic mod-
ule (i.e., hippocampus). The network average strength (i.e., the
sum of connectivity values after thresholding) was significantly
higher during pain compared with audio stimulation (P < 0.001).

Network Topological Features Changes in Pain versus Audio

Pain was associated with lower average path length (P = 0.004),
and higher small worldness (P < 0.01, FDR corrected see Fig. 5C).
The modularity was slightly higher (P = 0.041) during pain
(M = 0.43 ± 0.03) than audio stimulation (M = 0.35 ± 0.04), high-
lighting a different functional organization of nodes’ connections
in the network between the 2 conditions. Conversely, neither
the assortativity value nor the clustering coefficient showed
significant differences between the two conditions.

The changes of connectivity in the network led to a different
pattern of modular segregation during audio stimulation, which
gave rise to four distinct and connected modules (spatial distri-
bution is depicted in Fig. 5B). The anterior insula, Heschl, and
anterior cingulate cortex were segregated in different modules
than in the pain condition.

The proportion of links between- and within modules was
different between pain and audio. Lower intermodular connec-
tions (P = 0.02), and higher intramodular connections (P = 0.003)
were present in the pain condition relative to audio stimulation.
Compared to the audio condition, the within-module degree (i.e.,
proportion of links per module) was higher in S2, pACC, vPCC,
amygdala and lower in A1 and left SMA in pain; the participation
coefficient was higher in left vPCC, and right DLPFC and lower in
A1, SMA, dPCC, and MCC in pain (P < 0.01).

The distribution of hubs was also different between the pain
and audio conditions, as illustrated in Figure 5D. During audio
stimulation, S2 had fewer links than in pain condition and was
not classified as a static hub. The left aI was identified as dynami-
cal and connector hubs in both conditions, but in contrast during
audio we found that the dPCC, left PPC, and Precuneus were
dynamical hubs and the left SMA was a connector hub relative
to random networks (P < 0.01).

Thus, a pain stimulation enhanced the modularity and small
worldness in the present brain network compared to audio stim-
uli. The connectivity of some nodes were stimulus-dependent,
for instance some of them were highly connected under pain
condition (e.g., nodes within the SM module), but other nodes
were only connected under audio stimulation (e.g., A1), which
provides evidence for pain-dependent changes in network orga-
nization and communication. The integration was more internal
with a higher proportion of connections within the modules,
and pain-specific connector hubs dispatched the information
between the modules as compared to audio stimulation.

Replicability of Results in the Validation Group

When applying the same analysis pipeline on the validation
cohort (group 2, n = 24), the above-mentioned findings on the
brain network organization during pain (i.e., intra- and inter-
module connectivity) remained identical. The network structure
had small-world properties (see Fig. 2) across all density thresh-
olds tested with a distribution into four identical modules as
group 1 (Fig. 4), and significantly different from random networks
(P < 0.001). The hubs were also almost identical, with the sole
exception of the right Foper, which was not classified as a hub
because a lower betwenness centrality. As was the case in group
1, the left anterior insula appeared as a preponderant hub in
the network organization of group 2, showing a high degree
and betweenness centrality, as well as a higher WMD and PC
than other nodes. This region could therefore be classified the
main connector hub, linking the modules with each other in the
network (see Supplementary Table 2 for nodal graph values).

Discussion
The present results suggest that the brain regions activated dur-
ing a pain experience are organized in four consistent modules, a
robust pattern that could be replicated in a second independent
sample of subjects. Such topological aspects appear relevant to
shape the consecutive waves of nociceptive-related activation
previously defined with iEEG (Bastuji et al. 2016; Fig. 1). Their
similarities and differences are discussed in what follows.

A Sensory-Motor-Insular Module

The regions included in the sensory-motor (SM) module overlap
with the network activated with shortest latencies following a
noxious stimulus (Lenz et al. 1998; Frot et al. 2008; Ohara et al.
2008; Bastuji et al. 2016), which congregates direct cortical targets
of the spinothalamic system (Dum et al. 2009). This module
may therefore correspond to a first surge of activation (Fig. 1)
associated to the reception of ascending nociceptive input and its
preconscious encoding in sensory and motor-premotor orienting
areas.

This module also included the anterior insula (aI), which
is not a direct spinothalamic recipient and functionally differs
from posterior insular sections and sensory-motor areas (Wiech
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Figure 5. Differences in graph connectivity pattern between pain and audio stimuli. (A) Differences in functional connectivity (FC) between conditions, whereby the

lines indicate higher (red) and lower (blue) FC during noxious heat versus audio stimulation. Colors in the outer ring show the modules with their corresponding brain

regions. (B) Modular partition weighted on thermal noxious stimuli, and audio stimuli (at 30% link density). Auditory cortex (A1 or Heschl) nodes were fully integrated

in one module, creating several connections during audio, but were isolated in pain. (C) Small worldness was significantly lower in the audio condition (SM = 1.76 ± 0.16)

compared to pain (SM = 2.06 ± 0.17). (D) Distribution of hubs was widespread in the network associated with audio stimulation. Static hubs (red spheres) were represented

based on the degree, dynamical hubs were defined on the betweenness centrality (red diamonds: dPCC, left: aI, PPC, Prec.) and connector hubs were defined according

to their values of within-module degree and participation coefficient (red square: left aI and left SMA). ∗P < 0.01, FDR corrected.

et al. 2014). While a modular segregation is often taken as a
sign of functional coupling, this should not be taken here as the
processing of a selective aspect of pain. Like “Russian dolls,” each
module of connections can be further partitioned into a set of
functional submodules (Meunier et al. 2010). In the SM module,
three functional “units” can be dissociated based on the previous
literature (Tracey and Mantyh 2007; Garcia-Larrea and Peyron
2013): a “sensory” unit involves the posterior operculo-insular
cortex, S2 and S1 supporting sensory-discriminative aspects of
location, quality, and intensity of the stimulation (Segerdahl
et al. 2015; Garcia-Larrea and Mauguière 2018). The MCC/SMA
constitute a “premotor” unit that supports rapid, largely precon-
scious preparation of motor response (Frot et al. 2008). Finally, a
“salience detection” unit involving the anterior insula, and pos-
sibly the frontal operculum, appears relevant to the detection of
behavioral relevance of stimuli, not exclusive to pain. Mathemat-
ical clustering of these three subsystems in one module may be
explained by their heavy anatomo-functional interconnections
(Augustine 1996; Bastuji et al. 2018; Nomi et al. 2018), and by
their being all activated almost simultaneously by nociceptive
input (less than 80 ms separate the activation from posterior
and anterior insulae; Isnard et al. 2011; Frot et al. 2014). This
module appears therefore to integrate sensory encoding with
stimulus salience and motor control. The sensory components of
the module may reflect nociceptive-specific activity, as indicated
by stimulation and lesion studies in humans (Garcia-Larrea et al.
2010; Segerdahl et al. 2015; Garcia-Larrea and Mauguière 2018);
conversely, its motor, premotor, and antero-insular components
appear as nonpain-specific contributions that can be recruited
by any “salient” sensory input (Mouraux et al. 2011), including
audio stimuli in this study (Fig. 5). Activity and connectivity
within and between this module were, however, significantly
higher for pain than for audio stimuli, and may participate to

inform higher order networks on the physical-somatic nature
of the stimulus. Indeed, the “neurological pain signature” pre-
dicting physical acute pain and described by Wager et al. (2013)
largely overlaps with the SM module. It was recently shown
that an identical “neurological pain signature” has the poten-
tial to drive widely different subjective pain perceptions across
different ethnic groups (Losin et al. 2020). This underscores that
the pain experience cannot be reduced to such initial sensory-
motor-salience networks, but crucially needs interactive activ-
ity at different brain levels, here described as communicating
functional modules. Accordingly, the SM module was intensively
connected with other modules, notably through the anterior
insula, suggesting that it may be not only involved in the initial
encoding of nociceptive information, but also likely to receive
“top-down” feedback from higher order regions (Dehaene and
Naccache 2001).

Associative and Multimodal Modules

The second and third modules involved brain regions of higher
order in the hierarchy of noxious stimulus processing, i.e., asso-
ciative and multimodal areas with longer response latencies
than the regions described above (Fig. 1). The “lateral fronto-
parietal” module, anchored in DLPFC and lateral PPC, is com-
monly associated with the central executive network (CEN; See-
ley et al. 2007). This network contributes to many neurocognitive
functions including decision-making and working memory (Col-
lette and Van der Linden 2002) and is crucial for the attentional
system (Norman and Shallice 1986). A strong functional connec-
tivity between regions of CE, salience, and sensory networks has
been considered as a critical step to ensure access to conscious-
ness of sensory stimuli, both innocuous and nociceptive (Boly
et al. 2007; Garcia-Larrea and Bastuji 2018).
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The “medial fronto-parietal” module comprised anterior and
posterior midline regions, including those forming the core of
the “Default Mode Network” (DMN; (Fox and Raichle 2007). In the
same vein as the SM module, distinct functional units can be
dissociated here. Activation of the postero-medial cortex (pos-
terior cingulate (PCC) and Precuneus) appears central to self-
consciousness (Demertzi et al. 2013), and has been involved in
pain modulation by the comments that others express on our
behavior (Fauchon et al. 2019). On the other hand, the perigen-
ual and orbitofrontal responses of the DMN have been inter-
preted as a link between pain awareness and descending pain-
control pathways. Indeed, co-activation of these areas and mod-
ulatory brainstem regions such as the periaqueductal gray has
been shown in pain adaptation mechanisms in healthy subjects
(Coulombe et al. 2016), and abnormalities of this circuitry are
also reported in chronic pain conditions (Ren and Dubner 2002).
In iEEG recordings, activity in this module persists after the
stimulus has produced an overt motor or verbal response (Bastuji
et al. 2016), suggesting a role in both the consolidation of imme-
diate perceptions, and in the control of adequate behavioral
reactions.

Amygdala and Hippocampus

The limbic module, made up of the amygdala-hippocampus
couple, is believed to be involved in the encoding and retrieval of
emotionally charged memories associated with pain perception
(Neugebauer et al. 2009). Their strong anatomical interconnec-
tions and shared functions (McDonald and Mott 2017) may read-
ily explain why they are clustered together. The low connectivity
of the limbic module with other nodes in the present analysis
is, however, surprising. Some functional independence of these
regions was also detected in iEEG data, which showed no signifi-
cant spectral coherence between the amygdala and the posterior
insula (Bastuji et al. 2018). Nociceptive inputs reach the amygdala
through a low speed tract (the spino-parabrachial-amygdalar
pathways; Bernard and Besson 1990) leading to responses with
a different temporal shape than other cortical regions (see Fig. 4
in Bastuji et al. 2018). Such desynchronized mode of response
has also been shown for hippocampal iEEG responses and might
have contributed to the desynchronization of limbic structures
with the rest of the network in our experiment. However, the
functional interplay between the hippocampus and the PCC/pre-
cuneus, and between the amygdala and the aI/orbito-frontal
nodes are well documented (Neugebauer et al. 2009), and hence,
this lack of interaction remains enigmatic. It may be hypothe-
sized that under experimental conditions with low emotional
impact as was the case here, stimulus processing in limbic areas
may remain very limited and largely uncorrelated from that in
sensory and cognitive networks.

In line with this, the connectivity with limbic areas was
higher in the audio condition, which was based on verbal com-
ments with significant emotional impact (Fauchon et al. 2019).
The connectivity of number of nodes was stimulus dependent.
Intramodular connectivity was higher in response to pain than
to audio stimuli, especially between nodes of the sensorimotor
network, and is in favor of a specific network structure of the
brain regions involved in pain, associated with a higher small
worldness. One broader interpretation of these results is that
specialized subsystems (modules) enhance their internal com-
munications for integrating the multiple processes associated
with pain experience (as also shown in Zheng et al. 2019), while
the between subsystems communication and synchronization

is dedicated to specialized structures represented by dynamical
and connector hubs.

The Essential Links: Modular Connectors

The main hubs detected in our data were located in posterior
parietal, dorsolateral prefrontal, and anterior insular cortices.
Modular connector hubs provide connection of different mod-
ules and are thought to serve critical roles in coordinating net-
work integrity (van den Heuvel and Sporns 2013); accordingly,
such connectors were primarily concentrated in association with
cortices and regions that support multiple cognitive processes,
as has been described in previous literature (Cole et al. 2013;
Bertolero et al. 2015; Liang et al. 2016). Of note, the anterior
insula also lied on the most direct route between any two-node
combinations in the network and was accordingly identified as
a “dynamical hub.” Nodes with such characteristics (defined as
high “betweenness centrality,” see Methods) play a key role in
network organization by virtue of their control over information
passing between other nodes (Joyce et al. 2010), but are also,
logically, loci of vulnerability in brain disorders (van den Heuvel
and Sporns 2013).

The aI is an area of functional convergence, with extensive
reciprocal connections to and from other areas (Craig 2009) and
ensuring rapid integration of sensory and limbic nociceptive
input (Bastuji et al. 2018). Neuroimaging studies examining the
directional influences exerted by the aI suggested that this area
may play a causal role in switching between the DMN and
CE network (Sridharan et al. 2008; Bressler and Menon 2010).
However, its activity largely exceeds the modulation of executive
functions and also influences affective systems, autonomic func-
tions, and general cognitive processes (Craig 2009; Nieuwenhuys
2012). The high “centrality” of the aI, reflecting its control over
passing information, is consistent with a role in orchestrating
potentially necessary changes in behavioral response (Blair 2016).
The continuous dialogue between the four modules through the
anterior insula and the highly interconnected fronto-parietal
modules could contribute to link external and internal sensory
worlds. While necessarily speculative, this interpretation would
be consistent with a model of continuous intrinsic fluctuations
among densely collaborating regions that has been described as
a “dynamic pain connectome” (Kucyi and Davis 2015).

Limitations and Conclusion
The standpoint of this study was a restricted network derived
from iEEG recordings, focused on 34 areas responding with
known temporal dynamics to nociceptive input; therefore,
generalization to other sensory modalities may not be straight-
forward. While our graph analysis was based on the functional
connectivity between these brain regions, an association does
not necessarily correspond to a direct connection or involve
causal relationships. Thus, it is not possible to infer about
the directionality and/or causality of connections, except the
fact that they corresponded to components whose response
latency is known from iEEG recordings. To further isolate specific
correlates of physical pain, future work should include the use
of different intensities, including below nociceptive thresholds
(Horing et al. 2019). Also, the experiments reported here were
conducted in very reassuring contexts where emotional drive
from pain-related fear or anxiety was purposely attenuated,
thus probably minimizing the role of limbic regions in the
overall network. This is doubtless the case of a vast majority of
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experimental pain studies and limits the ecological validity of the
results in these “overprotective” contexts. Notwithstanding such
limitations, the modular organization reported here appeared
relevant to shape the dynamic patterns of responses to pain
stimuli determined at short time scale using iEEG and are,
therefore, consistent with the brain connectivity properties being
reproduced at short and long time scales (Nagy et al. 2017). The
results are consistent with a model of nociceptive integration
whereby the conscious experience of pain emerges from the
dynamic cooperation, segregation, and integration of multiple
functional subsystems. It provides a picture of the “brain in
pain” as a functional wiring diagram and may hopefully help to
understand brain network reorganizations occurring in patients
with chronic pain.
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Supplementary Material can be found at Cerebral Cortex Commu-
nications online.
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