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REVIEW

Tumor Growth Dynamic Modeling in Oncology Drug 
Development and Regulatory Approval: Past, Present,  
and Future Opportunities

Nidal Al-Huniti1, Yan Feng2, Jingyu (Jerry) Yu3, Zheng Lu4, Mario Nagase5, Diansong Zhou5 and Jennifer Sheng2,*

Model-informed drug development (MIDD) approaches have rapidly advanced in drug development in recent years. 
Additionally, the Prescription Drug User Fee Act (PDUFA) VI has specific commitments to further enhance MIDD. Tumor 
growth dynamic (TGD) modeling, as one of the commonly utilized MIDD approaches in oncology, fulfills the purposes to 
accelerate the drug development, to support new drug and biologics license applications, and to guide the market access. 
Increasing knowledge of TGD modeling methodologies, encouraging applications in clinical setting for patients’ survival, 
and complementing assessment of regulatory review for submissions, together fueled promising potentials for imminent en-
hancement of TGD in oncology. This review is to comprehensively summarize the history of TGD, and present case examples 
of the recent advance of TGD modeling (mixture model and joint model), as well as the TGD impact on regulatory decisions, 
thus illustrating challenges and opportunities. Additionally, this review presents the future perspectives for TGD approach.

Model-informed drug development (MIDD) approaches 
have advanced rapidly in drug development in recent years. 
Additionally, the Prescription Drug User Fee Act (PDUFA) VI 
has specific commitments to further enhance MIDD. Tumor 
growth dynamic (TGD) modeling, as one of the commonly 
utilized MIDD approaches in oncology, fulfills the purposes 
to accelerate the drug development, to support new drug 
and biologics license applications, and to guide the market 
access.1 TGD modeling’s scope includes the assessment 
of tumor growth inhibition/tumor shrinkage and tumor re-
growth, and their potential as surrogates of predicting the 
survival probability with the cancer treatment.

The TGD approach has been utilized across various drug 
development stages. In preclinical and translational stages, 
it was used to select promising drug candidates, to as-
sist the pharmacological projection of the starting human 
dose in first-in-human trials, and to leverage clinical can-
cer patient data.1 TGD models have also been applied in 
early and late stages of clinical development.2,3 During the 
phase 1/II stage, TGD can support early clinical decisions 
(i.e., “Go/No-go” decisions for moving to phase III), via pre-
dicting survival outcomes using the longitudinal tumor size 
data as the surrogate metrics.4 Additionally, TGD can also 
address the medical concerns in clinical practice, such as 
the impact of clinical covariates by quantifying the effects 
of genotype variations on patient response.5 In addition, 
TGD models have been applied to identify the sub-patient 
populations who would benefit the most for an intended 
treatment.6 Further, models based on tumor growth data 
obtained from patients can help in deciding on the optimal 

dose and dosing algorithms for individual patients during 
market access.

At the recent American Conference on Pharmacometrics 
(ACoP) Annual Meeting in 2018, a systematic presentation 
of TGD, including its history and utilities,7 were discussed 
in a symposium, thus illustrating challenges and opportuni-
ties. Subsequently, several research articles were published, 
focusing on specific areas of TGD models, such as tumor 
resistance models,8 and expansion of joint model with new 
lesions.9 This review is to present the comprehensive view 
of TGD, from its origin, to advanced mathematical method-
ologies, to its applications in clinical development, and to 
regulatory authorization. The presentations and the discus-
sions now are summarized in this review. Additionally, this 
review presents the future perspectives for the TGD approach, 
including its innovated applications during the unprece-
dented coronavirus disease 2019 (COVID-19) pandemic.

TGD MODEL DEVELOPMENT HISTORY

The history of TGD modeling can be tracked to the early 
1930s, when Mayneord10 modeled rat sarcomas and found 
a linear model best fits the data, and Schreck11 followed 
up with modeling Walker tumors in rats and confirmed 
the linear growth rate. After a big quiet gap between the 
1930s and 1950s, observed clinical tumor doubling times 
suggested exponential growth of tumors instead of lin-
ear.12,13 Around 1961, Schwartz14 had conducted, for the 
first time, a mathematically rigorous examination of human 
tumor growth kinetics, and proposed a differential equation 
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model that the rate of tumor growth was proportional to 
the current tumor size. Based on this first-order growth 
model, some flexibilities were added to the model to in-
corporate both exponential and linear growth by varying 
the value of exponent on the current tumor size between 
0 and 1.15 However, this model was yet to explain why the 
tumor growth rate slowed down as the tumor grows larger. 
Four years later, Laird16 overcame this limitation by using 
a Gompertz model, which included the maximum size to 
which the tumor can grow, namely the carrying capacity 
in the model. The Gompertz model is still an exponential 
growth model, but its rate of growth is no longer a constant 
as in the model proposed by Schwartz, and is exponen-
tially decreasing with time as well. The Gompertz model is 
more biologically sound to describe the profiles of tumor 
growth than previous models, and its first application for 
human tumor data was for patients with multiple myeloma 
by Sullivan and Salmon in 1972.17 Besides the Gompertz 
model, the logistic model and Bertalanffy model were also 
proposed to explain the slowing-down phenomenon of 
tumor growth, whereas the Gompertz model and logistic 
model used different inflection points. Basically, all these 
models can be written as a generalized two-parameter 
growth model,18 dV/dt = aV α -bV β , which incorporates two 
processes, tumor growth and cell death.

The inhibitory effect of chemotherapy was modeled by 
Jusko19 based on Skipper-Schabel-Wilcox model20 to ir-
reversibly reduce tumor size by a constant fraction. Later, 
Norton and Simon21 refined the Skipper-Schabel-Wilcox 
model with Gompertz model, and the death rate in response 
to treatment is considered to be directly proportional to the 
growth rate at the time of treatment. The drug effect in these 
models assume that cell killing is directly related to drug 
concentrations, however, it fails to account for important as-
pects, including the lag time between drug concentrations 
and continuous cell death when drug concentrations be-
come zero. Lobo and Balthasar22 used transit-compartment 
model to describe the delay the time course of cell killing, 
relative to the time course of drug exposure. Other similar 
models incorporated delay effects, including the model by 
Simeoni et al.23 in 2004, which accounted for delays after 
cessation of drug therapy, and the model by Bueno et al.24 
in 2008, which used a biomarker delay to account for the 
drug effect. Kay et al. (2012) applied an upstream and down-
stream compartment to account for the delays, and Tate et 
al.25 used a modified Simeoni model to account for bio-
marker delays and to split the tumor into growing cells and 
drug-resistant cells.

Besides these ordinary differential equation (ODE) or al-
gebraic models, partial differential equation models, such 
as multiscale models and agent-based models, have 
been used in the history of TGD modeling. In contrast to 
ODE models, which assumed that drug concentration is 
homogenous within a compartment, partial differential 
equation models assumed drug concentrations vary in time 
and space, and could incorporate the compound’s bio-
pharmaceutical characteristics into the models (e.g., 
diffusion coefficient, vascular and/or cellular permeability, 
and surface area) to reflect the biological and pharmacolog-
ical mechanistic. Multiscale models26 applied quantitative 

system pharmacology principles to model TGD over time 
and considered microscale and macroscale time. Gerlee 
and Anderson27 associated background oxygen concen-
tration and matrix density to the tumor growth rate and its 
morphology; Macklin et al.28 published microscopic-macro-
scopic composite models of tumor-induced angiogenesis 
and growth response in 2009. Generally, agents in agent-
based models are independent, not centrally governed, 
heterogeneously active, or adaptive. Agent-based mod-
els are discrete event models and were used to model the 
complex behavior of individuals, spread of epidemics, pop-
ulation dynamics, and human immune system to provide 
more details of biology of tumor at individual level. In 2017, 
Jalalimanesh et al.29 performed simulation-based optimiza-
tion of radiotherapy based on agent-based modeling and 
reinforcement learning.

Clinically, modeling human tumor growth is challenging 
due to between subject variability, responders vs. nonre-
sponders, therapy-induced resistance, and the difficult to 
estimate resistance or regrowth parameters in the model 
because of censoring. Wang et al.3 modeled tumor growth 
of 3,398 patients with non-small cell lung cancer from 4 
registration trials (bevacizumab, docetaxel, erlotinib, and 
pemetrexed), which included 8 active treatments and 1 pla-
cebo regimens. The tumor growth was modeled with the 
combination of exponential shrinkage and linear regrowth. 
Overall survival (OS) was also modeled as a function of 
change in tumor size at week 8, however, drug effect was 
not captured in the model. A similar approach was utilized 
by Claret et al.30 in 2009 to model tumor growth inhibition 
in both phase II (n  =  34) and phase III (n  =  252) trials of 
capecitabine, and the relationship between change in tumor 
size at week 7 and OS in patients with first-line advanced 
or metastatic colorectal cancer. Drug exposure was in-
cluded as an effect on tumor shrinkage in Claret’s model to 
describe tumor growth inhibition. Although different types 
of tumor growth models could describe the same tumor 
growth profile, the selection of biologically appropriate TGD 
models should address the pertinent question. Currently, 
most TGD models are ODEs or algebraic function forms, 
especially within the pharmacokinetic/pharmacodynamic 
field. The summary of key equations of these models can be 
found in Supplementary Table S1. The biggest challenge 
in TGD modeling is how to translate preclinical models to 
clinical application, which requires deeper understand-
ing across biological species and efficient implementation 
mathematically.

MIXTURE OF TUMOR GROWTH DYNAMIC MODELING 
OF IMMUNO-ONCOLOGY AND CHEMOTHERAPY 
AGENTS

The new era of immuno-oncology therapy warrants new 
thinking and methodologies to evaluate the TGD of patients 
with cancer. Unlike chemotherapy, patients with immu-
notherapy, such as checkpoint inhibitors, demonstrated 
unique tumor dynamics profiles, in which tumor shrinkage 
occurs initially and then maintains at the steady-state tumor 
burden level for a long time in those patients with stable 
disease, partial response, or complete response. Many 
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previous published TGD models3,31 assumed a uniformed 
pattern of tumor dynamic, which limited its capability 
of describing the unique tumor dynamic pattern for im-
munotherapy. It is important to extend the previous TGD 
modeling work to better account for the heterogeneity in 
tumor response of immunotherapy. Mixture of models is an 
appropriate approach, which enable the description of dif-
ferentiated TGD patterns as subpopulations.

Ipilimumab phase III CA184169 study32 was used to 
demonstrate such an example. Both the characterization 
of tumor profile using longitudinal tumor size data and its 
association with OS were evaluated. The flow chart of TGD 
model development is presented in Figure 1. Nonmixture 
model was first developed using previous published TGD 
models.3,31 The uniformed pattern of tumor dynamic mod-
eling structure was used to describe the time-course of 
target tumor burden, in which the formula included function 
of time using a combination of terms for tumor shrinkage 
and growth. For example, the two components (shrink-
age and growth) described in the published Wang3 model, 
in which the term describing growth (TG× t) increases 
over time, and whereas the term describing shrinkage 
(TB0×e

−TS×t) approaches the value of zero, over time. 
Therefore, this model is mathematically unable to describe 
the scenario where the tumor burden only decreases with 
time and never grows.

To address this limitation, we implemented a mixture 
version of the Wang3 model that allows for differences in 
parameter distributions in each mixture population, as well 

as a modified structural model in one of the subpopulations 
(the “no growth” subpopulation) in which the growth term 
is replaced by a term describing the steady-state value of 
tumor burden.33 Bayesian information criterion (BIC) was 
used as model selection criteria. The improvement in the 
fit of the data with the mixture TGD model can be clearly 
illustrated by a comparison of goodness-of-fit plots for the 
mixture and nonmixture TGD models. The mixture model 
provides a better description of observed data than the 
nonmixture model, particularly in the “fast” and “no growth” 
subpopulations. The better model performance of the mix-
ture model is expected, given the substantial decreasing 
of BIC value (430 points lower) relative to that of the non-
mixture model. In addition, the mixture model with three 
subpopulations (“fast,” “intermediate,” and “no growth”) 
can further improve the description of tumor dynamics as 
compared with the other tested models (2-subpopulation 
and nonmixture models), which was selected for subse-
quent covariate model development to predict survival 
outcome of the study.

Even though ipilimumab exposure (Cavg1) was not a sig-
nificant covariate on TGD model, the percentage of patients 
in the “intermediate” and “no growth” subpopulations were 
higher in the 10 mg/kg dose group than in the 3 mg/kg dose 
group. These results suggested that more patients might 
achieve durable responses at a higher dose of ipilimumab, 
which may also be associated with better OS in the higher 
ipilimumab (10  mg/kg) dose group. Therefore, in TGD-OS 
analysis, various tumor metrics were assessed, including 

Figure 1  Schematic overview of tumor growth dynamic (TGD) model development. *Note: The flow chart provided schematic overview 
of TGD model development. The steps could be modified depending on the questions to be addressed by TGD model. Bayesian 
information criterion (BIC) is used as model selection criteria. Various published function forms are explored in nonmixture model 
development, together with the assessment of interindividual variability and residual error models. The best nonmixture model (model 
with lowest BIC) is used to guide the development of mixture base model. Covariates including subjects’ baseline characteristics (e.g., 
age and body weight), exposure metrics (e.g., minimum concentration (Cmin), maximum concentration (Cmax)) and laboratory and/or 
biomarker assessment (e.g., albumin, lactate dehydrogenase) are included in the full model to assess their effect on TGD parameters. 
Final mixture model might be development using backward elimination approach.
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TGD parameters (tumor shrinkage and tumor growth rate), 
relative change in tumor burden at week 8, and progres-
sion rate at week 8 (PRW8). PRW8, derived from the first 
derivative of Wang model, was identified as the best predic-
tor of OS relative to all the other tested metrics. The model 
evaluation showed that the OS model using a nonmixture 
model-derived tumor metric was not able to provide ade-
quate description of the OS data, which provided further 
evidence of better TGD-OS model performance using tumor 
metrics generated from mixture TGD model. Moreover, 
sensitivity analysis showed that including mixture sub-
population as a covariate further improved the OS model 
fitness, as indicated by the lower BIC value. This suggests 
the prediction of risk of death was improved between sub-
populations after accounting for the individual tumor metric 
effect on OS. In addition, it should also be noted that there 
is more variability in the derived PRW8 variable in the mix-
ture model compared with the nonmixture model, and the 
variability tends to shrink to 0 in the nonmixture model. This 
leads to less differentiation for the TGD effect on OS (as 
evidenced by the lower BIC (by 33 points) for the OS model 
when the tumor response measure is derived from the TGD 
mixture model).

Even though the OS model using PRW8 from the mix-
ture model provided better fit of OS data relative to the 
model using PRW8 from the nonmixture model, the model 
appears to underpredict OS at 10 mg/kg dose group. The 
development of the joint TGD-OS model might be able 
to address the issues of lack of sensitivity in the current 
TGD-OS model regarding the hazard ratio (HR) between the 
two treatment arms. In summary, the mixture model allows 
improved characterization of different patterns of tumor 
dynamics compared with that of the nonmixture model, es-
pecially in subjects who had long durable response with 
immunotherapy. More importantly, the utilization of tumor 
response measures from a mixture model improves the OS 
prediction.

JOINT MODELING OF LONGITUDINAL TUMOR SIZE 
AND SURVIVAL ANALYSIS IN SOLID TUMORS

The oncology clinical development community has bene-
fited greatly from the increased standardization enabled by 
the Response Evaluation Criteria in Solid Tumors (RECIST), 
and RECIST has been used as a basis for drug development 
strategies and accelerated approvals through the char-
acterization of overall response rate and progression-free 
survival (PFS).34,35 However, the same criteria are applied 
across a wide range of tumor types/sites and treatment 
modalities, despite reasonable expectations that tumor re-
gression patterns associated with treatment benefits may 
vary across tumor types and therapeutic treatments. In this 
context, one idea to overcome the problem would be to de-
velop a generalized statistical model to interrogate different 
aspects of RECIST criteria as a surrogate for the primary 
outcome of interest, the OS, and applying the joint model 
could be helpful for the aim.

The joint modeling methodology36 brings TGD and 
time-to-event data together and models them simultane-
ously, so that the dynamic nature of disease progression is 

incorporated in the modeling of OS, allowing one to assess 
the relative weights of each criterion in RECIST, depending 
on their associations with the outcome. It describes tumor 
size measurements over time via a random effect submodel 
or a latent class submodel, then links it to the progression 
or survival time process via a time-varying covariate hazard 
submodel of the latent TGD values without measurement 
error,37 therefore, the TGD model plays an important role in 
joint models.

Data from patients treated with gefitinib or carboplatin/pa-
clitaxel doublet chemotherapy in a phase III study (“IPASS,” 
NCT00322452) were used to develop a joint model using 
a Hamiltonian Monte Carlo Markov chain (algorithm imple-
mented in Stan software).9 Tumor size dynamics m(t) is given 
by a nonlinear exponential growth model: m (t)= t�+sld0e

−�t,  
where sld0 is the initial tumor size measured as sum of  
longest diameter (SLD) and the other parameters � and � 
are empirically introduced to describe the linear growth and 
exponential shrinkage. Individual variabilities depending 
on certain covariates, including emergence of new lesion, 
epidermal growth factor receptor (EGFR), mutation status 
(positive or negative), and treatments (gefitinib or chemo-
therapy), were incorporated on the parameter estimates. 
The longitudinal tumor size m, its first derivative m′ (rate of 
change), and the appearance of new lesions, were used as 
covariates for the proportional hazard. Baseline hazard is 
estimated by using a cubic spline with 6 knots, and a Gauss-
Kronrad quadrature with 13 quadrature points is used to 
numerically integrate the hazard to estimate patient-spe-
cific survival. The time-dependent risk of developing a new 
lesion for a patient can then be derived, given EGFR sta-
tus and treatment arm. These allowed us to simulate from 
the distribution of tumor size trajectories, to calculate the 
individual predicted time-dependent hazard. Given the pre-
dicted time-dependent hazard, the distribution of individual 
survival can be estimated, in which both the disease state 
and the error in the estimated parameters are accounted. 
Therefore, a patient’s likely change in treatment following 
progression can be incorporated into the estimate of the 
hazard (Figure 2). This was achieved by predicting progres-
sion status, then simulating the incidence of progression as 
a Bernoulli random event. Following progression, TGD was 
estimated using a new set of patient-course-of-treatment 
specific covariates and hyperparameters. The joint model 
for OS and longitudinal TGDs fits well to the observed data. 
Both estimated SLD and the rate of change in SLD were 
measurably associated with OS, whereas new-lesion asso-
ciation parameters appear to have negatively impacted the 
OS.

Tumor size dynamics from a more interpretable perspec-
tive, using the same dataset, was also explored.38 The ODE 
model was applied, dm(t)

dt
=kgrm (t)−Δ�e

−�tm (t), where kgr is 
the net tumor growth rate (after the treatment effect is gone), 
Δ� is the intensity of the initial drug efficacy, and � is rate 
of resistance emergence. The solution for the ODE is ex-
pressed as m (t)=m0exp

(

kgrt−
Δ�

�

(

1−e−�t
)

)

, where m0 is 
the initial tumor size. Individual variabilities on the param-
eters are hierarchically assumed by a patient group, which 
is divided by the treatments and EGFR mutation, and pa-
rameters are also estimated in Stan software. The posterior 
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distributions of the parameters for the typical values of each 
group well capture the difference among groups, charac-
terizing treatment effects, and resistance dynamics.38 The 
structure of the model and clearly interpretable parameters 
are versatile to describe a typical pattern of tumor response 
(initial size decrease followed by eventual regrowth) will fa-
cilitate comparison of drug effects and resistance dynamics 
among drugs with mechanism of action, and the use of the 
tumor dynamics model in joint modeling of tumor response 
and survival events.

This work provides an insight regarding the relative pre-
dictive value of RECIST’s components and improvements 
in trial design that can support bringing the next generation 
of therapies to market quickly, safely, and with the highest 
levels of efficacy.

APPLICATIONS OF TGD MODELING IN REGULATORY 
DECISION MAKING

Tumor growth modeling has been included in some regu-
latory submissions to support the treatment effectiveness 
and the dose selection. In oncology trials, dose reduction 
or interruption is often allowed due to the intolerable drug 
toxicities. Additionally, quite commonly, only one dosing 
regimen was investigated in the pivotal trial, as limited by 
practical issues. Further, it is unethical to study an alterna-
tive dosing regimen that may potentially lead to significant 
loss of efficacy or risks of safety, especially the approved 
dose that had demonstrated overall positive clinical bene-
fit-risk profiles. However, the approved dosing regimen is 
yet optimized. Therefore, for certain regulatory approvals, a 
postmarketing requirement is issued to optimize the dosing 
regimen to maximize the benefit-risk in patients. TGD mod-
eling and simulations can play a critical role in leveraging 
existing data from various sources, thus determining dos-
ing regimen(s) to be evaluated in the postmarket study.39,40

Lenvatinib is such an example. As a tyrosine-kinase in-
hibitor, it was originally approved as a first-line therapy to 
treat the differentiated thyroid cancer. Subsequently, it was 
approved for the treatment of advanced or metastatic renal 
cell carcinoma as a second-line therapy in combination with 
everolimus. The approved dose is 18 milligrams lenvati-
nib plus 5 milligrams everolimus once daily. In the pivotal 
trial, patients in the lenvatinib-everolimus combination arm 
showed significant improvement in PFS as compared with 
the lenvatinib and everolimus monotherapy.41 However, 89% 
of the patients in the combination arm experienced a dose 
reduction or interruption due to the drug toxicity, indicating 
the approved dose may not be optimal for the vast majority 
of patients. Therefore, the US Food and Drug Administration 
(FDA) requested a postmarketing study aiming to explore al-
ternative dosing regimens. The FDA reviewers and scientists 
from industry conducted a complex pharmacokinetic/phar-
macodynamic modeling to identify the alternative dose with 
a better benefit risk profile. Exposure-response relationship 
for the time course of tumor size and adverse events leading 
to dose adjustment was established based on the available 
data from phase III trials. In the trial simulation step, a dos-
ing history was generated based on exposure-response 
model for adverse events at different dosing regimen. Then, 
the time course of TGD was predicted at different dosing 
regimen based on the generated exposure profile. The sim-
ulation results suggested 14 mg of lenvatinib with option of 
up titration may provide comparable tumor inhibition to the 
approved dose; therefore, it was selected as alternative dos-
ing regimens in the postmarket study.42

The model-based drug development approach inclu-
sive of biomarkers has been advocated by the FDA, as 
part of its Critical Path Initiative.43 Evidently biomarkers at 
early stage are essential to aid the selection of promising 
candidates, and to optimize the right dose regimen for con-
firmatory phase III studies. However, decision making on 

Figure 2  Prospective predicted tumor size and survival probabilities by subject. Prospective (i.e., out of sample) tumor size and 
survival projections for two subjects in the same Eastern Cooperative Oncology Group (ECOG) status and randomized treatment 
group (“Restricted Activity” and “Gefitinib”). Results are shown first using only data available at baseline (a-tumor load, b-survival), 
and then updated according to results after the first 150 days of treatment (c-tumor load, d-survival). Observed tumor size values 
are shown in plots a and c using points. Posterior predicted values are summarized as median value, with 50% confidence intervals 
shaded. SLD, sum of longest diameter.
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dose selection and evaluation of antitumor activity during 
early oncology drug development remain empirical. The FDA 
embarked on a project aiming to explore the quantitative re-
lationship between clinical outcome (PFS/OS) and tumor 
dynamics for patients with metastatic breast cancer. A two-
step modeling strategy was implemented, including the 
development of TGD and survival models, thus linking the 
tumor size data to the primary clinical end point. A bi-expo-
nential model was chosen to describe the TGD, after testing 
several empirical models to fit the individual tumor size pro-
files in each arm. Cox proportional hazard model was used 
to select the covariates for the subsequent TGD-survival 
modeling. The baseline factors, including demographics, 
prior treatment, receptor status, metastatic organ status, 
and baseline tumor size, were initially selected as covariates 
to establish a semiparametric PFS model. The relative tumor 
size change at week 6, week 9, or week 12 from baseline, 
as well as tumor dynamic parameters tumor shrinkage rate, 
tumor growth rate, or time to growth (TTG), were investi-
gated separately as the tumor size metrics to link with PFS. 
Several commonly used survival functions, including expo-
nential, Weibull, logistic, log-logistic, and log-normal, were 
tested, along with each of the tumor metrics. As a result, the 
final model incorporates the relative tumor size change at 
week 9 and the log-normal function based on internal evalu-
ation by comparing predicted PFS curves and observed PFS 
curves (median and 95% confidence interval). Additionally, 
the Eastern Cooperative Oncology Group or Karnofsky 
Performance Score, triple negative for estrogen receptor, 

progesterone receptor, and HER2 receptor, baseline tumor 
size, TTG, and relative tumor size change at week 9 were 
the statistically significant factors. Simulations showed the 
overall comparability of predicted HR vs. observed HR for 
PFS (Figure 3), except for one trial. A high proportion of 
progression due to nontarget lesion growth or new lesion 
appearance, and large difference in censoring rate between 
two arms observed in this particular trial, might contribute 
to the discrepancy between the observed vs. prediction in 
PFS.

FUTURE PERSPECTIVES AND CHALLENGES

TGD has made significant progress during the last decade 
and many more are underway. However, new methodologies 
and clinical applications can be further advanced by over-
coming the challenges and understanding the limitations.

Advancement in modeling methodology for TGD
The mathematical models of TGD have evolved consider-
ably over the years, from the classical analytical functional 
forms, to the mixture models, and to the complex-joint 
model. This prominent trend has been mainly enabled by 
the increasing availability of computational super-power, 
and the motivation of connecting tumor size to OS. With 
many notable successes in advancing the TGD models, the 
TGD model may have potentials in two folds. First of all, 
the current TGD model applies a population estimate ap-
proach, and a personalized TGD modeling at the individual 

Figure 3  Comparison of predicted hazard ratio and observed hazard ratio of progression-free survival (PFS).

Simulated PFS Hazard ratio

O
bs

er
ve

d 
P

FS
 H

az
ar

d 
ra

tio

0.4 0.6 0.8 1 1.2 1.4

0.
4

0.
6

0.
8

1
1.

2
1.

4

Targeting HER2
Other mechanisms−1st line
Other mechanisms−early line
Late line



425

www.psp-journal.com

Tumor Growth Dynamic Modeling
Al-Huniti et al.

level is yet to be developed. Its underdevelopment may 
be partially limited by large intrasubject variability of the 
tumor size measurement during the treatment.44 An indi-
vidualized TGD model would provide prognostic insights 
and the associated treatment options at the patient level 
in the clinic. Second, with rapidly expanded broader and 
deeper understanding in cancer biology, the incorporation 
of tumor physiology, cellular and molecular heterogeneity, 
and/or genomic alternations, would provide insights for the 
interplay between the tumor growth dynamics and these 
important clinical factors.45,46

Potential impacts in patient individualization and 
oncology drug development
TGD modeling has extensive utilities in the oncology drug 
development, ranging from preclinical efficacy assess-
ment, to the first-in-human dose selection, to the late stage 
drug development. One of the significant impacts of TGD 
is to identify the clinical benefits of a new drug earlier and 
provide mechanistic insights.

Concurrent linkage of TGD and PFS (or OS), along 
with the corresponding baseline characteristics, into a 
single model, namely the joint model, could provide fur-
ther potentials at both the patient level as well as the 
treatment level. For each individual patient, the dynamic 
dependencies and associations between the longitudinal 
tumor-kinetics and the prognosis can be estimated based 
on the “real time” measurements rather than on the static 
information at the baseline, which would enable a more 
accurate assessment of patient progression event.47 In the 
case of the high likelihood of an event occurring, an alter-
native treatment option may be intervened to optimize the 
clinical outcome. At the program level, this simultaneously 
joint modeling could also inform an earlier decision to ei-
ther advance or stop an investigational treatment at the 
early clinical development stage. The same thinking para-
digm was previously developed for non-oncology disease, 
using the joint-modeling approach.48 Today, there exist 
>  69,000 clinical trials registered at clinicaltrials.gov in 
oncology development (Clinicaltrials.gov). This staggering 
large amount of clinical trials sheds promising light for the 
public to access better treatment options, but quite often 
the investigational drugs may not offer improved benefits 
compared with the standard of care. It would be of great 
advantage to the patients if the superior efficacy could be 
assessed earlier on, so that the patients may switch to the 
better treatment option and the drug product development 
would also be accelerated. On the other side, if the treat-
ment is a lack of efficacy, it is unethical to continue the 
participants in the trials and a decision of termination of 
the program would reserve the development resources to 
other more promising assets.

Limitation and future directions
Tumor dynamic analysis has been frequently used for the 
internal decision making to stop or progress a project, but 
such analysis and clinical outcome are seldom reported 
in the literature. The tumor TTG linking with OS model 
has been applied to analyze a failed phase III study of 
motesanib in patients with non-small cell lung cancer, 

and to predict a probability of success of 81% could 
be achieved in a combination study with 250 patients 
per arm.49 Although a phase III study later conducted in 
Asian patients failed to demonstrate motesanib benefit in 
combination with carboplatin/paclitaxel with PFS as the 
primary end point, the model predicted an HR of 0.74, 
which was very close to the observed value (0.81) in the 
clinical trial.50

Most reported the TGD model focused on the SLD of all 
target lesions, therefore, the characterization of tumor dy-
namic represents the average of all target lesions. However, 
the dynamic of single lesions could be drastically different, 
in which some may be more aggressive than others. Utilizing 
individual lesion dynamics to predict OS could be more sen-
sitive and accurate than using dynamics from the SLD of all 
target lesions. Unfortunately, the publication and application 
of individual tumor lesion models in clinical development is 
very limited.8,51

The COVID-19 pandemic presents unprecedented 
challenges to patients, health care providers, and health 
care systems, including treatment of patients with cancer, 
due to self-isolation, significant limitations, or complete 
restriction to outpatient visit, cross-contamination during 
clinical visits, travel restrictions, or other considerations, 
such as the patient with cancer is also infected with 
COVID-19.52–54 The American Society of Clinical Oncology 
(ASCO) provided links for various oncology societies or 
organizations who developed guidance for treating pa-
tients with cancer with priority categories. Along with the 
patients’ specific characteristics, TGD modeling could 
predict the prognostic outcome for each individual pa-
tient, placing the patient with immediately shorter survival 
and clinically unstable conditions, as higher priority. This 
model-based prediction would be complementary to clin-
ical recommendations.55–57 Additionally, when the TGD 
model is jointly developed with the collected time-varying 
drug concentrations for participants enrolled in clinical 
trials, the dynamic relationship between the exposures 
and tumor size can be established. Subsequently, the 
dosing regimen may be modified with elongated dosing 
frequency, as the clinical benefits and risks shift in light 
of increased COVID-19 infection in the general clinical 
setting.

CONCLUSION

In this commentary, we have discussed the history of 
TGD modeling, the current advancement of TGD meth-
odologies, its utilities in oncology drug development and 
regulatory review, and future perspectives. With further 
expansion of computational capacity and clinical patient 
data, TGD modeling would provide greater accuracy on 
the individual patient level for appropriate and timely 
intervention, enhance earlier decisions for new drug de-
velopment, and further aid the regulatory assessment of 
benefits and risks.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).
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