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In this paper, a review of Metaheuristic Optimization Techniques (MOT) which are currently in use for 
optimization in a vast range of problems, is presented. MOT are known for their simplicity and stochastic nature 
and successfully applied to solve complex engineering problems. Although there exist various categories of MOT, 
the techniques from swarm intelligence is reviewed in this paper. An explanation of the theoretical foundation 
upon which each algorithm is based is provided, along with the relevant mathematical models that explain 
how an algorithm attempts to obtain the best solution to a problem. The paper also reviews the applications 
of swarm-based MOT to the control of the doubly fed induction generator (DFIG). Particular attention is given 
to control of the DFIG for wind energy applications. Control of the DFIG is generally realized via the use of PI 
controllers. While various PI controller tuning methods are well established (such as the Ziegler–Nichols and 
Cohen–Coon methods), these methods produce satisfactory results, and often fail to meet the stringent levels of 
control presently required. Due to this fact, as well as the current success of MOT in engineering, the application 
of MOT to the control of the DFIG could be promising area of research. The results of the study show that 
although the various swarm-based MOT differ from each other in terms of aspects such as complexity and 
advantages, they are all based on the concept of randomness, and always attempt to produce the best possible 
solution. It was also observed that various swarm-based MOT displays the demerit of getting easily trapped in 
the local optimum, however various advancements have been proposed to correct such an issue. Based on the 
results of the application of these techniques to other engineering problems, their application to the DFIG could 
yield exceptional results.
1. Introduction

1.1. Motivation and incitement

The world is currently in energy despair. For decades, the produc-

tion of electrical energy depended on fossil fuels, particularly coal. An 
abundance of coal meant no limit of the utilization of this fuel to pro-

duce electricity. However, in recent times, this fuel source has come 
under investigation. This occurred for two reasons. The first reason 
is the scarcity of such fuel. The construction of many industries, ur-

banization and increasing population has led for a greater demand of 
electricity. This, in turn, has caused coal to be depleted at an alarming 
rate Secondly, due to the intense use of coal for the purpose of electric-

ity production, the harmful effects of this fuel on the atmosphere have 
become more pronounced [1]. These issued have paved the way for the 
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introduction of renewable energy. Due to its cost effectiveness, wind 
energy conversion systems (WECS) are gaining widespread attention. 
WECS utilize both asynchronous and synchronous machines [2]. The 
principle of producing electricity from WECS remains the same as that 
of a conventional power plant, the difference being the source of me-

chanical power utilized in driving the prime mover. In WECS, the wind 
turbine blades are attached to the rotor of the generator. This allows the 
rotation of the wind turbine blades to be transferred to the rotor of the 
machine. Generally, there is an interface, usually in the form of a three-

stage gearbox, between the blades and the rotor. This allowed the low 
rotational velocity of the blades to be converted to a higher and more 
usable velocity. With the addition of various control actions, this rota-

tional speed is converted into electricity. Evidently, WECS comprises of 
various mechanical and electrical components. The relationship of such 
can be observed in Fig. 1 [3].
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Fig. 1. Conventional topology of WECS [3].
Due to their robust nature, cheap maintenance costs, and large 
power generation capabilities, WECS are rapidly becoming the alterna-

tive to fossil fuel-based power generation. Moreover, the use of direct 
grid connected generators ensures that the aspect of grid inertia is 
present, which is a critical part of power system stability. It can then be 
observed that research in the control of WECS is of utmost importance, 
and should be carried out extensively.

1.2. Literature review

The total global installed capacity of WECS has rapidly increased 
in modern times [4]. From 2013 to 2016, there has been a continual 
expansion in such systems. This is observed in Fig. 2 [5]. The two lead-

ers in implementation of such systems are the United States of America 
and China. With an installed capability of 237 MW, China is ahead 
by a significant margin. The United States has a capacity of approx-

imately 106 MW, with Germany coming in third with a capacity of 
62 MW [6]. Further, it should be noted that various European and 
Asian nations have recently exhibited a rapid increase in the instal-

lation of such systems [6]. This can be seen in Fig. 3, which depicts 
the magnitude of wind energy contribution from the top ten countries 
[6]. However, despite China and the USA yielded a larger magnitude 
of installed capacity, the total contribution of such systems to the to-

tal national energy consumption is only a fraction. This is observed in 
Fig. 4 [7]. Also from Fig. 4, it can be seen that despite European na-

tions yielded a smaller magnitude of energy, this energy accounts for 
a much larger percentage of the total national energy consumption [5, 
8]. The important fact, though, is that there has been a sharp rise in the 
utilization of wind energy for the production of electricity. This points 
to a green and sustainable future. In wind farms, the generator most 
commonly utilized are the DFIG and permanent magnet synchronous 
generator [9]. This is due to their capability to produce the maximum 
possible power, despite fluctuations in the wind velocity. Also, when 
compared to the squirrel cage induction machine, these machines pro-

duce a lower level of stress on the machine components.

Despite the advantages of the PMSG, the DFIG proves to be the 
more efficient generator. Thus, majority of WECS utilize the DFIG [10, 
11]. However, recent research has been conducted in the control of the 
PMSG. One such example can be found in [12], whereby a novel MOT, 
called Democratic Joint Operations Algorithm, was utilized for the pur-

pose of obtaining PID controller gains. When compared to various other 
algorithms, the proposed algorithm produced the best overshoot and 
steady state error of the active power. The authors in [13] propose 
an adaptive Fractional Order PID controller for Maximum Power Point 
Tracking (MPPT) which utilizes a linear perturbation observer. The con-

troller is easy to implement, does not require an accurate model, and 
exhibits a robust control performance. Owing to the rapid increase in 
the use of the DFIG, control of such needs to be efficient and effective. 
The most common and established DFIG control method is field ori-
2

Fig. 2. Total global capacity of wind energy systems (in GW) from 2013–2019 
[5].

Fig. 3. Participation of wind energy to global capacity of various nations [6].

Fig. 4. Infiltration of wind energy systems of several countries (%) [7].

ented control. This control algorithm regulates the DFIG stator active 
and reactive power via control of the rotor current [14, 15]. This uti-

lizes proportional-integral (PI) controllers. PI controllers are known to 
produce reliable and robust responses. The issue, however, is that PI 
controllers are required optimal tuning.

Achieving this via trial and error is a tedious task and may result in 
sub-optimal performance of the controller. One well-known method of 
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Fig. 5. Methodology process for review conducted.
PI controller tuning is the Ziegler–Nichols method, which utilizes either 
the closed-loop or open-loop response of the plant. Another method 
is the Cohen–Coon tuning method, which is similar to that of the 
Ziegler–Nichols method but makes use of different formulae to deter-

mine optimal controller performance [16, 17, 18]. These methods prove 
to be satisfactory, but often cease to meet the stringent levels of control 
presently required. This becomes an issue with grid code compliance, 
especially under abnormal conditions such as symmetrical and asym-

metrical grid voltages, and fault ride through.

Recently, several alternatives to the PI controller have surfaced. One 
such method is Sliding Mode Control (SMC). In SMC, a pre-set trajectory 
is utilized along which the control variable is forced [3]. SMC offers ro-

bustness to parameter variations, external disturbances, nonlinear loads 
and uncertainties [19, 20]. However, it suffers the demerit of chattering 
[21, 22]. Hysteresis control makes use of user defined bandwidths. The 
output of the hysteresis controllers is used to determine which converter 
switching state will be implemented [23]. This is commonly referred to 
as a Look-Up Table. This is a simple control method. When applied to 
the DFIG, it proved to provide efficient dynamic responses. However, 
the ripple in the output is extremely large, and the output of the stator 
current is severely distorted [24]. Artificial Neural Network (ANN) is a 
system which is based on the human central nervous system. ANN sim-

ulates a biological neural network [25, 26]. The merit of ANN includes 
the ability to work with incomplete knowledge and having a strong fault 
tolerance. However, ANN suffers the demerit of an unexplained behav-

ior of the network. This compromises the reliability of the network [27]. 
Further, ANN is known to have a greater than average computational 
burden [27, 28]. Model Predictive Control has been extensively applied 
in the process control industry and has recently shown promise in the 
field of electrical engineering [29]. It offers a simple structure but is 
built on the knowledge of accurate machine parameters [3]. Practically, 
machine resistance and inductance values are given in terms of a tol-

erance, making Model Predictive Control an unreliable control method. 
When applied to the DFIG, it is observed that MPC produces a large 
steady state error, particularly at lower shaft angular velocities [30].

1.3. Contribution and paper organization

Considering the control of a DFIG, aspects such as frequency and re-

active power absorption/generation are required to have an extremely 
low error tolerance. This is important for the efficient operation and 
stability of the electrical grid. Poor control of these critical aspects 
may have catastrophic consequences. In addition to this, national grid 
code requirements are required to be met. The aim of this research is 
3

to thoroughly investigate the effect of utilizing MOT in the control of 
the DFIG. In this paper, swarm-based MOT are considered, with four-

teen techniques investigated. Each technique is investigated in terms of 
inception, mathematical modelling, application procedure, merits, de-

merits and advancements of such and finally the application of these 
techniques to the control of the DFIG. This paper provides a general 
review of the techniques and is aimed at researchers interested in the 
control of DFIG based WECS. After the structure of each algorithm, the 
merits, demerits and advancements of each algorithm are presented. 
This has an indirect correlation with the application of these tech-

niques to the control of the DFIG. The presented literature concerning 
algorithm advancements, in combination with the presented literature 
regarding the application of swarm-based MOT to DFIG control, will 
equip the researchers with sufficient knowledge to utilize a specific 
technique advancement in the application of DFIG control. This paper, 
therefore, serves as a basis for scientific advancement concerning DFIG 
based WECS control.

Other articles which focus on the review of swarm-based MOT exist 
but discuss only a few algorithms. Further, there is no comprehensive 
review on the effect of the advancements of the conventional algo-

rithms. Lastly, a review on the use of swarm-based MOT in regard to 
application to DFIG control has not been reported where the contribu-

tion of this paper is focused. Advancements to conventional algorithms, 
as well as the application of the algorithms to DFIG control, are crit-

ically reviewed and analyzed. The balance of this article has the fol-

lowing structure. Following the introduction, an overview of the DFIG 
is given. This is in terms of structure, modelling and control methods. 
Thereafter, an overview of MOT is given. This is in terms of classifica-

tion and application to the control of the DFIG. Afterwards, the fourteen 
different swarm-based MOT are investigated in-depth. This is in terms 
of mathematical modelling, method of application, merits, demerits and 
advancements to overcome such, and finally the application of these 
techniques to the control of the DFIG. Following this, a table that sum-

marizes all of the information captured in chapter 4 is presented. In 
section 6, a simulation-based performance analysis of common algo-

rithms is presented followed by a conclusion and scope of future work 
in section 7. Fig. 5 depicts the method followed in order to realize this 
review study. The main contributions of this paper are as follows:

• Provide a comprehensive review of the principle of operation of 
fourteen swarm-based MOT. This includes the provision of relevant 
equations required for execution of the algorithm, as well as a flow 
chart depicting the steps to successful application of the algorithm.
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Fig. 6. DFIG based WECS [3].

• Provide a review on the merits and demerits of each algorithm, as 
well as a review on recent advancements for mitigation of relevant 
demerits.

• Analyze the application of such algorithms for the sake of DFIG 
control. This includes an identification of gaps in current literature.

• Carry out a simulation-based performance analysis of three popular 
swarm intelligence techniques. This analysis is in terms of explo-

ration capability, exploitation capability, and convergence rate.

2. An overview of the DFIG

The structure of the DFIG based WECS is such that the stator pro-

vides a direct grid connection, and the rotor makes use of a back to back 
converter to provide grid coupling. This unique rotor configuration al-

lows the rotor to both absorb and supply electrical power, thus allowed 
for generator operation at any wind speed [31, 32]. The rotor supplies 
power at speeds greater than synchronous speed and absorbs power at 
speeds lower than synchronous speeds [32]. To ensure a constant out-

put frequency, power is absorbed at slip frequency [33]. Fig. 6 depicts 
the structure of the DFIG-WECS [3].

Considering the synchronous (d-q) reference frame, the DFIG volt-

age equations can be seen in [34, 35]. The DFIG rotor and stator fluxes 
can be represented as shown in [36]. The DFIG electromagnetic torque, 
as well as the stator and rotor active and reactive powers are shown 
in [37] and [38] respectively. When considering DFIG control, various 
control strategies exist. These are rotor current control, direct power 
control (DPC) and direct torque control (DTC) [34]. Rotor current con-

trol is conventionally achieved via field-oriented control (FOC). FOC 
utilizes PI controllers to regulate the rotor currents, thus allowing for 
indirect control of the stator active and reactive powers [35]. This is 
the most common method of control. The function block diagram of 
stator voltage FOC is observed in Fig. 7. In Fig. 7, c1 and c2 denote the 
coupling terms of the algorithm. The algorithm is explained in detail in 
[39]. DTC directly controls the generator rotor flux and torque. There 
are two ways in which conventional DTC is achieved. In method one a 
look up table and hysteresis controllers (DTC-ST) are utilized. The sec-

ond way involves the use of PI controllers [40, 41]. DPC control directly 
the stator reactive and active powers. DPC is achieved using the same 
methodology as in DTC-ST [42].

3. Metaheuristic optimization techniques

Metaheuristic Optimization Techniques, as the name suggests, are 
problem independent control techniques which has gain rapid popu-

larity in the application of complex engineering problems. This can be 
attributed to their simplicity, flexibility, and capability to solve com-

plex problems at a high efficiency rate. Metaheuristics techniques are 
based strongly on the concept of randomness, and search for optimal 
solutions based on diversification and intensification. Diversification is 
the scattered search of an entire search space and intensification is the 
4

search in a particular area of a search space [43]. MOT are based on 
various aspects of everyday life, such as the human body, the laws of 
physics and the behavior of animals in their natural habitat [44]. Criti-

cal evaluation of the working processes of these aspects has allowed for 
accurate mathematical modelling of various nature-based occurrences. 
This in turn has been used to solve complex engineering problems suc-

cessfully and optimally. While there does not exist any definitive way 
to categorize MOT, it can usually be classified into four categories [44, 
45]. This can be seen in Fig. 8. The classification shown in Fig. 7 is 
not an exhaustive list of MOT but does account for most of the cur-

rently implemented techniques. The application of MOT has recently 
been applied to the control of the DFIG but has not been extensively 
researched. It has mostly been used to optimize the controller gains of 
the PI controllers used in the control of the DFIG. It is shown later that 
MOT make use of fitness functions. In terms of proportional-integral 
(PI) controllers, the various fitness functions (performance indices) are 
time varying functions of the integral of either the square of absolute 
value of the error being input into the PI controller [46, 47, 48].

Metaheuristic optimization techniques have been applied exten-

sively to the field of renewable energy systems. In [49], a critical survey 
on the application of Metaheuristic optimization techniques on proton 
exchange fuel cell parameter estimation was carried out. The survey 
considered MOT from all four categories, both in conventional and 
modified natures, thereby making the survey extensive. Considering ap-

plication to photovoltaic (PV) systems, the authors in [50] carried out a 
survey that reports the effects of utilizing MOT for identification of PV 
cell parameters. As in [49], the paper considered techniques from all 
four categories, both in conventional and modified natures. The paper 
outlined in [51] conducts a comprehensive survey on the effect of MPPT 
algorithms of PV systems under the effect of partial shading. Seven cat-

egories of algorithms are considered, one of which is MOT. Within this, 
three of the four subcategories of MOT are discussed. Further to dis-

cussion of the conventional algorithms, the paper acknowledges the

utilization of hybrid algorithms for the said application.

4. A review of various swarm-based MOT

The following section provides a review on various swarm-based 
MOT. The techniques that will be considered are Particle Swarm Opti-

mization, Bacteria Foraging Optimization, Grey Wolf Optimization, Ar-

tificial Bee Colony Optimization, Whale Optimization Algorithm, Crow 
Search Algorithm, Bat Algorithm, Squirrel Search Algorithm, Moth 
Flame Optimization, Sailfish Optimization, Cuckoo Search Algorithm, 
Firefly Algorithm, Shuffled Frog Leaping Algorithm and Antlion Opti-

mization. Each technique is discussed in terms of motivation, structure, 
merits, demerits, advancements and finally their application to the con-

trol of the DFIG.

4.1. Particle swarm optimization

Utilizing the social conduct of the schooling of fish and the flock-

ing of birds as inspiration, particle swarm optimization (PSO) is a MOT 
which, in was developed by an electrical engineer and social psychol-

ogist. PSO consists of a population of particles which move at a given 
velocity. The velocity of every particle is updated after each iteration. 
These updates consider various factors. The aim of the motion of the 
particles in the population is the move to the most ideal solution of the 
problem. PSO is a simple control algorithm which has a light compu-

tational burden [52, 53, 54, 55]. Considering the real number space, 
a particle can be defined as a possible solution which moves through 
the search space of the problem. The position of a particle is a function 
of the particles previous position and current velocity.

This can be expressed as [52, 56, 57]:

𝒙𝒊(𝒕+ 𝟏) = 𝒙𝒊(𝒕) + 𝒗𝒊(𝒕) (1)
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Fig. 7. Structure of FOC of DFIG [39].
Where 𝑥𝑖(𝑡 +1) is the updated position of the particle, 𝑥𝑖(𝑡) is the current 
position of the particle and 𝑣𝑖(𝑡) is the current velocity of the particle.

The current velocity of the system is defined as [52, 56, 57]:

𝒗𝒊(𝒕+ 𝟏) = 𝒗𝒊(𝒕) +𝝈𝟏 × 𝒓𝒂𝒏𝒅𝟏×
(
𝒑𝒊 −𝒙𝒊(𝒕)

)
+𝝈𝟐 × 𝒓𝒂𝒏𝒅𝟐×

(
𝒑𝒈 −𝒙𝒊(𝒕)

)
(2)

Where 𝑣𝑖(𝑡 + 1) is the updated velocity of the particle, 𝜎1 and 𝜎2 are 
two positive numbers, 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are two randomized numbers 
in the range [0, 1], 𝑝𝑖 is the individual best of each particle and 𝑝𝑔 is 
the global best of each particle. As shown, (2) comprises of three ele-

ments. The first term is based on the inertia of the particle (according 
to newtons first law, a body in motion tends to continue motion unless 
disturbed by an external force) [28]. The second term describes the par-

ticles propensity to gravitate towards its personal best. It is known as 
the memory component. The third term describes the particles propen-

sity to gravitate towards to global best i.e., the best of all the particles. 
5

It is known as the social component [52, 57]. The individual best and 
global best are obtained based on a fitness function which is defined by 
the user [52]. To ensure convergence of the particles and prevent diver-

gence (going to infinity), selection of appropriate constants and setting 
limitations is essential. One of the critical limitations that needs to be 
present in the selection of a maximum velocity. A too large maximum 
velocity could result in unstable behavior of the particles and a too 
small velocity limits the search space and could result in the most op-

timal solution not being discovered. An experiment performed in [58] 
proved that by dynamically changing the maximum velocity, the perfor-

mance of the algorithm can be enhanced. Another important limitation 
is the values of the acceleration constants, 𝜎1 and 𝜎2. In a study con-

ducted in [59] and [60], it is shown that if the sum of 𝜎1 and 𝜎2 exceed 
4, the particle trajectory diverges (goes to infinity). The values of the 
acceleration constants can be updated dynamically, in which case they 
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Fig. 8. Flow chart indicating classification of MOT [44, 45].
are calculated based on a maximum and minimum value, as well as the 
current and maximum iteration numbers [61].

However, even if the acceleration constants and maximum veloc-

ity are selected correctly, there is a possibility that the particles would 
continue to diverge. To prevent this, there exists two methods which 
can be applied to (2). The first method is applying a constant called 
the constriction factor. This is applied to the entire of (2) and is based 
on the use of the two acceleration constants [56]. The second method 
is accomplished by applying either a fixed or dynamic value only to 
the inertia component of (2) [56]. This is termed inertia constant and 
usually begins at a high value and gradually decreases. Considering a 
dynamic inertia constant, 𝑤, the constant is calculated using an initial 
weight (usually 0.9), a final weight (usually 0.4), as well as the current 
6

and maximum iteration numbers [47, 56, 62]. The suitable selection of 
the inertia weights results in the requirement of a smaller number of 
iterations to obtain an acceptable solution [62].

At first, the relevant parameters (number of particles, iteration num-

ber, initial acceleration constant and initial inertial weight) are defined. 
Then, each particle positioned randomly throughout the search space. 
The next step is the evaluation of the fitness of each particle. The parti-

cle which has the lowest fitness function is determined and the position 
of that particle is taken as the global best. Thereafter, the position of 
each particle is then updated using (2) and the fitness function is evalu-

ated again. This fitness function value of each particle is then compared 
to the previous fitness function of that particle. If the current fitness 
function is superior to the previous fitness function, this value replaces 
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Fig. 9. PSO algorithm flowchart [63].

the old value, and the current position replaces the previous position 
as the new individual best. This process continues until the iterations 
are complete. Once this is so, the particle with the best fitness function 
is said to be the best solution [52, 57]. The steps to execute the PSO 
algorithm is depicted in Fig. 9 [63].

PSO was initially designed to solve continuous nonlinear functions. 
However, in cases where binary and integer values must be arranged as 
particles, the PSO algorithm can be adapted to perform this [52, 55]. 
In binary particle swarm optimization (BPSO), the same equation as 
shown in (2) is used. From this calculation of velocity, a probability is 
determined and is defined as [64]:

𝑺
(
𝒗𝒊(𝒕+ 𝟏)

)
= 𝟏∕

(
𝟏+ 𝐞𝐱𝐩

(
−𝒗𝒊(𝒕+ 𝟏)

))
(3)

A randomized number 𝑥𝑟 in the range [0, 1] is generated. If the proba-

bility defined in (3) is greater than the randomized number, the particle 
takes on a position of 1. If not, the particle takes on a position of 0 [64, 
65]. The personal and global best can be updated as follows [65]:

𝒑𝒊(𝒕+ 𝟏) =
{

𝒙𝒊(𝒕+ 𝟏), if 𝑭 (𝒙𝒊(𝒕+ 𝟏)) < 𝑭 (𝒑𝒊)

𝒑𝒊(𝒕), otherwise
(4)

𝒑𝒈(𝒕+ 𝟏) =
{

𝒑𝒊(𝒕+ 𝟏), if 𝑭 (𝒑𝒊(𝒕+ 𝟏)) < 𝑭 (𝒑𝒈)

𝒑𝒈(𝒕), otherwise
(5)

Where 𝐹 is the fitness function. Despite its merit of a fast convergence 
speed [66, 67], the conventional PSO suffers the demerits of poor ac-

curacy and being easily trapped in the local minima [66, 67, 68]. The 
authors in [66] introduced a mutation factor and a dynamic inertial fac-

tor. Large inertial factors enhance the convergence rate of the algorithm 
while small inertial factors enhance the search accuracy. The proposed 
dynamic inertial factor is a function of the fitness of all the particles, 
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and lies in the range [0, 1]. Based on the position of all particles ex-

cept the global best, the mutation factor randomly generates two new 
particles based on a probability. The proposed algorithm was applied 
to the 14-BUS system for reactive power optimization and compared 
to the conventional PSO. It was observed that after 100 iterations, the 
proposed algorithm produced a 1.28% improvement in the result. For 
iterations lower than four, MPSO is inferior to PSO. However, in prac-

tice, such minute values of iterations are not utilized.

Considering the application of PSO to the DFIG, the authors in [61] 
applied PSO to the optimization of the parameters in sliding mode con-

trol (SMC). Three different control algorithms were presented. The first 
algorithm was the conventional SMC, in which PSO was used to opti-

mize the positive switching gain. The second algorithm was the integral 
SMC, which is an advancement to the conventional SMC in the case 
of reduction in steady state error. In this algorithm, PSO was used to 
optimize both the positive switching gain and integral gain. The third 
algorithm was an intelligent sliding mode controller, which adds a pro-

portional gain to the integral sliding mode controller. In this algorithm, 
PSO was used to optimize the positive switching gain, integral gain, and 
proportional gain. The proposed control methods were implemented us-

ing the rotor current control method, which means that the control of 
the DFIG stator active and reactive power was dependent on the control 
of the rotor direct and quadrature currents. The proposed control meth-

ods were tested on a 7.5 kW DFIG. From the results, it is observed that 
the integral sliding mode controller produced the best dynamic response 
for both the stator reactive power and active power. This is followed by 
the intelligent SMC, then the conventional SMC. The superiority was 
in the order of approximately 100% and 200% to the intelligent SMC 
and conventional SMC respectively. The results presented do not clearly 
show a difference in steady state error and steady state ripple among 
the three control algorithms. Furthermore, the results are not compared 
to other parameter optimization methods, such as other MOT or the 
Ziegler Nichols method. This means that the results of the proposed al-

gorithms cannot be verified.

PSO is applied to the DFIG to analyze the small signal stability in 
[69]. PSO is used to optimize the PI controller gains for both the ro-

tor side converter (RSC) and grid side converter (GSC), and the pitch 
controller. In total, twelve parameters were optimized. The system 
was tested on both small and large disturbances. For the small dis-

turbances, the optimized controllers produced smaller overshoots for 
the dc link voltage, terminal voltage, stator reactive power and stator 
active power. The optimized controller also damped out the oscilla-

tions much quicker. The author claims that the optimized controllers 
produce a superior dynamic response but due to insufficient evidence, 
this claim cannot be validated. Considering large disturbances, the op-

timized controllers produced a better terminal voltage and lower peak 
dc link voltage. With regards to the stator active power, the optimized 
controllers continued to inject active power into the grid, whereas the 
un-optimized controllers failed to produce any active power. Consid-

ering the stator reactive power, the optimized controllers absorbed a 
lower amount of power.

An advancement of [40] was carried out in [70], where sensitivity 
analysis is utilized to identify the unified dominant control parameters. 
These are the parameters that would be optimized using PSO, so that 
the algorithm intricacy is lessened. The authors make use of trajectory 
sensitivity, which measures the degree of change of a system based on 
a differential change on a specific parameter and eigenvalue sensitivity, 
which uses eigenvalues to determine the systems sensitivity towards a 
specific parameter. Using the trajectory sensitivity analysis, the integral 
gain of the grid voltage regulator and the proportional gains of both the 
direct and quadrature rotor current regulators were chosen as the dom-

inant control parameters. Using the eigenvalue sensitivity analysis, the 
integral gain of the stator active power regulator, integral gains of both 
the direct and quadrature rotor current regulators, proportional gain 
of the dc link capacitor voltage regulator and the proportional gains 
of both the direct and quadrature grid current regulators were chosen 
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as the dominant control parameters. In total, there were six parame-

ters to be optimized using PSO. The proposed algorithm (UDCP-PSO) 
was tested on both a single machine bus system as well as a multi ma-

chine bus system for both small and large disturbances. The proposed 
algorithm is fared against the original ten parameter optimization algo-

rithm (C-PSO) as well as a random parameter optimization algorithm 
(R-PSO).

Considering the single machine bus system under a small distur-

bance, the UCDP-PSO produced a smaller overshoot of stator active 
power when compared to C-PSO and R-PSO. The damping time for 
UCDP-PSO was the same as C-PSO, which was superior to R-PSO. The 
dynamic response of all three is almost identical. For the stator reac-

tive power, the percentage overshoot and damping time of UCDP-PSO 
and C-PSO are the same and superior to R-PSO. The dynamic response 
of all three is almost identical. An identical phenomenon was observed 
with respect to the dc link voltage. Considering the single machine bus 
system under large disturbance, the UCDP-PSO produced the smallest 
percentage overshoot. The damping time and dynamic response of all 
three algorithms appear to be the same, with any variance being negli-

gible. An identical response was seen with regards to the stator reactive 
power, this time the UCDP-PSO algorithm producing superiority only 
marginally to C-PSO. Considering the dc link voltage, UCDP-PSO once 
again produced the smallest percentage overshoot. UCDP-PSO and C-

PSO produce an identical damping time, which was superior to that of 
R-PSO. The dynamic response of all three algorithms was identical.

Considering the multi machine bus system under small disturbance, 
UCDP-PSO and C-PSO produce the same percentage overshoot and 
damping time, which was superior to that of R-PSO. The dynamic 
response of all three algorithms was the same. For the stator output 
voltage, C-PSO produced the lowest overall percentage overshoot, with 
the damping time of UCDP-PSO and C-PSO being the same and supe-

rior to that of R-PSO. Once again, the dynamic response of all three 
algorithms was the same. A conventional PID control of a DFIG using 
PSO is implemented in [71]. However, the fitness function used was 
not a conventional one (such as ITAE), but rather a unique one. This 
unique fitness function is a function of the steady state error, settling 
time, rise time and overshoot. The proposed control algorithm was com-

pared to the supervisory PID control method. The DFIG terminal voltage 
is dropped from 1 per unit to 0.5 per unit, before regaining to 1 per 
unit. The results showed that the proposed algorithm outperformed the 
supervisory control method in all aspects i.e., settling time, rise time, 
peak time, and percentage overshoot. The unbalance in the stator cur-

rents during the voltage drop was approximately the same for both the 
proposed algorithm and the supervisory control method.

A novel control structure for stability enhancement of a DFIG based 
ocean energy conversion system is proposed in [72]. The structure of 
the control lies in the basis of a Function Link-based Wilcoxon radial 
basis function network (FLWRBFN). The learning rates of FLWRBFN 
were tuned using a hybrid Differential Evolution and PSO technique. 
The study aimed at analyzing the dynamic and transient performance 
of wave power generation systems under disturbances and grid fault. 
The proposed algorithm was compared to the PI controller and radial 
basis function network (RBFN). Considering the turbine speed, line volt-

age, dc link voltage and grid side real power, the FLWRBFN achieved a 
lower overshoot and faster settling time for all aspects for both the dy-

namic and transient responses. It was also observed that the FLWRBFN 
with PSO-DE also produced the overall best convergence rate. PSO was 
applied to a DFIG based dish Stirling system in for maximum power 
point tracking and regulation of receiver temperature in [73]. A con-

trol scheme based on average pressure control and coordinated torque 
was proposed. This proposed model required only four parameters to be 
optimized, compared to twenty in existing control schemes. These four 
parameters were optimized using PSO. The results showed that as irra-

diance varied, the proposed control scheme was superior in providing 
reactive power to the grid as well as achieving temperature regulation.
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4.2. Bacteria foraging optimization

Bacteria foraging optimization (BFO) is a MOT inspired by the con-

duct of the E. Coli bacterium which is present in the human intestine. 
The motion of the bacterium is dependent on the motion of the flag-

ella which is attached to the bacterium (as a tail). The bacterium either 
tumbles (changes direction with minimal displacement) or swims; if the 
flagella rotates clockwise then the bacterium tumbles and if the flagella 
rotate anticlockwise then the bacterium swims. There are four steps 
involved in BFO. These are chemotaxis, swarming, reproduction, and 
elimination-dispersal [74, 75, 76, 77]. This alternating motion of tum-

bling and swimming is known as chemotaxis. The aim of chemotaxis is 
to allow the bacteria to move towards nutrient rich environments and 
avoid noxious environments. The bacteria continue to swim in nutri-

ent rich environments and tumble in noxious environments. Consider 
that 𝜃𝑖(𝑗, 𝑘, 𝑙) is a representation of the position of the 𝑖𝑡ℎ bacterium, at 
the 𝑗𝑡ℎ chemotactic, 𝑘𝑡ℎ reproductive and 𝑙𝑡ℎ elimination-dispersal step. 
Then [74]:

𝜽𝒊(𝒋 + 𝟏,𝒌, 𝒍) = 𝜽𝒊(𝒋,𝒌, 𝒍) +𝑪(𝒊) ×
(

𝚫𝒊√
𝚫𝑻 (𝒊)𝚫(𝒊)

)
(6)

Where 𝐶(𝑖) is the length of the taken step (which is in a random di-

rection dependent on the tumble) and Δ𝑖 is a randomized vector in the 
range [−1, 1]. Swarming is based on the observation of the behavior

of various bacteria. It is based on their movement as a group towards 
nutrients. The bacteria either attract or repel each other, and this cell-

to-cell signalling can be represented as [74, 76, 77]:

𝑱𝒄𝒄

(
𝜽,𝑷 (𝒋,𝒌, 𝒍)

)
=

𝑺∑
𝒊=𝟏

𝑱𝒄𝒄

(
𝜽,𝜽𝒊(𝒋,𝒌, 𝒍)

)
=

𝑺∑
𝒊=𝟏

[
−𝑫𝒂𝐞𝐱𝐩

(
𝑾 𝒂

𝑷∑
𝒎=𝟏

(
𝜽𝒎 − 𝜽𝒊

𝒎

)𝟐)]

+𝑯𝒓𝐞𝐱𝐩
(
𝑾 𝒓

𝑷∑
𝒎=𝟏

(
𝜽𝒎 − 𝜽𝒊

𝒎

)𝟐)] (7)

Where 𝐽𝑐𝑐(𝜃, 𝑃 (𝑗, 𝑘, 𝑙)) is objective function that is added to the original 
cost function so that the function becomes a function of time variance, 
𝑆 is the total number of bacteria present, 𝑃 represents the number of 
variables to be optimized, 𝜃 = [𝜃1, 𝜃2… 𝜃𝑝]𝑇 represents a point which 
lies in the p-dimensional search domain, 𝐷𝑎 is the cell attractant depth, 
𝑊𝑎 is the width of the attractant signal, 𝐻𝑟 is the magnitude of the 
repellent and 𝑊𝑟 is the width of the repellent signal. The aim of the 
algorithm is to obtain the least possible (minimal) cost function. In re-

production, the bacteria with the higher cost functions die off, and those 
with lower cost functions split into two and are situated in the same lo-

cation. This ensures a constant population of bacterium, but of a better 
overall quality [74, 76]. Elimination and dispersal occur because of a 
nutrient rich environment suddenly becoming unfavorable to the bacte-

ria. In this case, some bacteria die and some move to a new location. To 
simulate this behavior, some bacteria are killed off randomly and their 
replacements are placed in a random location [76]. A random number, 
𝑈 , in the range [0, 1] is generated. Another random number, 𝑃𝑒𝑑 , in the 
same range is generated [74].

Replacements are positioned according to the following [74]:

If 𝑼 < 𝑷 𝒆𝒅 then the replacements are randomly placed

Else, the replacements are not placed (8)

Initially, the required parameters are defined. Then, each bacterium is 
randomly positioned. Thereafter, the fitness of each bacteria is com-

puted. The position of each bacterium is then updated using (6), and 
the corresponding fitness is computed. If this fitness is superior to the 
previous fitness, then the position and fitness function is updated. If this 
is the case, then the bacteria’s position is again updated, and the new fit-

ness value is compared to the current fitness function value. This would 
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occur until the maximum number of repetitions in a single chemotactic 
step is reached. This process is carried out for all the bacteria. Once this 
process has been completed for all the bacteria, the process is restarted, 
each time incrementing the number of chemotactic steps taken. This is 
continued until the maximum number of chemotactic steps are reached. 
Then, reproduction takes places where the unhealthy bacterium dies off 
and the healthy bacterium is split into two and occupies the same space. 
After this, the process is restarted by once again updating the position of 
the bacterium, this time incrementing the number of reproduction steps 
taken. This occurs until the maximum number of reproduction steps are 
taken. Then, some bacteria are randomly killed, and new bacteria are 
randomly placed in the search space (if the condition outlined in (8) 
is met). The process then starts from the beginning, by updating the 
positions of the bacterium. The number of elimination-dispersal steps 
taken is incremented. This entire process continues until the number 
of elimination-dispersal steps reaches its maximum value. At this point, 
the bacterium with the best fitness is chosen as the best solution [74]. 
The steps to execute the BFO algorithm can be seen in Fig. 10 [78].

One of the strong merits of the conventional BFO is that it does 
not easily get trapped in the local minima [79]. To the authors best 
knowledge, there has been no established demerits of BFO. This does 
not mean that none exist, but rather points to the lack of application of 
the algorithm. Considering the application of BFO to the DFIG, the au-

thors in [80] make use of BFO to dampen low frequency oscillations. 
Both the GSC and RSC were considered. A PI based damping controller 
was added to the RSC. The control method considered the stator ac-

tive power, stator voltage magnitude, dc link voltage and GSC reactive 
power consumption. The entire control algorithm made use of seven PI 
controllers and used BFO to optimize the gains of each controller. The 
objective function used was based on the damping ratio of the eigen-

values of the system, meaning that the control method makes use of the 
differential algebraic equations of the system. The PI controllers were 
optimized at three different wind speeds (7 m/s, 8 m/s and 8.5 m/s). 
For every wind speed, the DFIG is operated at the synchronous speed, 
as well as speeds above and below this speed. A comparison was made 
with and without a damping controller. When the controllers were op-

timized for 8 m/s, there exists stability for the synchronous and super 
synchronous modes, but not sub synchronous. An identical result was 
seen at 8.5 m/s. However, when the parameters are optimized at 7 m/s, 
there exists stability across all three operating regions. With regards 
to efficacy of damping controller, there were scenarios where the con-

troller proved to be effective and scenarios where it failed to produce a 
superior result. The control method focused more on the effects of us-

ing a damping controller and not on the optimization capabilities of the 
BFO. There was no comparison between optimization using BFO and 
optimization using another method, like Ziegler Nichols. As a result, 
the superiority of BFO in this application could not be validated.

PI controllers were optimized using BFO in [48]. The PI controllers 
were responsible for regulating the rotor currents and dc link volt-

age of a DFIG. The fitness function used was ITAE. The method was 
tested under step references and random rotor speed changes and com-

pared to PSO and Genetic Algorithm (GA) based PI controller tuning. 
Considering the dc link voltage under step reference, the rise time of 
all three algorithms seems similar. BFO produced the best overshoot, 
which was 25.33% and 132.8% superior to GA and PSO respectively. 
The corresponds to a superiority of 17.5% and 253.21% respectively for 
the settling time. Considering the direct rotor current, BFO yielded the 
best rise time, marginally beating PSO. However, the PSO optimized 
controller produced large fluctuations in response. The overshoot su-

periority was once again exhibited by BFO, this time the result being 
54.54% and a huge 834.62% superior to GA and PSO respectively. This 
corresponds to a superiority of 71.82% and 27.96% respectively for the 
settling time. For the quadrature rotor current, BFO presented the poor-

est rise time, but the best overshoot and settling time. The overshoot 
was superior to GA and PSO by 74.79% and 84.83% respectively and 
the settling time was superior to GA and PSO by 31.3% and 158.81% 
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respectively. BFOA method also produced a good THD level of the grid 
current, but this was not compared to the THD produced by the other 
two control methods.

4.3. Grey wolf optimization

Grey wolf optimization (GWO) is a MOT which is based on the be-

havior of the grey wolf. Proposed by Mirjalili, this algorithm is based 
on the hunting and democratic conduct of grey wolves [81, 82]. The so-

cial hierarchy of a pack of grey wolves is such that the alpha wolf is the 
highest ranked wolf and serves as the leader of the pack. The beta wolf 
is responsible for relaying information from the alpha wolf to the other 
wolves and assists the alpha wolf in decision making. The delta wolf 
is the third ranked wolf, and their duties include finding paths, killing, 
and taking care of the other wolves. Finally, all other wolves are classi-

fied as omega wolves and obey the rules of the wolves above them [81]. 
The mathematical representation of a grey wolf surrounding a prey can 
be represented as [81, 82]:

𝑫 = |||𝑪 .𝑿𝒑(𝒕) −𝑿(𝒕)||| (9)

𝑿(𝒕+ 𝟏) =𝑿𝒑(𝒕) −𝑨.𝑫 (10)

Where 𝑋𝑝(𝑡) is the position of the prey, 𝑋(𝑡) is the current position of 
the wolf, 𝑋(𝑡 + 1) is the updated position of the wolf and 𝐴 and 𝐶 are 
co-efficient vectors. 𝐴 is based on the current and maximum iteration 
numbers, and a random number in the range [0, 1]. 𝐶 is only based on 
a random number in the range [0, 1]. This is a different random number 
from the one used to determine 𝐴 [81, 82, 83]. The value of 𝐴 critically 
influences the outcome of the algorithm. If |𝐴| < 1 then this indicates 
that the wolf attacks the prey. If |𝐴| > 1 it means that the wolf moves 
away from the prey and attempts to locate a more suitable prey. The 
randomness of 𝐶 improves the chances of the algorithm to obtain the 
global optimum solution to the problem [82]. Considering the solution 
to a given problem, alpha refers to the best solution, beta refers to the 
second-best solution and delta refers to the third best solution [83]. The 
position update of a particular wolf can be represented as [81, 82]:

𝑿(𝒕+ 𝟏) =
𝑿𝟏 +𝑿𝟐 +𝑿𝟑

𝟑
(11)

Where 𝑋1, 𝑋2 and 𝑋3 are absolute values which are based on the posi-

tion of the three best wolves (𝑋𝛼, 𝑋𝛽 and 𝑋𝛿) respectively, three random 
number (𝐴1, 𝐴2 and 𝐴3) respectively and three absolute values (𝐷𝛼, 𝐷𝛽
and 𝐷𝛿) respectively. 𝐷𝛼 , 𝐷𝛽 and 𝐷𝛿 are based on 𝑋𝛼 , 𝑋𝛽 and 𝑋𝛿 re-

spectively, as well as the coefficient vector 𝐶 and the current position if 
the respective wolf. 𝐴1, 𝐴2 and 𝐴3 are determined in the same manner 
as 𝐴, noting that a new random number is generated for the estimation 
of each.

Initially, the required parameters are defined. Then, each wolf is 
assigned a random position. The fitness of each wolf is then computed. 
The position of each wolf is then updated according to (10). The fitness 
of each wolf is evaluated once more. If the new fitness of any wolf is 
superior to that of the previous fitness function of that same wolf, that 
wolf updates its fitness value (and hence position). The three best fitness 
values are chosen, and their corresponding positions are noted. Then, 
equation (11) is applied to each wolf to update the positions of each 
wolf once more. Once again, the fitness of the wolves is determined, 
and the wolf with the best fitness is known to be at the best position. 
The process is continued until all iterations have been completed, each 
time updating the position of each wolf if the calculated fitness function 
value of that wolf is superior to the current best fitness function. After 
all iterations have been completed, the wolf with the best fitness is 
taken as the optimal solution [81, 82, 83]. The steps to execute the 
GWO algorithm can be seen in Fig. 11 [84].

The conventional GWO has the merit of strong local search capa-

bilities [82]. However, its demerits are poor global search capabilities 
and slow convergence at the latter part of the algorithm [81, 82, 83]. 
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Fig. 10. BFO algorithm flowchart [78].
The authors in [82] proposed the use of the quantum behaved search 
mechanism to enhance the ability of the GWO algorithm to prevent 
entrapment in the local optimum. It does so by updating the posi-

tion of each wolf using a probability density function based on Monte 
Carlo stochastic simulation. This is based on quantum uncertainty. The 
10
proposed algorithm was tested on various benchmark functions, both 
single and multipeak functions. The proposed algorithm was compared 
to other improved GWO algorithms, as well as the conventional GWO 
algorithm. For four of the five benchmark functions, the proposed al-

gorithm produced an equivalent best result to one of the modified 
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Fig. 11. GWO algorithm flowchart [84].

algorithms. For the remainder benchmark function, the proposed algo-

rithm exhibited dominancy in accuracy and stability over the next best 
by incomparable margins (above 5𝑒5%). The convergence rate of the 
proposed algorithm was shown for each benchmark function. However, 
no comparison of convergence rate between the proposed algorithm and 
the conventional algorithm was provided. Hence, there exist the prob-

ability that in the process of enhancing the algorithms global search 
ability, the convergence rate of the algorithm was compromised.

The behavior of cats is utilized to modify the GWO algorithm in 
[83]. In an idle state, cats either seek or track prey. The seeking and 
tracking behavior is integrated into the social behavior of the grey wolf. 
In tracking mode, the position of a particular wolf is updated in a man-

ner similar to that of PSO. The updated position is dependent on the 
current position and the updated velocity. The updated velocity is cal-

culated using the current velocity, the current position of the respective 
wolf, the current position of the best wolf, and two random numbers 
in the range [0, 1]. The seeking mode utilizes a stochastic change in 
the dimension of each wolf in order to improve the randomness of 
the algorithm. Reference [83] combines both the tracking and seeking 
modes and applied this to the GWO algorithm. The Tracking Grey Wolf 
Optimization (TGWO), Seeking Grey Wolf Optimization (SGWO) and 
Tracking-Seeking Grey Wolf Optimization (TS-GWO) algorithms were 
applied to various benchmark functions and compared to numerous 
swarm-based MOT, including the conventional GWO. Considering the 
30-Dimensional unimodal and multimodal functions, the TGWO and 
TSGWO combined produced the best average value and standard de-

viation for 15 of the 16 functions. Only for one of the functions, the 
SSA yielded the best result. Considering the 100-Dimensional unimodal 
and multimodal functions, TGWO and TSGWO combined produced the 
best average value for all the functions. Considering the standard de-

viation, there existed a couple of scenarios whereby the WOA proved 
to be dominant. A similar scenario is observed for the fixed dimension 
multimodal functions, this time the MFO displaying superiority (in both 
accuracy and stability) for one of the functions. For another function, 
despite being inferior to TGWO and TSGWO in terms of accuracy, the 
11
ALO exhibited stronger stability. The proposed algorithms were also 
compared to various GWO hybrid algorithms and once again tested on 
30-Dimensional and 100-Dimensional unimodal and multimodal func-

tions. Considering the 30-Dimensional unimodal and multimodal func-

tions, TGWO and TSGWO combined generated the best average value 
and standard deviation four 14 of the 17 functions. A near identical 
result is observed for the 100-Dimensional unimodal and multimodal 
functions, this time the proposed algorithm also being inferior in sta-

bility to another algorithm for one of the functions. The TGWO and 
TSGWO generated the best average value in all the fixed dimension 
multimodal functions, but failed to display stability dominancy in 50% 
of the cases.

To enhance the convergence rate, a convergence factor was intro-

duced in [81]. This convergence factor modifies the way in which the 
coefficient vector 𝐴 is estimated. This convergence factor is based on 
the current and maximum iteration numbers. To improve the global 
search capability of the algorithm and produce a strong balance be-

tween exploitation and exploration, the BFGS algorithm as well as the 
Levy flight technique were used. Local Diversity Measure and Global 
Diversity measure were used to determine if the wolves perform lo-

cal or global search. The local search update is modified using the 
BFGS algorithm, which is based on the position of the best wolf. The 
proposed algorithm also makes use of a probability criterion which al-

lows some wolves to update their position using the modified equation 
and some wolves to update their position using the conventional equa-

tion. The global search update is based on the use of the Levy flight 
technique, which is calculated using the current position of the re-

spective wolf as well as the position of a randomly chosen wolf. The 
proposed algorithm was tested on a range of unimodal, multimodal, 
and fixed dimensional multimodal benchmark functions. The proposed 
algorithm was compared to various swarm-based MOT, including the 
conventional GWO. For the unimodal functions, the proposed algo-

rithm outperformed all the other algorithms in terms of global search 
capability and convergence rate (after a maximum of 10 iterations). 
Considering the unimodal functions, the proposed algorithm displayed 
the same results that were seen for the unimodal functions, except for 
one function. In this function, the Imperialist Competitive Algorithm 
based PSO produced the best global search capability, with the Ant 
Lion Optimization producing the best convergence rate up to 90% of 
the maximum number of iterations. Nevertheless, the proposed algo-

rithm produced a better global search capability to the conventional 
GWO, but the former was inferior to the latter in terms on conver-

gence rate up until 99% of the maximum number of iterations. For the 
fixed dimensional multimodal functions, the proposed algorithm pro-

duces competitive results in terms of global search capability but was 
inferior to the conventional GWO. The proposed algorithm, however, 
produced the best convergence rate (after a maximum of 75 iterations). 
However, for the convergence curves, only limited data was available. 
It was also observed that throughout the duration of the investigation, 
there existed various scenarios whereby the proposed algorithm was in-

ferior to other algorithms in terms of stability.

Considering the application of GWO to the DFIG, the authors in [85] 
applied GWO to fractional order PID (FOPID) control. This is due to the 
improved closed loop performance and enhanced disturbance rejection 
capabilities of the FOPID controllers. The FOPID controller makes use 
of two additional parameters, which ensures that the performance does 
not degrade if the rotor resistance varies. Since the GWO requires initial 
solutions to be generated, this method initially tunes the three param-

eters of the fractional order PID controllers using the Ziegler Nichols 
method and then proceeds to apply GWO to these parameters. The 
method was compared to PSO-PID and BFO-PID and was shown to be 
superior to both these methods with regards to the settling time, as 
well as the rise time and percentage overshoot. An identical result was 
observed when the rotor and stator parameters were varied by 25%. 
The proposed algorithm also produced a better disturbance rejection 
response than the BFO-PID but was inferior in this aspect to PSO-PID. 
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However, the FOPID controller should have also been optimized us-

ing other MOT (such as PSO and BFO), so as to provide an accurate 
evaluation of the optimization technique and controller combination. 
A grouped grey wolf optimization strategy is presented in [86] and ap-

plied to the optimization of PI controllers for control of the DFIG. The 
proposed algorithm splits the wolves into two groups. These are the co-

operative hunting group, and random scout group. The random scout 
group searches unknown territory, much like the scout bees in ABC. 
This is to enhance the exploration capability of the algorithm. In the co-

operative hunting group, the number of beta and delta wolves increase 
to two and three respectively. This is to enhance the exploitation capa-

bility of the algorithm. The proposed algorithm was compared to that 
of GA, PSO, MFO and the conventional GWO. The results showed that 
optimized of PI controllers via the proposed method yielded a signifi-

cant reduction in steady state ripple of both active and reactive powers. 
This result holds true, even when tested under the case of a 30% drop 
in the grid voltage.

4.4. Artificial bee colony

The artificial bee colony (ABC) algorithm is a MOT inspired by on 
the hunting behavior of honeybees. Created by Karaboga, this algorithm 
divides the hunting bees into three types; employed bees, onlooker 
bees and scout bees. An employed bee is a bee which has found an 
exploitable food source. The onlooker bee awaits the information ob-

tained by the employed bee to decide which food source to visit. The 
scout bee randomly searches for food on its own [87, 88, 89]. For every 
food source, there exists one employed bee. When the food source of 
an employed bee becomes depleted (either by that of another employed 
bee, or an onlooker bee), it develops into a scout bee [88]. The infor-

mation regarding the food source is communicated from the employed 
bees to the onlookers via dancing. The onlookers observe the dance 
done by the employed bees to choose the best quality food source [89]. 
The hunting done by the bees is known as foraging and is defined by 
four characteristics [89]:

Positive feedback: This refers to a proportional increase in onlookers 
visiting rich food sources

Negative feedback: This refers to the bees eventually ceasing to visit the 
areas where there exist poor food sources

Fluctuations: This refers to the random search behavior by the scouts

Multiple interactions: This refers to the exchange of information that 
exists between the employed bees and onlookers

At first, food sources are randomly chosen (by scout bees). A scout who 
discovers a food source becomes an employed bee. The employed bees 
then search for another food source in the locality of the food source 
they have found already. They do this by means of visual represen-

tation. They then evaluate the quality of this food source and apply 
the greedy selection. In the greedy selection, if the new food source is 
of better quality than the previous food source then the previous food 
source is deleted from the memory of the employed bee and replaced 
with the new food source. If not, then the old food source remains in 
the memory of the employed bee. The onlooker bee obtains this infor-

mation from the employed bee via utilization of the dancing area. The 
onlooker bees then choose a food source to go to, based on probabil-

ity and the information received from the employed bees. In such case, 
the best food source has the best probability of being chosen (using a 
method such as the roulette wheel). Upon the choosing of a food source 
by the onlooker bee, the onlooker bee searches for another food source 
in the same vicinity of the chosen food source. Like the employed bee, 
the application of the greedy selection is implemented to the previous 
food source and the newly chosen food source. After a preset number 
of attempts, if the employed bee’s food source fails to improve, they be-

come scout bees and their food sources are discarded. Once again, as in 
step one, these scout bees randomly search for a new food source. This 
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process is repeated until the satisfaction of a specified termination cri-

teria [89, 90]. The magnitude of employed bees is determined via the 
number of food source. There exists one food source per bee [88, 89]. 
A food source represents a possible solution to a problem and the qual-

ity of the food source corresponds to the fitness of the solution [89, 90]. 
The population size consists of several solutions to the problem which 
can be represented as [89]:

𝒙𝒊,𝒋 = [𝒙𝟏,𝟏,𝒙𝟏,𝟐…𝒙𝑺,𝑫 ], 𝒊 ∈ [𝟏,𝟐,𝟑…𝑺] and 𝒋 ∈ [𝟏,𝟐,𝟑…𝑫] (12)

Where 𝑆 is the population size (total number of solutions) and 𝐷 de-

notes the number of parameters to be optimized. The initial position of 
an employed bee is shown as [89, 90]:

𝒙𝟎,𝒊,𝒋 = 𝒙𝒋𝒎𝒊𝒏 +𝚽𝒊𝒋(𝒙𝒋𝒎𝒂𝒙 − 𝒙𝒋𝒎𝒊𝒏) (13)

Where 𝑥0,𝑖,𝑗 is the position of the 𝑖𝑡ℎ employed bee in the 𝑗𝑡ℎ dimen-

sion, 𝑥𝑗 𝑚𝑎𝑥 and 𝑥𝑗 𝑚𝑖𝑛 are the upper and lower bounds respectively of 
the search space in the 𝑗𝑡ℎ dimension and Φ𝑖𝑗 is a random number in 
the range [−1, 1]. Considering real bees, onlookers and employed bees 
modify their solution based on visual representation. In the case of ar-

tificial bee colony, these bees randomly choose a new food source and 
compare the richness of this food source with the one in their mem-

ory. If the new food source is richer than the one in their memory, the 
memory is updated [56]. The probability of an onlooker bee choosing a 
particular food source is given by [90]:

𝒑𝒊 =
𝒇𝒊

(
∑𝒔

𝒏=𝟏 𝒇𝒊)
(14)

Where 𝑝𝑖 is the probability of the 𝑖𝑡ℎ solution and 𝑓𝑖 is the fitness value 
of the 𝑖𝑡ℎ solution. Note that this corresponds to a larger fitness function 
being better, so if the objective is to minimize the fitness function, then 
the calculated value needs to be inverted before using the above equa-

tion. To produce a new solution from the old solution, the following is 
used [90]:

𝒗𝒊𝒋 = 𝒙𝒊𝒋 +𝚽𝒊𝒋(𝒙𝒊𝒋 − 𝒙𝒌𝒋) (15)

Where 𝑣𝑖𝑗 is the new solution, 𝑥𝑖𝑗 is the previous solution of the bee 
(either employed bee or onlooker bee), 𝑘 ∈ [1, 2 … 𝑆], 𝑗 ∈ [1, 2 … 𝐷] and 
Φ𝑖𝑗 is a random number which lies in the range [−1, 1]. Note that 𝑘 and 
𝑗 are chosen randomly, but 𝑘 needs to be different from 𝑖.

Initially, the required parameters are defined. Then the number of 
employed bees are defined, and their positions initialized according to 
(13). The fitness of each employed bee is then computed and is used to 
select the probability of an onlooker bee moving to the position of a spe-

cific employed bee. This is seen in (14). Once the onlooker bee moves 
to the position of an employed bee, it updates its position according to 
(15). The cost function value of the onlooker bee at the newly discov-

ered position is then evaluated. If the cost function value of the new 
position is superior to that at the previous position, the onlooker bee 
takes on this new fitness function value (hence new position). The em-

ployed bee also updates its position according to (15) and their fitness 
function value at this new position is computed. As like the onlooker 
bee, if the fitness function value at this new position is superior to that 
at the previous position, the employed bee takes on this new fitness 
function value (hence position). Once again, the onlooker bee choses a 
position based on the fitness values of the employed bee. If the positions 
of the employed and onlooker bees cannot be improved after a certain 
number of search attempts, they are converted into scout bees and are 
assigned random positions. This continues until all iterations have been 
completed. Once this is so, the bee with the best fitness value is at the 
optimal position [91]. The steps to execute the ABC algorithm can be 
seen in Fig. 12 [92].

The conventional ABC algorithm has the merit of a strong global 
search capability [93] but suffers the demerit of a slow convergence 
[94, 95, 96]. The authors in [97] proposed a new method to update 
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Fig. 12. ABC algorithm flowchart [92].

the position of a bee. The modified position update equation is a func-

tion of the global best, the position of a random bee and a random 
number in the range [−1, 1]. The proposed method was applied to var-

ious benchmark knapsack problems and compared to the conventional 
ABC algorithm. Considering the average value, the proposed algorithm 
produced a superior result for three of the problems. The greatest dif-

ference being 3.11% and the smallest difference being 0.02%. For the 
remainder functions, the proposed technique was equivalent to the con-

ventional algorithm. It was also observed that in numerous cases, the 
proposed algorithm exhibited a superior stability. Concerning the con-

vergence rate, the proposed algorithm yielded superior results in four 
cases, the smallest superiority being 61.68%. The authors in [95] pro-

pose a new method to update the position of the various bees. This is 
based on the use of the bee’s current position, two cumulative fitness 
values of all the bees, the position of the best bee and two random num-

bers in the range [0, 1]. The method of position updating does not apply 
to the worst employed bee. The position of the worst employed bee 
is updated using the current and previous position of the best bee, an 
integer which is either 0 or 1 and two random numbers in the range 
[0, 1]. The position of the onlooker bee is updated using the cumula-

tive fitness of all the bees, the total number of bees and the position 
of any onlooker bee whose position is superior to that of the bee be-

ing updated. The proposed method was applied to various benchmark 
functions, as well as two industrial problems. The proposed method was 
compared to various swarm-based MOT including the conventional ABC 
algorithm. However, the results in the paper were inconclusive hence 
the proposed method could not be validated.

The authors in [96] made use of two unique equations for updating 
the position of the employed and onlooker bees. The position update of 
the employed bee is based on the current position of the bee and the po-

sition of a random bee. The position update of the onlooker bee is based 
on the current position of the bee, the position of the best bee and the 
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position of three bees chosen at random. The proposed algorithm was 
tested on a synthetic web service selection problem and compared to 
various swarm-based MOT, including the conventional ABC algorithm. 
The proposed method proved to have a superior convergence rate to 
the other algorithms, after 10 iterations. In terms of reliability, the pro-

posed technique exhibits dominancy after completion of 30% of the 
maximum number of iterations.

In [98], ABC is utilized in the control of the DFIG. The authors in 
[98] used ABC to optimize the parameters of the field-oriented control 
PI controllers. Two cases are presented in this paper. In the first case, 
the ABC algorithm was applied to only the RSC using a fitness function 
based on the stator active power, stator voltage and current regulation 
errors. Three weighting factors are used in this fitness function, which 
were chosen by the ABC algorithm. In the second case, the ABC algo-

rithm was applied to both the RSC and GSC. The fitness function used 
was based on the stator active power, stator voltage, current regula-

tion, grid current and dc link voltage errors. This time, five weighting 
factors were used and chosen by the ABC algorithm. In total, 10 PI con-

troller gains were optimized. The control method was applied to a 9 
MW DFIG and compared to the GWO method of PI gain optimization, 
as well as the traditional PI controller optimization method. When only 
the RSC gains were considered, it is observed that ABC yielded the best 
overshoot value, being superior to GWO and the advisory method by 
more than 2𝑒3% and 3𝑒3% respectively. A similar observation is made 
for the settling time, this time the superiority being 0.52% and 0.78% 
respectively. Considering the rise time, the ABC exhibited dominancy 
to the other techniques by a magnitude greater than 100% When the 
RSC and GSC gains were considered, it was seen that ABC yielded the 
best overshoot value, being superior to GWO and the advisory method 
by 97.7% and 169.73% respectively. A similar observation is made for 
the settling time, this time the superiority being 0.21% and 0.26% re-

spectively. Considering the rise time, the ABC exhibited dominancy to 
GWO by 0.32%, and to the supervisory method by more than 100%.

4.5. Whale optimization algorithm

Whale optimization algorithm (WOA) is inspired by the hunting 
tactic of the humpback whale. The hunting strategy of the humpback 
whale is separated into three parts: searching, encircling and bubble-net 
attacking [99, 100, 101]. During searching, the humpback whales ex-

change information about prey to each other. This is to ensure that all 
the whales stay close to the prey. Consider the following [102, 103]:

𝑿𝒊(𝒕) =
[
𝑿𝒊,𝟏(𝒕),𝑿𝒊,𝟐(𝒕)…𝑿𝒊,𝑫 (𝒕)

]
(16)

Where 𝑋𝑖(𝑡) is the current position of the 𝑖𝑡ℎ whale and 𝐷 is the num-

ber of search space dimensions. The position of the whales at the next 
sampling instant can be updated using three methods. The first method 
is via a random search and is shown as [99, 102, 103]:

𝑿𝒊(𝒕+ 𝟏) =𝑿𝒓(𝒕) −𝑨
|||𝑪 ×𝑿𝒓(𝒕) −𝑿𝒊(𝒕)

||| (17)

Where 𝑋𝑟(𝑡) is the position of a whale chosen at random and 𝐴 and 
𝐶 are coefficients. 𝐴 is based on the current and maximum iteration 
numbers, as well as a random number in the range [0, 1]. 𝐶 is based 
only on a random number in the range [0, 1]. It is important to note that 
the random numbers used in the evaluation of 𝐴 and 𝐶 are generated 
independently. The second method is to encircle the prey. To encircle 
the prey, each of the whales update their positions based on the best 
position found thus far. This update is represented as follows [99]:

𝑿𝒊(𝒕+ 𝟏) =𝑿𝒑(𝒕) −𝑨
|||𝑪 ×𝑿𝒑(𝒕) −𝑿𝒊(𝒕)

||| (18)

Where 𝑋𝑝(𝑡) is the best position found thus far (at iteration 𝑡). The third 
method is via the use of bubble net attacking. Bubble net attacking 
is a mathematical model used to imitate the spiral movement of the 
humpback whale [67, 68]. In bubble net attacking, the whales update 
their positions as follows [99, 102, 103]:
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𝑿𝒊(𝒕+ 𝟏) =𝑿𝒑(𝒕) −
|||𝑿𝒑(𝒕) −𝑿𝒊(𝒕)

|||𝒆𝒃𝒍 × 𝐜𝐨𝐬(𝟐𝝅𝒍) (19)

Where 𝑏 is a limited constant and 𝑙 is a random number in the range 
[−1, 1]. The method of position updating to be used is based on a ran-

dom number 𝑞 in the range [0, 1], as well as the value of 𝐴. If 𝑞 is less 
than 0.5 and the magnitude of 𝐴 is greater than one, the whale posi-

tions are updated using encircling of the prey. If 𝑞 is greater than 0.5 
and the magnitude of 𝐴 is greater than or equal to 1, the whale posi-

tions are updated randomly. Else, the bubble net attacking method of 
position updating is used [99].

Initially, the required parameters are defined. Then, each whale is 
given a random position. The fitness of each whale is calculated and 
the whale with the best fitness value is noted. The random numbers 𝑃
and 𝐴 are then generated. If the magnitude of 𝐴 is less than 1 then 
the position of each whale is updated using (19). If 𝑃 is less than 0.5 
and the magnitude of 𝐴 is greater than one, then the position of each 
whale is updated using (18). Lastly, if 𝑞 is greater than or equal to 
0.5, the position of each whale is updated using (17). After the update 
is completed, the fitness of each whale is calculated and replaces the 
current best fitness value (of that whale) if its value is superior to that of 
the current best. This continues until all iterations have been completed. 
Once this is so, the whale with the best fitness is said to be at the most 
optimal position [99]. The steps to execute the WOA can be seen in 
Fig. 13 [104].

Although the WOA has the merit of being able to evade the local 
optima hence obtain the global solution [105], it suffers the demerits 
of a slow convergence speed and low accuracy [106]. The authors in 
[107] proposed the use of a new method to update the position of the 
whales. This is based on the golden sine operator and makes use of the 
current position of the whale, as well as two random numbers lying in 
the range [0, 1]. The proposed algorithm was tested on a range of uni-

modal, multimodal, and combined functions and compared to various 
other MOT, including the conventional WOA. Considering the unimodal 
functions, the proposed algorithm generated the best average value and 
standard deviation in 5 of the 7 cases. For the other two cases, the 
algorithm is inferior to PSO in both accuracy and stability. For the 
multimodal functions, the proposed algorithm displayed inferiority in 
both average value and standard deviation to the Firefly Algorithm for 
two functions. For both functions, for both the average value and stan-

dard deviation, this inferiority was approximately 100%. For the fixed 
dimensional functions, the proposed technique did not do well, being 
inferior to various algorithms in majority of the cases. This was in terms 
of both accuracy and stability. In cases where the proposed technique 
produced the dominant average value, this occurred after a maximum 
of 22% of the total number of iterations occurred.

The authors in [108] also proposed a new method to update the posi-

tion of the whales. This is done via a chaotic map and nonlinear inertial 
weights. The method is complex and involves a significant number of 
numerical computations. The proposed algorithm was tested on vari-

ous benchmark functions, at 100, 500 and 1000 dimensions. For all the 
investigated scenarios, the proposed techniques exhibited superior per-

formance in both accuracy and stability. Considering convergence, for 
the 100 and 500 dimension sets the proposed algorithm only displayed 
clear dominancy after completion of 70% and 80% respectively of the 
maximum number of iterations. For the 1000 dimension set, this value 
reduces drastically to 30%, indicating the efficacy of the proposed solu-

tion when attempting to optimize large scale global problems.

An improved Bernoulli shift map was introduced in [109] to initial-

ize the population of whales so to enhance the algorithm global search 
ability. A modified Levy flight based position update equation is also 
proposed to enhance the global search capabilities of the algorithm. The 
method also optimizes the factor of convergence (a) to enhance the al-

gorithm rate of convergence. The modified convergence factor is based 
on the value of the current and maximum iteration numbers, the best 
and worst fitness of that particular whale thus far and a random num-

ber in the range [1, 2]. The method proved to improve the algorithms 
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Fig. 13. WOA flowchart [104].

search accuracy and rate of convergence. The proposed algorithm was 
tested on numerous benchmark functions and was compared to various 
MOT, including the conventional WOA. When considering search ac-

curacy, it was observed that the proposed algorithm was inferior to the 
Enhanced advanced guided differential evolution algorithm and SHADE 
algorithm in only three of the twenty functions. In scenarios where the 
proposed algorithm produced the best average value, this occurred after 
a maximum of 40% of the total number of iterations has occurred.

4.6. Crow search algorithm

Proposed by Askarzadeh, the idea behind the crow search algorithm 
(CSA) rests on the hiding of food of crows. Crows are highly intelli-

gent birds, who can remember faces and remember the location of their 
stored food. The most important aspect of this algorithm is that when 
a crow attempts to retrieve its stored food, another crow may follow it 
and steal the food [44, 110]. Initially, the crow has a random position 
which it stores in its memory. The 𝑖𝑡ℎ crow then follows the 𝑗𝑡ℎ crow 
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Fig. 14. CSA flowchart [44].

to attempt to steal its food. There exist two scenarios; either the 𝑗𝑡ℎ is 
aware that the 𝑖𝑡ℎ crow is following it, or it is not aware of this. If it is 
aware, it would attempt to trick the 𝑖𝑡ℎ crow by flying to a random lo-

cation. If not, then the 𝑖𝑡ℎ crow is successful in stealing the food of the 
𝑗𝑡ℎ crow. This can be represented as follows [44, 110, 111]:

𝒙𝒊(𝒕+ 𝟏) = 𝒇 (𝒙) =
{

𝒙𝒊(𝐭) + 𝒓𝒊 × 𝒇𝒍𝒊(𝐭) × (𝒎𝒋(𝐭) − 𝒙𝒊(𝐭)), 𝒓𝒋 ≥𝑨𝑷 𝒕
𝒋

some random position, otherwise
(20)

Where 𝑥𝑖(𝑡 +1) is the updated position of the 𝑖𝑡ℎ crow, 𝑥𝑖(t) is the current 
position of the 𝑖𝑡ℎ crow, 𝑓𝑙𝑖(t) is the length of flight of the 𝑖𝑡ℎ crow and 
be taken as a randomized number between 1 and 2, 𝑚𝑗 (𝑡) is the location 
of the food of the 𝑗𝑡ℎ crow (taken as the current position of a randomly 
chosen crow), 𝑟𝑗 is a randomized number between 0 and 1 and 𝐴𝑃 𝑡

𝑗
is 

the probability of awareness of the 𝑗𝑡ℎ crow to the intention of the 𝑖𝑡ℎ
crow. It is a random number between 0 and 1. If the fitness function 
value of the 𝑖𝑡ℎ crow at the new position is superior to that stored in 
its memory, the 𝑖𝑡ℎ crow updates its memory. Else it disregards the new 
solution [44, 110, 111].

Initially, the required parameters are defined. Then, each crow is 
given a randomized position. The position of each crow is then updated 
by using (20). Afterwards, the fitness of each crow is calculated and 
the best position which exists in each crows’ memory is updated if the 
new fitness value is superior to the fitness of the position in its memory. 
This continues until all iterations have been completed. Once this is so, 
the crow with the best position is said to be the best solution [44]. The 
steps to execute the CSA can be seen in Fig. 14 [44].

The merit of the conventional CSA is that it is a flexible algorithm 
which requires knowledge of only a few parameters [44]. However, the 
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demerits of this algorithm are a slow rate of convergence and being eas-

ily entrapped in the local optima [110]. The authors in [110] proposed 
various modifications to the conventional CSA. In the first modification, 
the existing position update equation is multiplied by a weighting factor 
which is based on the current iteration and maximum iteration num-

bers. In the second modification, the initial positions are generated via 
a spiral search. In the third modification, another position update equa-

tion based on a Gaussian mutation, is proposed. The first modification 
is proposed to improve the algorithms rate of convergence, whereas the 
second and third modification is proposed to enhance the algorithms 
global search ability and prevent it from being entrapped into local 
optima. The proposed algorithm was tested on various fixed dimen-

sional, multimodal, and unimodal benchmark functions and compared 
to various other swarm-based MOT, including the conventional CSA. 
The proposed algorithm was evaluated at 30, 50 and 100 dimensions. 
For the 30 dimensional set unimodal functions, the proposed algorithm 
yielded the best result (in terms of both accuracy and stability in 6 of the 
7 functions). Only for one function was the proposed algorithm inferior 
to the Harris Hawks Optimization technique. The inferiority to the best 
result, in terms of average value and standard deviation, was 93.56% 
and 94.69% respectively. For the 30 dimensional set multimodal func-

tions, a similar result is observed. This time, the proposed technique 
being inferior to GA, with this inferiority being at 100% for both the 
average value and standard deviation. A similar trend is displayed for 
the 50 and 100 dimensional sets, with the proposed algorithm only be-

ing inferior in one instance of each case. There is, however, a reduction 
in inferiority for the 50 and 100 dimensional set multimodal functions. 
This points to the possibility of the algorithm exhibiting dominancy 
when optimizing large dimensional problems. Considering the fixed di-

mensional functions, the proposed algorithm yielded the best result in 
8 of the 10 cases, being inferior to the GWO algorithm and the Butterfly 
Optimization Algorithm.

The convergence rate of the proposed algorithm was only displayed 
for three of the unimodal and multimodal functions and two fixed di-

mension functions. Despite the superior average value and standard 
deviation of the proposed algorithm, it was observed that in various 
instances, the proposed technique required more than 100 iterations to 
exhibit dominancy. In some cases, more than 1500 iterations were re-

quired. This points to a slow convergence, and should be modified for 
the algorithm to be considered competitive.

The CSA was applied to the PI control of a DFIG in [112]. Only the 
RSC was considered, and three PI controllers were tuned. The fitness 
function used was ISAE. The control method was tested at both fixed 
speeds and variable speeds and compared to the conventional method 
of PI controller tuning, as well as the Genetic Algorithm (GA). Consider-

ing the fixed speed operation, it is noticed that the GA produced the best 
stator active power percentage overshoot and rise time. CSA produced 
a better percentage overshoot to the conventional method, but an infe-

rior rise time. For the stator reactive power, once again GA produced 
the best percentage overshoot followed by CSA and then the conven-

tional method. The rise time of the conventional method was the best, 
followed by CSA and then GA. For the dc link voltage, the conventional 
method produced the best percentage overshoot followed by GA and 
then CSA. The conventional method also produced the best rise time, 
with CSA producing the worst in this aspect. Considering the variable 
speed operation, it is observed that the GA and CSA jointly produced 
the best stator active power percentage overshoot, with the former pro-

ducing the best rise time and the latter producing the worst. For the 
stator reactive power, GA produced the best percentage overshoot, fol-

lowed by CSA. The conventional method produced the best rise time, 
with the CSA producing the worst result in this aspect. For the dc link 
voltage, GA produced the best percentage overshoot and CSA the worst. 
The conventional method produced the best rise time, followed by CSA.
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4.7. Bat algorithm

Developed by Xin-She Yang in 2010, the bat algorithm (BA) is in-

spired by and based on the use of echolocation by microbats. Bats 
use echolocation to perform various functions, such as locating prey, 
avoided obstacles, and finding other bats. Echolocation varies greatly, 
and depends on factors such as frequency, wavelength, loudness, and 
rate of sonic pulses. The bat algorithm uses a few assumptions of the 
echolocation used by bats [113, 114]. The first assumption is that every 
bat utilizes echolocation to determine distance and are able to distin-

guish between prey and objects. The second assumption is that bats fly 
randomly at a certain velocity and are also able to vary the wavelength 
of pulses as well as the pulse rate. The final assumption is that the loud-

ness changes between a specified maximum and minimum. The position 
of each bat is updated as follows [113, 115]:

𝒗𝒊(𝒕+ 𝟏) = 𝒗𝒊(𝒕) + 𝒇𝒊

(
𝒙𝒊(𝒕) − 𝒙𝒈

)
(21)

𝒙𝒊(𝒕+ 𝟏) = 𝒙𝒊(𝒕) + 𝒗𝒊(𝒕+ 𝟏) (22)

Where 𝑣𝑖(𝑡) is the current velocity of the 𝑖𝑡ℎ bat, 𝑣𝑖(𝑡 + 1) is the updated 
velocity of the 𝑖𝑡ℎ bat, 𝑥𝑖(𝑡) is the current position of the 𝑖𝑡ℎ bat, 𝑥𝑖(𝑡 +1)
is the updated position of the 𝑖𝑡ℎ bat, 𝑥𝑔 is the global best position, 
𝑓𝑖 is the frequency of the 𝑖𝑡ℎ bat. This frequency is calculated using a 
specified maximum and minimum frequency and a randomized number 
in the range [0, 1]. A randomized number between 0 and 1 is gener-

ated and compared to the pulse emission rate of the 𝑖𝑡ℎ bat. The pulse 
emission rate is based on the current iteration number and decreases 
exponentially from the initial specified pulse emission rate. If the ran-

dom number is greater, the position of the best bat is updated as follows 
[113, 114, 115, 116]:

𝒙𝒏𝒆𝒘 = 𝒙𝒐𝒍𝒅+ ∈𝑨𝒕
𝒊

(23)

Where ∈ is a randomized number in the range [0, 1], 𝐴𝑡
𝑖

is the current 
loudness of the 𝑖𝑡ℎ bat and is based on the current iteration number. 
Initially, the required parameters are defined. Then, each bat is assigned 
a random position in the search space. The fitness of each bat is then 
computed and the position of the bat with the best fitness value is noted. 
Thereafter, the position of each bat is updated according to (22). The 
fitness of each bat is computed and if the new fitness value of a bat is 
superior to the previous fitness value of that same bat, that bat takes 
on the new fitness value (hence position). Afterwards, a randomized 
number is defined and if this value is greater than the pulse emission 
rate of a specific bat, then the position of that bat is updated using (23). 
The fitness of each bat is evaluated once more. The randomized number 
is then compared to the loudness of each bat. If the randomized number 
is less than the corresponding loudness and the fitness value is superior 
to the previous fitness value, then the bat takes this new position. Else it 
remains in its previous position. This continues until all iterations have 
been completed. Once this is so, the bat with the best fitness value is 
said to be the best solution [113]. The steps to execute the BA can be 
seen in Fig. 15 [117].

Although the BA has the merit of a fast convergence rate [118], it 
suffers the demerits of a poor search accuracy and being easily trapped 
in local minima [114]. The authors in [114] proposed five unique fac-

tors of convergence to enhance the global search capability of the algo-

rithm. These convergence factors are of cosine form, sine form, tangent 
form, power function form and exponential form. All five convergence 
factors are based on the current and maximum iteration numbers. To 
enhance the accuracy of the local search, a Gaussian function is in-

troduced. Furthermore, to improve the local search accuracy of the 
algorithm, a technique based on the enclosing behavior of the WOA, 
and sine cosine algorithm is applied to the bat algorithm. This is based 
on the current and maximum iteration numbers, a randomized num-

ber in the range [0, 2], a randomized number which lies in the range 
[0, 2𝜋] and the values of 𝐴 and 𝐷 obtainable from the WOA. To assess 
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Fig. 15. BA flowchart [117].

the global search capability of the proposed algorithms, the five con-

vergence factors were applied to various fixed dimension, multimodal 
and unimodal benchmark functions and compared to the conventional 
BA. It was observed that for all the unimodal and multimodal func-

tions, the proposed convergence factors produced an equal performance 
which was superior to that of the conventional BA. For the fixed di-

mension functions, the proposed algorithms were again superior to the 
conventional bat algorithm and although they were highly similar to 
each other in performance, there existed a minute difference. To assess 
the accuracy of the proposed algorithms, seven datasets were used. The 
proposed algorithms were once again compared to the conventional BA. 
On the iris dataset, the power function form produced the best result. 
On the wine dataset, the tan form was superior. On the BUPA dataset, 
the exponential form was placed first. On the seed dataset, the sine form 
produced the best accuracy.
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Considering the heart stat log dataset, the Gaussian function pro-

duced the best result. On the WDBC and cancer datasets, the exponen-

tial form proved to be the optimal algorithm. The authors in [119] 
integrate the artificial ABC algorithm into the BA to enhance the lo-

cal search accuracy of the latter. In this method, the bat’s position is 
updated as usually done. Then, a randomized number is created. If the 
created randomized number is greater than the value of the pulse emis-

sion rate, the position of the bat is further modified again. The proposed 
method was employed to optimize the path of an automatic ariel vehi-

cle and compared to various other MOT, including the conventional BA. 
The optimization results obtained were superior to that of the conven-

tional BA, as well as various other MOT. However, the algorithms rate 
of convergence is 50% poorer than the conventional BA. The scholars in 
[120] attempted to enhance the local search capability of the algorithm, 
as well as prevent premature convergence. The proposed method com-

prises of the application of various strategies to the conventional bat 
algorithm. These are the iterative local search, non-dominant, balance 
and stochastic inertia weight strategies. Stochastic inertia weight strat-

egy applies a weighting factor to the velocity update equation. This is 
to enhance the algorithms rate of convergence as well as improve accu-

racy. The iterative local search strategy applies a specific condition in 
order to maximize the probability of obtaining the global best. The bal-

ance strategy attempts to provide a sense of balance between the global 
and local search. Since it is impossible to optimize various parameters 
simultaneously, the non-dominant sorting strategy gives precedence to 
the solution with the best fitness function. The proposed algorithm is 
employed on the optimal distribution of flexible fault current limiters 
and applied to the revised IEEE 33-BUS distribution systems with dis-

tributed generation and IEEE 30-BUS benchmark system. The proposed 
method produced optimal configuration of the system and displayed an 
improved accuracy when compared to a non-dominated sorting genetic 
algorithm, as well as a Multi Objective Particle Swarm Optimization 
which are shown in [121] and [122] respectively. However, the algo-

rithm was not compared to the conventional BA.

A hybrid SMC and BA was used to control a DFIG in [123]. The con-

trol method made use of rotor current control to provide stator power 
control. The fitness function used was the mean square error. The ro-

tor speed was held constant throughout the experiment, but the stator 
active power reference was stepped up. The stator reactive power was 
constant at 0. The proposed hybrid controller was compared to the con-

ventional sliding mode controller and conventional PI controller. For 
the stator active power, stator reactive power and dc link voltage, the 
proposed controller produced a superior steady state ripple, and a com-

petitive dynamic response. With regards to the percentage overshoot 
for the stator active power, the proposed controller was superior to the 
conventional PI controller but came second to the conventional sliding 
mode controller. This inferiority was calculated to be equal to 36%. It 
was also observed that there existed a minor unbalance in the stator 
current waveforms. However, the stator current waveforms for the con-

ventional sliding mode controller and conventional PI controller were 
not provided, hence the superior or inferior quality of the stator current 
waveforms from the proposed controller could not be validated.

4.8. Squirrel search algorithm

Proposed by Jain et al. in 2018, squirrel search algorithm (SSA) is 
based on the method of movement and scavenging conduct of flying 
squirrels. The squirrels usually glide into trees, where they feed and 
collect nuts. The squirrel search algorithm is based on a few assump-

tions [124, 125]. The first assumption is that there exists one tree for 
every squirrel. The second assumption is that there exists one hickory 
nut tree, a few acorn trees and the rest are normal trees. Hickory nut 
trees are the best food supply, and the acorn trees are the second-best 
food supplies. The normal trees are said to contain no food. The number 
of acorn trees is usually taken as 3. The final assumption is that each 
squirrel individually attempts to locate food and makes use of the food 
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supplies that are available. If, in a forest there exists 𝑛 squirrels, the 
position of the 𝑖𝑡ℎ squirrel (on the 𝑖𝑡ℎ tree) can be described as [125]:

𝒙𝒊 = (𝒙𝟏,𝟏.𝒙𝟏,𝟐…𝒙𝒏,𝒅), 𝒊 ∈ (𝟏,𝟐,… ,𝒏) (24)

Where 𝑥𝑖 is the position of the 𝑖𝑡ℎ squirrel and 𝑑 is the dimension of the 
𝑖𝑡ℎ squirrel. The initial position of the 𝑖𝑡ℎ squirrel is [124]:

𝒙𝒊 = 𝒙𝒔𝒍 +𝑼 × (𝒙𝒔𝒖 − 𝒙𝒔𝒍) (25)

Where 𝑥𝑠𝑙 and 𝑥𝑠𝑢 are the lower and upper bounds of the search space 
respectively and 𝑈 is a randomized number which lies in the range 
[0, 1]. The fitness value for each squirrel is determined and the squirrel 
with the best fitness function is said to be in the hickory nut tree. The 
acorn trees are occupied by the squirrels with the next best three fitness 
values. The rest are normal trees. From this, in order to feed, some 
squirrels would move from the normal to the hickory nut tree. The rest 
of the squirrels would move to the acorn trees. The squirrels on the 
acorn trees would move to the hickory nut tree. However, if there exists 
the presence of a predator, the squirrels cannot glide to a food tree, and 
must move to a random location rather [124].

A squirrel at an acorn tree may move to a hickory nut tree. This is 
shown as [124]:

𝒙𝒔𝒂(𝒕+ 𝟏) =
{

𝒙𝒔𝒂(𝒕) +𝑫𝑮 ×𝑮 × (𝒙𝒔𝒉(𝒕) − 𝒙𝒔𝒂(𝒕)) if 𝑹𝟏 > 𝑷

A random location otherwise
(26)

A squirrel at a normal tree may move to an acorn tree. This is shown as 
[124]:

𝒙𝒔𝒏(𝒕+ 𝟏) =
{

𝒙𝒔𝒏(𝒕) +𝑫𝑮 ×𝑮 × (𝒙𝒔𝒂(𝒕) − 𝒙𝒔𝒏(𝒕)) if 𝑹𝟐 > 𝑷

A random location otherwise
(27)

A squirrel which is at a normal tree may go directly to a hickory nut 
tree. This is shown as [124]:

𝒙𝒔𝒏(𝒕+ 𝟏) =
{

𝒙𝒔𝒏(𝒕) +𝑫𝑮 ×𝑮 × (𝐡(𝒕) − 𝒙𝒔𝒏(𝒕)) if 𝑹𝟑 > 𝑷

A random location otherwise
(28)

Where 𝑥𝑠𝑎(𝑡) is the current position of a squirrel in an acorn tree, 
𝑥𝑠𝑎(𝑡 + 1) is the updated position of a squirrel in an acorn tree, 𝑥𝑠𝑛(𝑡)
is the current position of a squirrel in a normal tree, 𝑥𝑠𝑛(𝑡 + 1) is the 
current position of a squirrel in a normal tree, 𝑥𝑠ℎ(𝑡) is the current posi-

tion of the squirrel in the hickory nut tree. 𝑅1, 𝑅2, 𝑅3 are randomized 
numbers in the range [0, 1], 𝑃 is the probability of predator presence, 
𝐺 is the constant of gliding and 𝐷𝐺 is a gliding distance of random na-

ture. 𝐷𝐺 is based on various factors. These factors are the air density 
(usually 1.204 kg.m−3), the gliding velocity (usually 5.25 m.s−1), the 
surface area of the body of the squirrel (usually 154 cm2), the friction 
coefficient (usually 0.6) and a randomized number which lies in the 
range [0.675, 1.5]. To allow for avoidance of local optima entrapment, 
the squirrel search algorithm makes use of a seasonal change. Initially, 
all squirrels are said to be in winter. When a certain criterion is met, 
the season changes from winter to summer. Two variables are defined. 
The first variable, 𝑆𝑡

𝑐
is calculated based on the squirrel position in the 

hickory nut tree as well as the position of a squirrel in an acorn tree. 
The second parameter, 𝑆𝑚𝑖𝑛 is calculated based on the current and max-

imum iteration number [124]. If 𝑆𝑡
𝑐
< 𝑆𝑚𝑖𝑛 then squirrels gliding from 

the normal trees to the acorn trees update their position according to 
[124]:

𝒙𝒔𝒊
𝒏𝒆𝒘 = 𝒙𝑺𝑳 +𝑳𝒆𝒗𝒚(𝒙) × (𝒙𝑺𝑼 − 𝒙𝑺𝑳) (29)

Where 𝑥𝑠𝑖𝑛𝑒𝑤 is the new position of the squirrel gliding from the normal 
tree to the acorn tree. 𝐿𝑒𝑣𝑦(𝑥) is based on two individually generally 
randomized numbers which lie in the range [0, 1], as well as a positive 
constant whose value is less than 2 (generally taken as 0.5) [124].

Initially, the required parameters are defined. Then, each squirrel is 
given a random position according to (25). The fitness of each squir-

rel is then estimated. The squirrel with the best fitness is considered to 
be in the hickory nut tree while the next few best squirrels (with the 
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Fig. 16. SSA flowchart [124].

next few best fitness values) are considered to be in the acorn trees. The 
rest are considered to be in the normal trees. From this, the positions of 
all the squirrels are updated according to (26)–(28). The fitness of each 
squirrel is computed again and if the current fitness value is superior 
to the previous fitness value, the squirrel takes on the new fitness func-

tion value (hence new position). Once this is done, the seasonal change 
condition is checked and the position of the squirrels which are gliding 
from the normal tree to the acorn trees are updated using (29). Once 
again, the fitness for all squirrels is estimated, and the fitness value (and 
position) of each squirrel is updated if the new value is superior to the 
previous value. The squirrel in the hickory nut tree, as well as the squir-

rels in the acorn trees, are determined. This continues until all iterations 
have been completed. Once this is so, the squirrel with the best fitness 
is considered to be the best solution [124]. The steps to execute the SSA 
can be seen in Fig. 16 [124].

Although the conventional SSA has the merit of a strong stabil-

ity, it suffers the demerits of a low search accuracy and being easily 
trapped in the local optima [124]. The authors in [124] attempted to 
overcome this disadvantage by incorporating the reproductive behav-

ior of the invasive weed optimization algorithm into the conventional 
SSA. The method generates squirrel offspring via the Gaussian distribu-

tion and randomly places these offspring across the search space. The 
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number of offspring produced is proportional to the cost function value 
of each squirrel and varies linearly with such. Secondly, an adaptive 
step size strategy is implemented to balance the algorithm exploita-

tion and exploration capability. The proposed algorithm was applied to 
various fixed dimension, multimodal and unimodal functions and com-

pared to other swarm-based MOT, including the conventional SSA. Of 
the six unimodal functions, eight multimodal functions and eight fixed 
dimensional functions, the proposed algorithm only to generate the best 
average value in one of each set of functions. This inferiority to the best 
value is 9.23%, 49.85% and 4.92% for the unimodal, multimodal and 
fixed dimension function respectively. However, considering the stan-

dard deviation, there existed various scenarios whereby the proposed 
algorithm did not yield the best value, in some cases producing the 
worse result. The points to a lack of stability of the proposed technique. 
Considering the convergence, it was observed that the proposed algo-

rithm required 75% of the maximum number of iterations in order to 
exhibit superiority. This amounted to approximately 750 iterations, and 
therefore indicates a poor convergence.

The scholars in [126] applied the same improved SSA in [124] to the 
maximum likelihood method for array signal processing based direc-

tion of arrival. The method was compared to various swarm-based and 
evolutionary based MOT, including the conventional SSA. Compared 
to these techniques, the improved SSA displayed a faster convergence 
speed, better search accuracy and reduced computational complexity.

4.9. Moth flame optimization

Proposed by Miralji in 2015, the moth flame optimization (MFO) al-

gorithm is based on the technique of navigation used by moths. This 
method of navigation is known as transverse orientation. To ensure a 
straight flight path, moths maintain an angle of fixed nature with re-

spect to the moon. They are, however, severely disturbed by artificial 
light. Moths are seen to spiral towards artificial light and eventually 
latch onto the light [127, 128]. In the MFO algorithm, there exists a 
certain number of moths, and a certain number of flames. The popula-

tion of moths and flames can be represented as shown in [127], with 
the fitness of the moths and flames represented as a matrix also shown 
in [127]. The initial random positions of the moths are given by [129]:

𝒎𝒊,𝒋 = 𝒍𝒃𝒋 + 𝒓𝒂𝒏𝒅(𝒖𝒃𝒋 − 𝒍𝒃𝒋) (30)

Where 𝑚𝑖,𝑗 is the position of the 𝑖𝑡ℎ moth in the 𝑗𝑡ℎ dimension, rand is 
a randomized number which lies in the range [−1, 1] and 𝑢𝑏𝑗 and 𝑙𝑏𝑗
are the upper and lower limits of the boundary range respectively. The 
position of each moth is updated according to [129]:

𝒎𝒊,𝒋(𝒕+ 𝟏) =𝑫𝒊,𝒋 × 𝒆𝒃𝒂 × 𝐜𝐨𝐬(𝟐𝝅𝒂) + 𝒇𝒊,𝒋 if 𝒊 ≤ 𝑭𝑵 (31)

𝒎𝒊,𝒋(𝒕+ 𝟏) =𝑫𝒊,𝒋 × 𝒆𝒃𝒂 × 𝐜𝐨𝐬(𝟐𝝅𝒂) + 𝒇𝒃 if 𝒊 > 𝑭𝑵 (32)

Where 𝑚𝑖,𝑗 (𝑡 +1) is the updated position of the 𝑖𝑡ℎ moth in the 𝑗𝑡ℎ dimen-

sion, 𝑓𝑖,𝑗 is the current position of the 𝑖𝑡ℎ flame in the 𝑗𝑡ℎ dimension, 𝑓𝑏
is the position of the best flame, 𝑎 is a randomized number in the range 
[−1, 1], 𝑏 is the shape constant and 𝐷𝑖,𝑗 is the absolute value of the dif-

ference between 𝑓𝑖,𝑗 and 𝑚𝑖,𝑗 (𝑡). 𝑚𝑖,𝑗 (𝑡) is the current position of the 𝑖𝑡ℎ
moth in the 𝑗𝑡ℎ dimension.

𝑭𝑵 = 𝒓𝒐𝒖𝒏𝒅𝒖𝒑

(
𝑵 − 𝒕 × (𝑵 − 𝟏)

𝒕𝒎𝒂𝒙

)
(33)

Where 𝑁 is the maximum number of moths, 𝑡 is the current iteration 
and 𝑡𝑚𝑎𝑥 is the maximum number of iterations.

Initially, the required parameters are defined. Then, random posi-

tions are assigned to all the moths according to (30). The fitness of each 
moth is then computed. After this, the positions of all the moths are 
updated according to (31) and (32). The fitness of each moth is then 
calculated again. If the current cost value is superior to the previous fit-

ness value, the moth takes on the new fitness value (hence position). 
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Fig. 17. MFO algorithm flowchart [130].

This continues until all iterations have been completed, each time up-

dating the position of each moth of the fitness of the updated position 
is superior to the current best fitness of the moth. The value of 𝐹𝑁 is 
decremented at the start of each iteration. Once all iterations have been 
executed, the moth with the best fitness value is said to be the optimal 
solution [129]. The steps to execute the MFO algorithm can be seen in 
Fig. 17 [130].

The MFO has the merit of having a robust selection capability [131], 
with its demerits being a slow convergence rate and being easily en-

trapped in the local optima [128, 131, 132]. The authors in [131] 
attempted to overcome the demerit of being easily trapped in local min-

ima by modifying the update formulas of both the moth and flames. It 
does so in three ways; the use of a levy flight equation, the use of a 
weighting factor and via a descending curvilinear strategy. The levy 
flight equation is applied to the entire of (31) and (32). The weighting 
factor is applied the last term in these two equations. The updating of 
the number of flames is done via a curvilinear fashion, using an equa-

tion that relates to the total number of flames and current and maximum 
iteration numbers. The proposed method was applied to the subthresh-

old image segmentation problem and compared to various swarm-based 
MOT, including the conventional MFO. The results show that on aver-

age, the proposed algorithm was the most superior in terms of global 
search capability. Of the 96 tests done, the proposed algorithm was 
only inferior to the conventional MFO in seven tests. In terms of con-

vergence, the proposed algorithm exhibited dominance after a mere 10 
iterations. A convergence factor that is reduced linearly from −1 to −2
was introduced in [128]. This enhances the global searching capabil-

ity of the algorithm while also increasing the convergence rate. The 
convergence factor is a function of the current and maximum iteration 
number.
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To further enhance the global searching capability, the flame num-

ber update equation is modified and is a function of the total number of 
flames, as well as the current and maximum iteration numbers. The pro-

posed algorithm is employed to locate the optimal placement and sizing 
of distributed generator units, is applied to the IEEE-69 bus radial dis-

tribution test system and compared to various swarm-based MOT which 
includes the conventional MFO. The proposed algorithm offers a supe-

rior performance with regards to the sizing and optimal placement of 
distributed generators. In terms of the convergence rate, the proposed 
algorithm required a maximum of 30 iteration before superiority was 
established, validating a strong speed of convergence. The scholars in 
[133] proposed a novel swarm moth flame optimization algorithm for 
the tuning of four PI controllers which are responsible for controlling a 
DFIG. When compared to other MOT, the proposed method was shown 
to improve maximum power point tracking and enhanced fault ride 
through capabilities.

4.10. Sailfish optimization

Based on the group hunting behavior of the sailfish, sailfish opti-

mization (SFO) is a model of the interaction between the sailfish and 
their prey, the sardine. Being the fastest animal underwater, the sailfish 
can reach a speed of 100 km/h. They hunt sardines by driving them to 
the surface of the water. Their immense speed makes it difficult for sar-

dines to escape, but sardines do have good maneuverability. A sailfish 
uses its rostrum to slash and injure a sardine, or directly touch it and 
destabilize it. In the sailfish algorithm, both the sailfish and sardines 
are critical aspects to consider [134]. The positions of each sailfish and 
sardine can be represented as shown in [134], with the fitness values of 
the sailfish and sardines represented in a matrix also shown in [134]. 
It was previously mentioned that sailfish attack and subsequently in-

jure sardines. This phenomenon should be incorporated into the sailfish 
algorithm to ensure that they have a substantial influence on the al-

gorithm performance The elite sailfish and injured sardines are ones 
which have the best fitness values among their respective populations 
[134, 135]. The new position of the sailfish can be estimated using 
[134, 135]:

𝒙𝑺 (𝐭 + 𝟏) = 𝒙𝑺𝑬 (𝐭) − 𝝀𝒊(𝒓𝒂𝒏𝒅 ×
(
𝒙𝑺𝑬 (𝐭) − 𝒙𝑺𝒂𝒍(𝐭)

𝟐

)
− 𝒙𝑺 (𝐭) (34)

Where 𝑥𝑆 (t + 1) is the updated position of the sailfish, 𝑥𝑆 (t) is the cur-

rent position of the sailfish, 𝑥𝑆𝐸 (t) is the current position of the elite 
sailfish, 𝑥𝑆𝑎𝑙(t) is the current position of the injured sardine, 𝑟𝑎𝑛𝑑 is a 
randomized number which lies in the range [0, 1], 𝜆𝑖 is a function of a 
randomized number which lies in the range [0, 1] as well as the prey 
density (PD). As the sailfish continues to hunt, the density of prey de-

creases. The PD can be calculated by utilizing the number of sardines 
and sailfish present. The number of sailfish is based on the initial sar-

dine population. The initial sardine population is taken to be larger 
than the population of the sailfish [134, 135]. Initially, sardines have 
a high escape rate. However, due to the increase injuries and decrease 
in energy, the sardines are eventually caught. This can be mimicked by 
updating the position of the sardines using [134, 135]:

𝒙𝑺𝒂(𝐭 + 𝟏) = 𝒓𝒂𝒏𝒅 ×
(
𝒙𝑺𝑬 (𝐭) − 𝒙𝑺𝒂(𝐭) +𝑨𝑷

)
(35)

Where 𝑟𝑎𝑛𝑑 is a randomized number in the range [0, 1], 𝑥𝑆𝑎(t) is the 
updated position of the sailfish, 𝑥𝑡

𝑆𝑎
is the current position of the sailfish 

and AP is the attack power of the sailfish which is based on the use of 
two independent constants, as well as the current iteration number. To 
allow convergence, the number of sardines and number of variables 
is reduced after each iteration [134, 135]. To increase its chances of 
catching more prey, the sailfish takes the position of the sardine that it 
has caught. This can be seen as [134, 135]:

𝒙𝑺 = 𝒙𝑺𝒂 if 𝒇 (𝒙𝑺𝒂) < 𝒇 (𝒙𝑺 ) (36)
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Fig. 18. SFO algorithm flowchart [136].
Where 𝑓 represents the value of the fitness function. Once this occurs, 
the sardine that was caught is eliminated from the population [135].

Initially, the required parameters are defined. The fitness of each 
sailfish and sardine is calculated and the best values are noted. The 
position of each sailfish is then updated according to (34). The attack 
power is then calculated. If this value is less than 0.5, the values of 
𝛼 and 𝛽 are estimated and used to update the position of a certain 
number of sardines by using (35). Else, the positions of all the sardines 
are updated. The fitness of each sailfish is then calculated once more. 
If this value is superior to the current best fitness value of that specific 
sailfish, the sailfish updates its position. Else it remains in its previous 
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best position. The same rule applies to the sardines. Furthermore, if the 
fitness value of a sardine is superior to that of a sailfish, the sailfish 
takes on the fitness value (hence position) of the sardine. This sardine 
is then eliminated from the system. This continues until all iterations 
have been completed. Once this is so, the sailfish with the best fitness is 
said to be at the best solution [134, 135]. The steps to execute the SFO 
algorithm can be seen in Fig. 18 [136].

The conventional SFO has the merits of a fast convergence rate and 
being not easily trapped in the local optima [134]. To the authors best 
knowledge, there has been no established demerits of the SFO algo-
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rithm. This does not mean that none exist, but rather points to the lack 
of application of the algorithm.

4.11. Cuckoo search algorithm

Proposed by Yang and deb, the cuckoo search algorithm (CuSA) is 
based on the reproductive behavior of the cuckoo bird. Cuckoos are 
parasitic birds, which lay their eggs in other bird’s nests. To prevent 
their eggs from being thrown out by the host bird, the female cuckoo 
lays eggs which imitate the eggs of the host in terms of factors such 
as shape and color. Cuckoo eggs usually hatch prior to the eggs of the 
host, and when this happens the cuckoo chick kicks out the host eggs 
to increase their share of food [137, 138]. There are three rules that 
govern the cuckoo search algorithm [137]. The first rule is that each 
cuckoo bird only lays one egg and places it in a random nest. The second 
rule states that the best nest (which contains the best quality eggs) has 
the best chance of being carried over to the next generation. The best 
nest is that in which the host eggs look very similar to the cuckoo eggs. 
The third and final rule states that the number of nests is unchangeable. 
Furthermore, there exists the probability of the host bird finding the 
cuckoo egg and either abandoning it or throwing it out. Either way, the 
egg would not survive. Using Levy flight, the random movement of the 
cuckoo bird to find a nest can be expressed as [138, 139]:

𝒙𝒊(𝒕+ 𝟏) = 𝒙𝒊(𝒕) + 𝜶𝝈𝑳𝒆𝒗𝒚(𝝀) (37)

Where 𝑥𝑖(𝑡) is the current position of the cuckoo, 𝑥𝑖(𝑡 + 1) is the next 
position of the cuckoo, 𝛼 is a randomized number which is usually 1, 𝜎
is element wise multiplication, 𝜆 is a randomized value between 1 and 
3 and 𝐿𝑒𝑣𝑦(𝜆) is a function of the current iteration number and 𝜆. The 
following is used to update the position of the nest to allow the cuckoo 
to lay another egg [139]:

𝒙′
𝒊
=

{
𝒙𝒊 + 𝒓(𝒙𝒓𝟏 − 𝒙𝒓𝟐), 𝐫𝐚𝐧𝐝[𝟎,𝟏] > 𝐏𝐚

𝒙𝒊, otherwise
(38)

Where 𝑥′
𝑖

is the updated position of the nest, 𝑟 and rand [0, 1] are ran-

domized numbers in the range [0, 1], 𝑟1 and 𝑟2 are different randomized 
integers with a maximum to that equal to the number of cuckoos, Pa is 
the probability of the host bird identifying and discarding the cuckoo 
egg and is a randomized number in the range [0, 1].

Initially, the required parameters are defined. The fitness of each 
nest is then calculated. Then, the position of the cuckoo is updated 
using (37). A nest is chosen at random, and its fitness value is compared 
to the fitness value of the cuckoo. If the fitness value of the nest is 
superior to that of the cuckoo, the cuckoo takes on the fitness (and 
hence position) of the nest. A fraction of nests with the poorest fitness 
values are eliminated and is replaced according to (38). This continues 
until all iterations have been completed. Each time, the cuckoo updates 
its fitness values (and hence position) if the fitness of the nest that it is 
compared to is superior to its own fitness. Once all iterations have been 
implemented, the position of the best cuckoo is said to be the optimal 
solution [139]. The steps to execute the CuSA algorithm can be seen in 
Fig. 19 [140].

The conventional CuSA has the merit of requiring knowledge of just 
a few parameters [141] but suffers the demerits of a stagnant rate of 
convergence [142] and being easily trapped in the local optima [141, 
142]. The authors in [141] incorporated the method of differential evo-

lution in (37). In this proposed modification, the position update of a 
particular cuckoo is based on the position of three random cuckoos. The 
proposed algorithm was implemented on monopulse antenna problems 
in 20-element arrays, 40-element arrays, and a fixed number of subar-

rays. The proposed algorithm was compared to various MOT, including 
the conventional CuSA. In the 20-element array, five subarrays were 
tested. It was noticed that the proposed algorithm produced the best 
global search capability in all five subarrays. In the 40-element arrays, 
10 subarrays were tested. It was observed that the proposed algorithm 
21
produced a superior global search capability in all 10 subarrays. The 
same is true for the five subarrays tested for the fixed number of subar-

rays. This clearly confirms the superiority of the proposed algorithm.

The scholars in [142] made use of a coefficient function to change 
the step size. The proposed algorithm also makes use of a logistic map 
of each dimension to initialize the location of the host nest and update 
the position of the host nest beyond the boundary. The proposed algo-

rithm was tested on fifteen benchmark functions and compared to the 
conventional CuSA. It was observed that the proposed algorithm pro-

duced a superior global search capability in all the tested functions. 
With regards to the convergence rate, the proposed algorithm proved 
to be superior in all fifteen functions, exhibiting dominancy upon the 
completion of a maximum of 20% of the total number of iterations.

CuSA was applied to both a PI controller and FOPID controller to 
control a DFIG in [143]. The method applied this control to the pitch 
controller, RSC and GSC. The method also made use of all the com-

mon performance indices (ITAE, IAE, ISE, and ITAE) and combined all 
of these to form the objective function to be used. The objective func-

tion was a sum of these common performance indices, with each index 
multiplied by a weighting factor. The cumulative sum of the weight-

ing factors is one, and the weighting factors were determined using the 
(CuSA). For the pitch controller and RSC controllers, the PI controller 
produced the best results and for the GSC controller, the FOPID con-

troller produced the best results. However, results were only given in 
terms of errors derived from the use of the different performance in-

dices. Very little graphical results were provided, and no steady state 
and dynamic response comparisons were provided. Furthermore, there 
was no comparison with other MOT. This made it difficult to validate 
the results provided.

4.12. Firefly algorithm

Developed in 2007 by Yang, the firefly algorithm (FA) is based on 
the behavior and patterns of flashing of fireflies [106]. This optimiza-

tion algorithm uses four rules [144, 145]. The first rule states that the 
less bright fireflies are attracted to brighter fireflies and this attrac-

tion occurs without any regard for gender. The second rule is that the 
brighter a firefly appears to be, the more attractive it seems. The third 
rule says that the further away firefly 𝑎 is from firefly 𝑏, the less attrac-

tive it appears. In the fourth and final rule, the brightest firefly is the 
only firefly that moves randomly. As mentioned, the light intensity of a 
firefly relative to another firefly is dependent on the distance between 
the two. This can be expressed as [144, 145, 146]:

𝑳 =𝑳𝟎𝒆
−𝜹𝒚𝟐 (39)

Where 𝐿0 is the maximum light intensity, 𝐿 is the light intensity of 
firefly 𝑏 as seen by firefly 𝑎, 𝑦 is the distance between the two fireflies 
and 𝛿 Is the light absorption which is dependent of the medium in which 
the firefly exists. It is usually between 0.1 and 10. The attractiveness, 𝐵, 
of a firefly is dependent on the light intensity seen by the other firefly 
and is estimated in the same manner as the light intensity [144, 145, 
146]. The movement of firefly 𝑎 to firefly 𝑏 can be expressed as [144, 
145, 146, 147]:

𝒙𝒂(𝒕+ 𝟏) = 𝒙𝒂,𝒌 +𝑩𝟎𝒆
−𝜹𝒚𝟐

𝒂,𝒃 (𝒙𝒃,𝒌 − 𝒙𝒂,𝒌) + 𝜶(𝒓𝒂𝒏𝒅 − 𝟎.𝟓) (40)

Where 𝑟𝑎𝑛𝑑 and 𝛼 are randomized numbers in the range [0, 1], 𝐵0 is the 
maximum attractiveness, 𝑥𝑎(𝑡 + 1) is the updated position of firefly 𝑎, 
𝑥𝑎,𝑘 and 𝑥𝑏,𝑘 are the current positions of fireflies 𝑎 and 𝑏 respectively in 
dimension 𝑘, 𝑦𝑎,𝑏 is the distance between fireflies 𝑎 and 𝑏.

Initially, the required parameters are defined. Then, each firefly is 
assigned a random position. The fitness of each firefly is then computed. 
Thereafter, the fitness value of each firefly 𝑎 is compared to the fitness 
value of a randomly chosen firefly 𝑏. If the fitness of 𝑏 is superior to 
𝑎, then the position of 𝑎 is updated using (40). Once this process is 
complete, the fitness value of the possibly updated positions of each 
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Fig. 19. CuSA flowchart [140].
firefly is computed. If this fitness value is superior to the previous fitness 
value of that specific firefly, that firefly updates its fitness (and hence 
position) to the better value. This continues until all iterations have 
been completed. Once this is so, the firefly with the best fitness is said 
to be at the best position [144, 145, 146, 147]. This is seen in Fig. 20

[148].

The conventional FA suffers the demerits of being easily trapped in 
the local optima [146, 149] and a slow convergence rate [146, 150]. 
The authors in [149] added the concept of velocity to (15.2) to both 
improve the global search capabilities and enhance the algorithm rate 
of convergence. The velocity factor utilizes the concept of randomness, 
acceleration coefficients and the position of the 𝑖𝑡ℎ firefly. The pro-

posed algorithm was employed to the design of a digital infinite impulse 
response filter and compared to the conventional FA. The proposed al-

gorithm outperformed the conventional algorithm; it produced a lower 
mean square error and a superior rate of convergence.

Considering a second order system with a second order filter, the 
proposed algorithm exhibited a minimum mean square error dominance 
22
of 6.92%, with a maximum superiority of 26.77%. This corresponded 
to 0.61% and 1.36% respectively for a second order system with a first 
order filter. The scholars in [146] proposed various modifications to 
the conventional FA. The randomization factor, absorption coefficient 
and initial attractiveness are all constants. This decreases the conver-

gence speed of the algorithm. The first improvement is to change these 
values from constants to dynamic variables. The modified absorption 
coefficient is a function of the current iteration number and a random-

ized number in the range [0, 1]. The randomization factor and initial 
attractiveness are both functions of the current and maximum iteration 
numbers. In the second improvement, the influence of the global best 
is considered in the position update equation. If the intensity of firefly 
𝑎 is less than 𝑏, then this term is added to (40). If the intensity of fire-

fly 𝑎 is greater than 𝑏, the term replaces term 2 in (40). In the third 
improvement, the search space is updated after each iteration. This is 
done with respect to the global best firefly and “squeezes” the fireflies 
to the global optimum. The proposed algorithm was applied to a highly 
nonlinear and multi model dispatch problem and compared to the con-
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Fig. 20. FA flowchart [148].

ventional FA. Two cost functions were tested. For each cost function, 
various populations of fireflies were tested. These are 5, 15, 35 and 50 
fireflies. For case 1, it was observed that the proposed algorithm pro-

duced a superior global search capability for all four firefly populations. 
For case two, the proposed algorithm is inferior to the conventional FA 
for the 5 firefly population. In the scenarios whereby the proposed al-

gorithm yielded superior results, this occurred before completion of 5 
iterations. Therefore, it can be concluded that the proposed algorithm 
exhibited a superior rate of convergence

Considering the application of the FA to the control of the DFIG, the 
authors in [151] made use of a second order lead lag power oscillation 
damper (POD). The parameters of the POD are optimized by the FA. The 
aim of the algorithm is to stabilize inter area oscillations in intercon-

nected power systems by means of a POD equipped with a DFIG. The 
proposed robust DFIG-POD was compared to the conventional DFIG-

POD. The proposed method showed a superior damping performance 
with regards to heavy power flows, fault location, severe faults, and 
varying patterns of wind. However, no comparison or evaluation of the 
optimization technique was provided. Reference [152] makes use of a 
hybrid PSO and FA for the regulation of a multi area power system’s 
frequency. The power system contains DFIG’s. Two different controllers 
were tested: PID controller and a cascaded PD-PI controller. To analyze 
the dynamic performance of the system, a 1% load disturbance was 
injected into the system. The fitness function used was the ITAE. The 
hybrid PSO/FA was applied to both the PID controller and PD-PI con-

trollers. The proposed method modifies the conventional PSO velocity 
equation by replacing the acceleration constants with FA parameters. 
The results confirm that the latter controller surpasses the PID con-

troller in all aspects. However, the proposed metaheuristic optimization 
23
technique was not compared to other control techniques, hence its su-

periority could not be validated.

4.13. Shuffled frog leaping algorithm

Introduced by Eusuff and Lansely, the shuffled frog leaping algo-

rithm (SFLA) is inspired the hunting strategy of frogs. The SFLA is 
known to have favorable performances of both GA and PSO. In SFLA, 
a group of frogs are divided into groups, each group known as a 
memeplex. Each memeplex performs a local search. Via the process of 
memetic evolution, each frog evolves based on the ideas of other frogs. 
After a predetermined number of memetic steps has occurred, informa-

tion is shuffled among the different memeplexes [153, 154]. The SFLA 
is divided into 4 steps, namely initialization, partition, updating and 
shuffling:

Initialization: Considering a frog to be a solution to the problem, an 
initial population of frogs is randomly generated. The 𝑖𝑡ℎ frog’s position 
is denoted as:

𝐗𝐢 = (𝐱𝐢𝟏,𝐱𝐢𝟐…𝐱𝐢𝐝) (41)

Where 𝑑 is the search space dimension (number of variables to be 
optimized)

Partition: Each frog is put into a memeplex, the total number of meme-

plexes being m. This sorting is done in descending order, based on the 
fitness value of each frog. Once each memeplex contains one frog, the 
frogs are again placed into a memeplex. Each memeplex would therefore 
have n frogs [153, 154].

Updating: In each memeplex, the position of the worst frog (with the 
poorest cost function) is updated according to [153, 154]:

𝐃 = 𝐫𝐚𝐧𝐝 × (𝐗𝐛 −𝐗𝐰) (42)

𝐗𝐧
𝐰 =𝐗𝐰 +𝐃 (43)

−𝐃𝐦𝐚𝐱 ≤𝐃 ≤𝐃𝐦𝐚𝐱 (44)

Where 𝑋𝑏 is the position of the best frog in each memeplex, 𝑋𝑤 is the 
position of the worst frog in each memeplex, 𝑋𝑛

𝑤
is the updated position 

of the worse frog, 𝐷𝑚𝑎𝑥 is the maximum specified value of D. If this 
process fails to produce a superior solution, then 𝑋𝑔 , which is known 
as the global best position is used in place of 𝑋𝑏 and the process is 
repeated. If this still fails to produce a better solution, a random solution 
is generated in place of the position of the worst frog [155].

Shuffling: After a certain number of improvement processes, all the frogs 
in the population are mixed and the process of partitioning and updating 
is repeated. This is done until the termination criteria is met [154].

Initially, the required parameters are defined. Each frog is then given a 
random position. Afterwards, the fitness of each frog is computed, and 
the frogs are arranged in order from best to worst fitness. The frogs are 
then separated into memeplexes. The worst frog (with the poorest cost 
value) in each memeplex is updated using (43). If this fails to produce a 
better solution, the same equations are used again, this time replacing 
the best frog in each memeplex with the global best frog. If this also 
fails to produce a better solution, that frog is discarded and a new frog 
is placed in a random position. This continues until all iterations have 
been completed. Once this is so, the frogs are shuffled and sorted into 
memeplexes once again. This process is continued until the iterations 
are complete. Once this is so, the frog with the best fitness value is said 
to be at the optimal position [153, 154, 155]. The steps to execute the 
SFLA can be seen in Fig. 21 [156].

The conventional SFLA has the merit of a fast convergence speed 
[157]. However, it suffers the demerits of premature convergence to 
the local optima [157, 158] as well as random jumps which leads to 
blind searches [159]. The authors in [157] proposed a SFLA which in-

troduces the application of a weighting factor based on chaos memory 
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Fig. 21. SFLA flowchart [156].

and an absolute balance group strategy. The chaos memory weighting 
factor aimed at improving the local and global search capabilities of the 
algorithm. This weighting factor is applied to the formula in (42) and 
hence used to update the worst frog’s position. The weighting factor is 
a function of the position of the best and worst frogs, and a randomized 
number in the range [0, 1]. The absolute balance group strategy aims 
to avoid premature convergence to local optima by modifying the strat-

egy of sorting the frogs into memeplexes. It does so by randomly sorting 
the frogs into memeplexes, instead of using the fitness function value 
of each frog. The proposed algorithm was tested using the K nearest 
neighbor method and compared to evolutionary and swam-based MOT, 
including the conventional SFLA. The results showed that the applica-

tion of both the chaos memory weighting factor and absolute balance 
group strategy produced superior global optimization performances. 
The proposed algorithm was applied to nine functions and compared to 
various MOT, including the original SFLA. It was observed that the pro-

posed algorithm produced the most accurate result in 7 of the 9 cases. 
Considering stability, the proposed algorithms displayed a 66% success 
rate. However, it was observed that as the number of subsets (dimen-

sions) increased, the performance of the proposed algorithm declined 
by a large extent. In many cases, the proposed algorithm was seen to be 
inferior to the other compared techniques. The converge curve, which 
is a critical piece of information when evaluating algorithms, was miss-

ing. This creates doubt in the confidence of the proposed scheme.

The scholars in [159] present a modified SFLA. In this method, in 
each memeplex, the worst frog’s position is updated using the position 
of the local best and local worst frogs as well and a randomized number 
which lies in the range [0, 1]. If the fitness value of the updated posi-
24
tion is worse than the previous position, the position of the worse frog 
is again updated, this time using the position of the global best instead 
of the local best (best in each memeplex). If there is still no improve-

ment, the method makes use of cloning of frogs. Two types of cloning 
can occur. In the first type, the frogs with the best positions are cloned. 
In the second method, a frog is cloned at random. The position of the 
new frog as a result of the cloned frog is a function of the position 
of the cloned and worst frog and a randomized number in the range 
[0, 1]. If this method also fails to produce a better solution, the frog in 
question is discarded from the memeplex and replaced with a random-

ized frog. The proposed method is tested using the Markov chain theory 
and compared to various MOT, including the conventional SFLA. It was 
observed that in all the tests performed, the proposed algorithm pro-

duced the best global search capability. From the results provided, it 
is difficult to accurately compare the convergence rate of the different 
techniques. However, the author claims that the proposed algorithms 
produce a superior convergence rate.

A new method to update the position of the worst frog is intro-

duced in [158]. The proposed method updates the position of the worst 
frog using the position of the frog in the center of each memeplex, 
as well as a randomized number in the range [0, 1]. This simple pro-

posed method was employed to the optimization of the path of a robot 
under both static and dynamic environments and fared against the 
conventional SFLA. Considering the static environment, the proposed 
algorithm yielded a search accuracy superiority of 25.28%. The pro-

posed algorithm also achieved the task 14.18% quicker. The superiority 
of the proposed algorithm for the dynamic environment was 36.85% 
and 34.3% respectively for the search accuracy and task completion 
time.

4.14. Antlion optimization

Antlion optimization (ALO) is an algorithm inspired by the forag-

ing behavior of antlion larvae. Its formation lies on the basis of the 
relationship between the antlion and their prey, the ant. Antlions dig a 
hole of conical shape in the ground and hide at the pit to catch prey. 
Hungrier ant lions dig bigger holes which improves their chances of 
catching prey. The ants slide down the surface of the hole, at which 
point the antlion consumes it [160, 161]. Ants move randomly. Their 
movement is affected by the holes dug by the ant lions. Ant lions with 
poorer fitness functions dig bigger holes. In each iteration, every ant can 
be trapped by an antlion. To simulate ants sliding down the surface of 
the holes, the range of the random walks is adaptively decreased. If the 
value of the fitness function of an ant is superior to that of the antlion, 
it means that the ant is caught by the antlion. The, the antlion reposi-

tions itself to the caught prey’s position. This increases its chances of 
catching another prey [160, 161]. Mathematically, the random walk of 
the prey (ants) can be described as [161]:

𝒙𝒕 =
[
𝟎,𝒄𝒔

(
𝟐𝒓(𝒕𝟏) − 𝟏

)
… ,𝒄𝒔

(
𝟐𝒓(𝒕𝒏) − 𝟏

)]
(45)

Where 𝑐𝑠 is the cumulative sum, 𝑛 is the maximum number of itera-

tions, 𝑡 is the iteration step and 𝑟 is a randomized number in the range 
[0, 1]. Normalizing this in a search space (to allow for consideration of 
boundaries), the following is obtained [160, 161]:

𝑿𝒕
𝒊
=

(𝑿𝒕
𝒊
− 𝒂𝒊) × (𝒅𝒕

𝒊
− 𝒄𝒕

𝒊
)

𝒃𝒊 − 𝒂𝒊
+ 𝒄𝒕

𝒊
(46)

Where 𝑋𝑡
𝑖

is the position of the 𝑖𝑡ℎ ant at iteration 𝑡, 𝑏𝑖 and 𝑎𝑖 represent 
the maximum and minimum values of the random walk for the 𝑖𝑡ℎ ant 
and 𝑑𝑡

𝑖
and 𝑐𝑡

𝑖
represent the maximum and minimum values of the 𝑖𝑡ℎ

ant at iteration 𝑡. To ensure that the position of each ant always stays 
within the boundary, (50) should be computed at each iteration. Math-

ematically representing the effect of the holes dig by antlions on the 
random walks of ants can be seen as [161]:
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𝒄𝒕
𝒊
=𝑨𝒏𝒕𝒍𝒊𝒐𝒏𝒕

𝒋
+ 𝒄𝒕 (47)

𝒅𝒕
𝒊
=𝑨𝒏𝒕𝒍𝒊𝒐𝒏𝒕

𝒋
+ 𝒅𝒕 (48)

Where 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑡
𝑗

is the position of the 𝑗𝑡ℎ antlion at iteration 𝑡. The 
antlion is selected by using the roulette wheel method, allowing the 
hungrier antlions a greater probability of catching an ant.

It was observed that when an antlion notices an ant in its trap and 
trying to escape, it throws sand at the ant to make the ant slide further 
down. This is modelled by adaptively decreasing the search space and 
is shown as [161]:

𝒄𝒕 =
𝒄𝒕

𝑰
(49)

𝒅𝒕 =
𝒅𝒕

𝑰
(50)

Where 𝐼 is a ratio of the current to maximum iteration numbers. It was 
mentioned that if the fitness of the ant is superior to that of the antlion, 
the antlion then updates its position to that of the ant. Based on the 
premise that if the ant fitness it greater than that of the antlion then 
the ant is said to be captured, this means that updating of the antlions 
position occurs after the antlion has consumed the prey.

This is shown as [161]:

𝑨𝒏𝒕𝒍𝒊𝒐𝒏𝒕
𝒋
=𝑨𝒏𝒕𝒕

𝒊
if 𝒇

(
𝑨𝒏𝒕𝒕

𝒊

)
> 𝒇

(
𝑨𝒏𝒕𝒍𝒊𝒐𝒏𝒕

𝒋

)
(51)

Where 𝐴𝑛𝑡𝑡
𝑖

represents the position of the 𝑖th ant at iteration 𝑡 and 𝑓 is 
the value of the fitness function. Note that (55) is based on fitness func-

tion maximization. To ensure that the fittest antlion affects the outcome 
of the process, the ant’s position is determined based on the random 
walk around a roulette wheel selected antlion, as well as their walk 
around the fittest (most elite) antlion. This can be expressed as [161]:

𝑨𝒏𝒕𝒕
𝒊
=
𝑹𝒕
𝑨
+𝑹𝒕

𝑩

𝟐
(52)

Where 𝑅𝑡
𝐴

represents the walk of random nature around the antlion 
(selected via the roulette wheel) at iteration 𝑡 and 𝑅𝑡

𝐵
is the random 

walk around the fittest antlion at iteration 𝑡.

Initially, the specific parameters are defined. Then, each ant and 
antlion are given randomized positions. The fitness of each antlion and 
ant is computed and the antlion with the best fitness value is noted as 
the elite antlion. Thereafter, the position of each ant is updated using 
(46) and (52). The fitness value of each ant is then computed, and if this 
fitness value is superior to the previous fitness value, then the ant takes 
on this new fitness value (hence position). For each ant, an antlion is 
chosen via the roulette wheel. If the fitness value of the ant is superior to 
that of the antlion, the antlion takes on the fitness value (hence position) 
of the ant. The elite antlion is then updated. This continues until all 
iterations have been completed. Once this is so, the elite antlion (with 
the finest fitness value) is considered to be the best solution [160]. The 
steps to execute the ALO algorithm can be seen in Fig. 22 [162].

The conventional ALO has the demerit of being easily trapped in 
local optima [163]. The authors in [163] proposed a spiral complex 
searching pattern to overcome this demerit. In total, eight spiral paths 
were applied. These are the Rose Logarithmic, Inverse and Archimedes 
spiral curves, as well as the Epitrochoid, Hypotrochoid, Cycloid, and 
Spiral based overshoot parameter setting. The proposed algorithms 
were applied to various unimodal, multimodal, and fixed dimension 
benchmarks functions and compared to the conventional ALO. Consid-

ering global search capability, superior performance for the different 
functions was seen to be scattered across the various proposed algo-

rithm. It is vital to note though, that for each case, at least one proposed 
spiral complex searching pattern proved to be superior to the conven-

tional ALO. Majority of the best results were obtained by the Spiral 
based overshoot parameter setting. It was also noticed that on aver-

age, the Spiral based overshoot parameter setting yielded the strongest 
convergence rate. The method proposed in [164] aims to improve the 
algorithm global search ability by proposing a modified ant position 
25
Fig. 22. ALO algorithm flowchart [162].

update equation. This considers the pheromones left behind by other 
ants. The proposed algorithm was applied to a bearing fault identi-

fication which is centered on multi-layer extreme learning machine 
(MELM). The proposed algorithm was employed to the optimization of 
the MELM. However, no comparison between the proposed algorithm 
and other MOT is provided. This means that the effectiveness of the 
proposed method to the said application cannot be verified.

Considering the application of ALO to the control of the DFIG, the 
authors in [165] make use of ALO to obtain the fractional order PI 
(ALO-FOPI) controller gains. The method makes use of stator flux-

oriented control and considers both the RSC and GSC control. Apart 
from the ALO-FOPI control algorithm, two other control algorithms are 
tested. The first is a PI controller with an ANFIS controlled added. The 
required gains are optimized using the Cuckoo search algorithm (CuSA-

ANFIS). In the second method, a hybrid CuSA and ALO algorithm was 
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utilized to optimize the parameters of a fractional order PI controller 
(CA-FOPI). The proposed algorithms were tested at two wind speeds, 
names 15 m/s and 10 m/s. At both 10 m/s and 15 m/s, it was observed 
that ALO-FOPI and CA-FOPI produces an identical and superior sta-

tor reactive power percentage overshoot than Cu-ANFIS. For both wind 
speeds, all three control algorithms responded identically with regards 
to the dc link voltage regulation. The results presented for the stator 
active power were unclear hence could not be analyzed. Furthermore, 
to clearly compare ALO algorithm and CuSA, it would have been prof-

itable to implement a PI and ANFIS controller which is optimized using 
ALO.

5. Summary and discussion of techniques reviewed

Table 1 summarizes the swarm-based MOT that were discussed in 
this paper. The summary state the merits, demerits, and application of 
each technique to the control of the DFIG. The development of PSO has 
been an excellent advancement in science. Since its inception, PSO has 
been used countless times to solve optimization problems. It has also 
paved the way for other swarm-based MOT to arise. However, theory 
upon which PSO stands is basic. Practically, flocks of birds and schools 
of fish display highly complex and intelligent behavior, which has not 
been incorporated into the algorithm. PSO is one of the few swarm-

based MOT which displays fast convergence, hence modification and 
incorporation of intelligent behavior of fish and birds may result in PSO 
once again being a superior optimization technique. A similar obser-

vation holds true for GWO. The idea of utilizing the ranking of wolves 
within a pack was innovative, but the equations of the optimization tool 
are very basic. Wolves display exceptional survival tactics, and more 
careful observation of their behavior could result in alleviation of the 
algorithms disadvantages. The idea upon which CSA and CuSA stand 
are interesting, however the equations of these algorithms are not com-

plex enough to simulate the relative behavior.

ABC, WOA, BA and SSA are complex in structure, and account for 
many of the characteristics of the respective swarms. However, some 
key aspects are missing. For example, in a bee colony, the queen bee 
plays an important role in the colony. The effect of incorporating the 
behavior of the queen bee should be investigated. Likewise, it may be 
beneficial to consider the hunting strategies of other whales so as to 
broaden and enhance the capabilities of WOA. SSA considers only the 
foraging behavior of flying squirrels. This could be broadened to incor-

porate the behaviors of other types of squirrels. A similar suggestion is 
given to the BA, which is based on the behavior of the microbat. BA and 
SSA have thus far looked promising, but they have yet to be extensively

tested. To validate their capabilities, rigorous testing and application is 
required. The same applies for ALO, SFLA, MFO, SFO and FA. Regarding 
ALO, the mathematical representation of the holes dug is simple. This 
type of representation should be investigated thoroughly so as to en-

sure strong simulation of the effect of these holes on ants. It is observed 
that of the techniques discussed, BFOA is by far the most complex. It is 
evident that this technique incorporates most, if not all, of the behav-

ioral traits of the E. Coli bacterium. This can be attributed to the large 
amount of literature concerning this bacterium. BFOA seems to have a 
lot of undiscovered potential, which should be researched.

Various comparisons between conventional techniques are pre-

sented in literature. A comparison between ABC and PSO is presented 
in [166]. When tested on various unimodal and multimodal benchmark 
functions, it is observed that both algorithms display identical charac-

teristics in the case of unimodal functions. For multimodal functions, 
ABC outperforms PSO. It is also observed that ABC is more sensitive 
to population and dimension sizes. This opens a wide area of research, 
as the effects of these parameters were not investigated in current lit-
erature. Another comparison is presented in [167], where PSO, FA, 
ABC, CSA and GWO are fared against each other. Considering unimodal 
functions, GWO was superior in 6 of 7 functions. GWO also produced 
good results in fixed dimensional multimodal functions. However, this 
26
Fig. 23. Comparison of discussed techniques in terms of convergence rate, ex-

ploitation, and exploration capabilities.

is not the case for standard multimodal functions. CSA produced the 
worst average results among all the techniques, showing the strong 
need for improvement. A comparison between PSO and SFLA is pro-

vided in [168]. The results show that SFLA produced the overall best 
convergence rate and search accuracy. However, unlike PSO, it was 
found that SFLA is highly sensitive to user defined parameters, in par-

ticular the number of frogs and number of memeplexes. BA and BFO 
are fared against each other in [169]. When applied to a wide range of 
benchmark function, it was observed that BFO was superior in terms of 
accuracy. However, BA produced a faster convergence rate.

From Table 1, it is observed that many of the discussed swarm-based 
MOT suffer the demerit of being easily trapped in the local optima. The 
good news, however, is that various advancements have been made to 
correct this. It is also seen that the demerits of some MOT have not 
yet been established. This does not necessarily mean that none exist, 
but rather points to a lack of investigation into the operating capabil-

ity of the algorithm. With regards to the application of swarm-based 
MOT to the control of the DFIG, it is observed that PSO is the most es-

tablished in this aspect. Other techniques have been applied once or 
twice, but not comprehensively. However, the efficacy of PSO as an 
optimization tool For DFIG control is not well validated. A similar is-
sue is observed with CuSA and FA. With regards to DFIG application, 
The BA and ALO show promise, but require much more rigorous test-

ing to be validated. The CSA proved to be ineffective when applied to 
the DFIG, and modifications to this algorithm should be presented be-

fore considering reapplication of this algorithm to the DFIG. GWO and 
ABC have displayed positive results thus far, but it is evident that these 
techniques have room for enhancement. BFO and MFO show strong ca-

pabilities when applied to the DFIG. However, these techniques have 
not been extensively applied to the DFIG, hence their efficacy is yet to 
be validated. Lastly, it is seen that some swarm-based MOT are yet to 
be applied to the control of the DFIG. Examples of these are SFO, SSA 
and SFLA. Fig. 22 provides a visual representation of the convergence 
rate, exploitation and exploration capabilities of each of the algorithms 
discussed. In Fig. 23, a value of 1 represents a weak capability, 2 rep-

resents an average capability, a 3 represents a strong capability. From 
Fig. 23, it is evident that various swarm-based MOT have a weak ca-

pability when it comes to exploration, and majority of the algorithms 
have an average capability when considering exploitation. Considering 
an equal weighting of all three factors, it is observed that the SFO pro-

vides the best overall response. Therefore, its lack of application to the 
control of the DFIG is an interesting and possibly promising area of re-

search.

Table 2 provides a method for choice of algorithm for specific appli-

cations to the DFIG. From this Table, it is observed that should one want 
to attempt to optimize PI controllers for standard control of the DFIG, 
various algorithms may be used. In the situation where optimization of 
FOPID controller gains for standard control is required, the CuSA and 
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Table 1. Summary of reviewed swarm-based metaheuristic optimization techniques.

Swarm technique Merits Demerits Application to the DFIG Significant findings regarding ap-

plication to DFIG

Particle swarm optimization Fast convergence rate [66, 67] ∙ Poor accuracy

∙ Easily trapped in local minima 
[66, 67, 68]

∙ Optimization of parameters of 
sliding mode controller [61]

∙ Optimization of PI controller 
gains to analyze small signal 
stability [69]

∙ Optimization of PID controller 
gains for standard control [71]

∙ Optimization of FLWRBFN for 
stability enhancement of a 
DFIG based ocean energy con-

version system

∙ Optimization of dish Stirling 
system incorporating DFIG for 
maximum power point track-

ing enhancement and receiver 
temperature regulation

∙ Regarding PSO optimized slid-

ing mode controller, empha-

sis was given to the efficacy 
of the proposed controller and 
not on the effectiveness of PSO 
with regards to parameters op-

timization

∙ In the case of both small and 
large disturbances, PSO opti-

mized PI controllers produce 
strong overshoots and damp-

ing rates

∙ Considering standard control, 
PSO optimized PID controllers 
produce superior results in all 
aspects when fared against the 
supervisory control method

∙ Considering PSO optimized 
FLWRBFN for stability en-

hancement, emphasis was 
given on the efficacy of the 
proposed controller and not 
on the effectiveness of PSO 
with regards to parameter 
optimization

∙ Considering optimization of 
dish Stirling system incorpo-

rating DFIG, emphasis was 
given on the efficacy of the 
proposed controller, and not 
on the effectiveness of PSO 
with regards to parameter op-

timization

Bacteria foraging optimization Not easily trapped in local min-

ima [79]

Not yet established ∙ PI control gain optimization 
for standard control [48]

∙ PI controller gain optimization 
for damping of low frequency 
oscillations [80]

Considering standard control, 
BFO optimized PI controllers 
produce superior results in all 
aspects when compared to PSO

Grey wolf optimization Strong local search capability 
[82]

∙ Poor global search capability

∙ Slow convergence at the latter 
part of the algorithm [81, 82, 
83]

Optimization of FOPID controller 
gains for standard control [85]

When compared to PSO-PID and 
BFO-PID the GWO optimized 
FOPID controller produced a su-

perior rise time, settling time and 
overshoot. However, it proved to 
be inferior to BFO-PID when con-

sidering disturbance rejecting ca-

pabilities.

Artificial bee colony Strong global search capability 
[93]

Slow convergence rate [94, 95, 
96]

Optimization of PI controller 
gains for standard control [98]

ABC optimized PI controllers pro-

duce superior overshoots to PSO 
and GWO optimized PI con-

trollers, but an inferior dynamic 
response

Whale optimization algorithm Strong global search capability 
[105]

∙ Poor accuracy

∙ Slow convergence rate [106]

Not yet established Not yet established

Crow search algorithm ∙ Flexible

∙ Requires knowledge of only a 
few parameters

∙ Easily trapped in local minima

∙ Slow convergence rate [110]

Optimization of PI controller 
gains for standard control [112]

CSA optimized PI controllers pro-

duced mixed results when fared 
against Genetic Algorithm and 
the supervisory control method. 
CSA proved to be an unsuitable 
method for PI controller tuning 
for standard control

Bat algorithm Fast convergence rate [118] ∙ Poor accuracy

∙ Easily trapped in local minima 
[114]

Optimization of parameters of 
sliding mode controller [123]

BA optimized sliding mode con-

troller was superior to the con-

ventional sliding mode controller 
and PI controller tuning with re-

spect to rise time and settling 
time. However, there did exist 
a minor unbalance in the stator 
voltage waveforms

(continued on next page)
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Table 1 (continued)

Swarm technique Merits Demerits Application to the DFIG Significant findings regarding 
application to DFIG

Squirrel search algorithm Strong stability [124] ∙ Poor accuracy

∙ Easily trapped in local minima 
[124]

Not yet established Not yet established

Moth flame optimization Robust selection capability 
[131]

∙ Easily entrapped in local op-

tima

∙ Stagnant convergence rate 
[128, 131, 132]

Optimization of PI controller 
gains for standard control [133]

When compared to various other 
MOT, MFO optimized PI con-

trollers displayed enhanced max-

imum power point and fault ride 
through capabilities

Sailfish optimization algorithm ∙ Fast convergence rate

∙ Not easily trapped in local 
minima [134]

Not yet established Not yet established Not yet established

Cuckoo search algorithm Requires knowledge of only a 
few parameters [141]

∙ Slow convergence rate [142]

∙ Easily trapped in local minima 
[141, 142]

∙ Optimization of PI controller 
gains for standard control

∙ Optimization of FOPID con-

troller gains for standard con-

trol [143]

Regarding both the PI and 
FOPID controllers optimized us-

ing CuSA, very little analysis was 
provided. Critical aspects such as 
rise time and settling time were 
not considered. Further, there 
was no comparison to optimiza-

tion using other MOT

Firefly algorithm Not yet established ∙ Slow convergence rate [146, 
149]

∙ Easily trapped in local minima 
[146, 150]

∙ Optimization of POD con-

troller gains for stabilization 
of inter area oscillations [151]

∙ Optimization of PI-PD con-

troller gains for frequency reg-

ulation

∙ Optimization of PID controller 
gains for frequency regulation 
[152]

∙ Considering FA optimized 
POD, emphasis was given 
on the proposed control 
structure, and not on the 
effectiveness of the optimiza-

tion technique

∙ Regarding FA optimized PI-PD 
and PID controllers, the PI-PD 
controller was superior in all 
aspects concerning frequency 
regulation.

Shuffled frog leaping algorithm Fast convergence speed [157] Not yet established Not yet established

Antlion optimization algorithm Not yet established Optimization of FOPI controller 
gains for standard control

ALO optimized FOPI controller 
seems to be promising in terms 
of standard DFIG control.
Table 2. Choice of algorithms for specific application to DFIG.

Objective Suggested technique/s

PI control gain optimization for standard control PSO, ABC, CuSA, MFO

PI controller gain optimization for damping of low fre-

quency oscillations

PSO

Optimization of FOPI controller gains for standard control ALO

Optimization of FOPID controller gains for standard con-

trol

CuSA, GWO

Optimization of PI controller gains to analyze small signal 
stability

PSO

Optimization of PID controller gains for standard control PSO

Optimization of parameters of sliding mode controller PSO, BA

Optimization of POD controller gains for stabilization of 
inter area oscillations

FA

Optimization of PID controller gains for frequency regula-

tion

FA

GWO seem the best choice. For optimization of parameters of sliding 
mode controllers, PSO and BA should be the algorithms utilized. It is 
important to note, though, that the application of swarm-based MOT to 
the control of the DFIG has not been achieved extensively. This means 
that, for the objectives defined in Table 2, various other swarm-based 
MOT (in addition to the ones presented) have the potential to yield de-

sired results.

6. Simulation-based analysis of common swarm-based MOT

In this section, a simulation-based analysis of the results of various 
well-known techniques is carried out. These techniques are PSO, ABC, 
and WOA. These algorithms are applied to three benchmark functions, 
at three dimension magnitudes. The information regarding the test func-

tions can be found in Appendix A. To allow for a fair comparison, the 
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number of search agents and particles were kept uniform across all three 
algorithms. Owing to the stochastic nature of MOT, each algorithm was 
run 20 times. The results in Table 3 are given in terms of average value, 
and standard deviation. Both of these, in conjunction with the conver-

gence rate, are critical parameters in the analysis of MOT.

Considering the results of the 5 dimension set, it is observed that 
for F1, the ABC yields the best average value. This is succeeded by 
the WOA. For F2 and F3, the WOA produces the best result, with PSO 
producing the poorest average value. However, for these results, the 
ABC showed a superior standard deviation to the WOA. This indicates 
an inferiority of WOA to ABC in terms of performance stability. For the 
results of the 50 dimension set, the WOA generated the best average 
value with the ABC having the poorest response. For F1 and F2, PSO 
showed greater stability to WOA, while for F3 the WOA produced the 
poorest stability performance. As with the 50 dimension set, the WOA 
yielded a superior average value for all three functions, with the ABC 
producing the poorest result. Considering stability, WOA is superior for 
F1 and F2, but is inferior to both PSO and ABC for F3.

Figs. 24–26 depict the convergence curves of each algorithm, for 
each test function and at each of the dimension magnitudes utilized. 
Considering Fig. 24, for F1, ABC yielded the best convergence rate, with 
PSO yielding the worst in this aspect. For F2, once again PSO generated 
the poorest response. ABC is superior to WOA until about 45 iterations, 
after which WOA outperforms the former. A similar result is seen for 
F3, with the different being that the superiority of WOA presenting at 
75 iterations.

Considering Fig. 25, for F1, ABC generated the poorest response. 
PSO proved to be superior to WOA until about 20 iterations, after which 
WOA exhibits dominancy. A near identical trend is observed for F2. 
This is not the case for F3, where WOA is superior, and ABC once again 
yielding the poorest result. Considering Fig. 26, for F1, ABC generated 
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Fig. 24. Convergence curves of algorithms at 5D for (a) F1, (b) F2 and (c) F3.

Fig. 25. Convergence curves of algorithms at 50D for (a) F1, (b) F2 and (c) F3.

Table 3. Comparison of PSO, ABC and WOA for three benchmark functions at 
5, 50 and 100D.

Function Dimension PSO ABC WOA

1 5 Mean 364 0.08 32.42

Std 499 0.07 98.69

Rank 3 1 2

2 Mean 0.54 0.17 0.14

Std 0.23 0.04 0.14

Rank 3 2 1

3 Mean 28.23 4.22 1.44

Std 12.21 1.08 6.47

Rank 3 2 1

1 50 Mean 7.76E+05 30.50E+05 3.34E+05

Std 6.03E+05 10.36E+05 6.68E+05

Rank 2 3 1

2 Mean 1.15 6.12 0.05

Std 0.07 0.83 0.16

Rank 2 3 1

3 Mean 604.39 650.64 181.82

Std 73.16 43.91 154.84

Rank 2 3 1

1 100 Mean 2.59E+06 27.12E+06 5.58E+05

Std 1.97E+06 3.37E+06 1.28E+06

Rank 2 3 1

2 Mean 1.33 25.46 5.55E-18

Std 0.18 1.69 2.48E-17

Rank 2 3 1

3 Mean 1390.33 1644.30 645.32

Std 120.28 36.98 174.59

Rank 3 2 1

the poorest response. PSO exhibited dominancy to WOA until about 25 
iterations, after which WOA proved to be superior. A similar trend is 
observed for F2, this time the WOA obtaining dominancy at a slightly 
smaller iteration count. For F3, WOA proved to be superior, and ABC 
once again yielding the poorest result.

7. Conclusion

This paper provided a review on swarm-based Metaheuristic Opti-

mization Techniques in terms of algorithm structure, merits, demerits, 
and application to the control of the DFIG. While there exist numer-

ous swarm-based Metaheuristic Optimization Techniques, only fourteen 
techniques were covered in this paper. The swarm-based techniques 
which featured in this paper were PSO, BFO algorithm, ABC optimiza-

tion, GWO, BA, SSA, CuSA, FA, MFO, SFO, ALO, SFLA, CSA and WOA. 
The theory behind these algorithms, as well as their mathematical mod-

els, were provided. It was seen that while all these algorithms differ in 
terms of structure and method of optimization, they share some com-

monalities. The biggest commonality is the stochastic nature of the 
algorithms. All these metaheuristic optimization techniques rely on the 
use of randomized numbers, usually between 0 and 1.

When considering applications of swarm-based metaheuristic opti-

mization techniques, there exist various examples in engineering. While 
the techniques provide strong performances in general, many of the 
conventional algorithm suffer the demerits of a poor rate of conver-

gence and being easily entrapped in the local minima. However, the 
good news is that these problems have been ameliorated in many of 
the algorithms. The demerits of the SFO algorithm and BFO algorithm 
have not yet been discovered. Based on the observable demerits of 
the other algorithms, this can be successfully investigated. However, 

when it considering the application of these techniques to energy gen-

eration systems, not many examples exist. Considering application to 
29
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Fig. 26. Convergence curves of algorithms at 100D for (a) F1, (b) F2 and (c) F3.
the DFIG, only particle swarm optimization has been researched and 
applied somewhat thoroughly. Some algorithms like GWO, ABC opti-

mization, BFO algorithm, CuSA, FA, ALO, MFO, CSA and BA have only 
been applied once or twice. Other algorithms like SFLA, SSA and SFO 
are yet to be applied to the DFIG. When applied to the DFIG, swarm-

based MOT have produced good results. However, due to the lack of 
application and rigorous testing of these techniques, extensive testing 
is required to validate their effectiveness. Hence it would be beneficial 
to research and apply the algorithms, especially those which are yet to 
be done so. Upon completion of this article, the authors propose the 
following future scope of work to be completed:

• An investigation into the demerits of BFO and SFO and measures to 
overcome possible demerits.

• The application of the SFLA, SSA and SFO to the control of the DFIG.

• The application of the modified swarm-based MOT, which are dis-

cussed in this paper, to the control of the DFIG.

• An investigation into other swarm-based MOT. This is in terms 
of structure, mathematical modelling, shortcomings, advancements, 
and application to the control of the DFIG.

• An investigation into physics-based algorithms, evolution-based al-

gorithms, and human related algorithm. This is in terms of structure, 
mathematical modelling, shortcomings, advancements, and applica-

tion to the control of the DFIG.

• The combining of MOT and thereby creating hybrid algorithms to 
be applied to the DFIG. This would be for the intention of combining 
the merits of two algorithms and thereby eliminating the demerits 
of such algorithms.
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Appendix A. Benchmark function details

Function 
number

Function 
name

Description Range Optimum

F1 DixonPrice
(𝑥1 − 1)2

+
∑𝑑

𝑖=2 𝑖(2𝑥
2
𝑖
− 𝑥𝑖−1)2

[−10,10] 0

F2 Griewank
1 + 1

4000
∑𝑑

𝑖=1 𝑥
2
𝑖

−
∑𝑑

𝑖=1 cos(
𝑥𝑖√
𝑖
) [−60,60] 0

F3 Rastrigin
10d
+
∑𝑑

𝑖=1[𝑥
2
𝑖
− 10cos(2𝜋𝑥𝑖)]

[−5.12,5.12] 0
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