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Abstract: Crops are threatened by numerous fungal diseases that can adversely affect the availability
and quality of agricultural commodities. In addition, some of these fungal phytopathogens have the
capacity to produce mycotoxins that pose a serious health threat to humans and livestock. To facilitate
the transition towards sustainable environmentally friendly agriculture, there is an urgent need to
develop innovative methods allowing a reduced use of synthetic fungicides while guaranteeing
optimal yields and the safety of the harvests. Several defensins have been reported to display
antifungal and even—despite being under-studied—antimycotoxin activities and could be promising
natural molecules for the development of control strategies. This review analyses pioneering and
recent work addressing the bioactivity of defensins towards fungal phytopathogens; the details of
approximately 100 active defensins and defensin-like peptides occurring in plants, mammals, fungi
and invertebrates are listed. Moreover, the multi-faceted mechanism of action employed by defensins,
the opportunity to optimize large-scale production procedures such as their solubility, stability and
toxicity to plants and mammals are discussed. Overall, the knowledge gathered within the present
review strongly supports the bright future held by defensin-based plant protection solutions while
pointing out the obstacles that still need to be overcome to translate defensin-based in vitro research
findings into commercial products.

Keywords: plant disease; fungal pathogens; mycotoxins; biocontrol strategies; defensins

1. Introduction

Fungal plant diseases jeopardize global food security. Actually, staple crops with high
economical and agronomical value, including rice, wheat, maize, potato and soybean, are
threatened by various fungal diseases that can lead to substantial yield losses [1–3]. Using
the harvest statistics provided by the Food and Agriculture Organization (FAO) for the
period 2009–2010, Fisher et al. [4] estimated that the losses caused by fungal diseases with
regard to wheat, rice, maize potato and soybean were equivalent to the food necessary to
feed 600 million humans over one year. Of greater concern is that the currently available
knowledge does not allow ruling out the possibility that climate change would increase the
impact of major fungal plant diseases as well as create environmental conditions promoting
the emergence of new devastating fungal diseases [5,6]. Among the phytopathogenic fungal
species recognized as the most economically important, one can mention Magnaporthe
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oryzae, which is responsible for rice blast that can lead to up to 35% harvest losses; Botrytis
cinerea, which causes severe damages to a broad range of plant species; Puccinia species
and the two Fusarium species, Fusarium graminearum and Fusarium oxysporum, which cause
significant damages to diverse crops [7]. In addition to jeopardizing crop yields, some
phytopathogenic fungi can also significantly affect crop safety as a result of their capacity
to produce mycotoxins. This is notably the case of several Fusarium species infecting
cereal crops [8] but also of various species within the Aspergillus, Penicillium, Alternaria,
and Claviceps genera that can contaminate a wide variety of agricultural products [9].
Mycotoxins are fungal secondary metabolites causing serious adverse health effects to
both humans and livestock [10]. The most important mycotoxins that affect health and
agro-economy are aflatoxins, patulin, trichothecenes, zearalenone, fumonisins, ochratoxin
A and ergot alkaloids [11]. According to FAO estimates, 25% of the world’s crops are
contaminated by mycotoxins above the limits set by national and agricultural regulations,
which leads to annual losses close to 1 billion metric tons [10]. These estimates were
recently refined in the report of Eskola et al. [12] which indicates that 60–80% of agricultural
products contain detectable levels of mycotoxins. Despite increasing efforts to develop
agronomic and cultural practices to manage and control plant infecting fungi including crop
rotation, and to improve appropriate management of crop residues and the appropriate use
of resistant cultivar when available [13,14], the application of synthetic fungicides has been
the primary strategy adopted by farmers and is still widely used. However, concerns over
environmental contamination and human health risks [15], restrictions or cancellations
of authorization by some countries, have driven research to develop safe and efficient
alternatives to synthetic fungicides. To prevent the emergence of resistant fungal strains, as
has been observed with the intensive use of single-target site fungicides, priority should be
given to multi-target solutions [16–18]. Based on their nature, control methods’ alternatives
to conventional fungicides can be classified as chemical or biological. Biological solutions
include the use of plant growth-promoting bacteria, mycorrhizal fungi to promote plant
fortification and/or enhance plant defense, and the use of antagonists microorganisms
that are able to counteract the spread of the fungal pathogen [19–21]. Chemical solutions
leverage the capacity of molecules from natural origin to prevent or reduce fungal growth.
Among natural molecules, antimicrobial peptides (AMPs), that can be produced either by
animals, plants or fungi, have been the subject of increasing research in recent decades.
AMPs are low molecular mass biomolecules, generally between 12 and 50 amino acids, that
play an important role in innate host defense against microbial colonization [22] and possess
a wide range of antimicrobial activities against bacteria, fungi, viruses and protozoa [23].
According to the presence of α-helix and/or β-sheet secondary structural elements, AMPs
are commonly divided into four categories represented in Figure 1; α, β, αβ and non-
αβ [24]. For instance, the human cathelicidin LL37, which has been widely studied due to
its large repertoire of functional activities including direct antimicrobial activities against
various types of microorganisms, belongs to the α-helical peptide category of AMPs [25].
As an example of β-sheet peptides, one can mention gomesin, which has been isolated
from the spider Acanthoscurria gomesiana and contains two β-sheets linked through two
disulfide bridges forming a β-hairpin motif [26]. Indolicidin, a 13-amino-acid-long peptide
with a linear structure isolated from bovine neutrophils is a typical example of the class of
non-αβ AMPS [27]. Regarding the mixed αβ category, this class includes, but is not limited
to, several microcins such as the microcin B17 that is produced by strains of Escherichia
coli and displays efficient bactericidal activity [28]. Of all the AMPs reported thus far,
the defensin family which comprises peptides with α-helix and/or β-sheet has been the
most extensively studied. Their antimicrobial activity has been evidenced against a broad
range of human and plant pathogens, including bacteria, oomycetes, virus, fungi or even
apicomplexan parasites [29–34]. One specific defensin, such as MtDef4 or MtDef5 from
Medicago truncatula, can exhibit a wide antimicrobial spectrum and can be active against
both human and plant pathogens while others (such as the D2 defensin from Spinacia
oleracea) exhibit a more narrow spectrum of activity [35]; additionally, one pathogen can be
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affected by different defensins [32,34,36]. Interestingly, some defensins have been shown to
display antifungal activity against pathogens, leading to devastating disease in crops. For
instance, the defensins RsAFP2 from Raphanus sativus and Sa-AFP2 from Sinapis alba have
been demonstrated as potent inhibitors of the fungal growth of major pathogens including
Fusarium culmorum and B. cinerea [29]. This has led several authors to propose defensins as
promising candidates for medical and agricultural applications, including the treatment of
life-threatening microbial diseases or treatments against phytopathogens [37–39].

Figure 1. Tridimensional structure of the typical representative of the four groups of AMPs classified
according to the presence of α-helix and/or β-sheet secondary elements: non-αβ, α-helical, β-sheet
and mixed α-β AMPs.

In this review, we will specifically focus on the potential use of defensins as novel leads
for the development of sustainable solutions to control plant fungal diseases, reduce yield
losses and mycotoxin contamination and therefore improve food security and safety. Firstly,
the most recent information on the major characteristics of defensins, their antifungal
activity and mechanisms of action will be discussed. Secondly, the biological applications
of plant defensins as eco-friendly alternatives to synthetic fungicides will be debated.

2. Origin and Characteristics of Defensins

The term defensin was introduced in 1985 to refer to peptides with antimicrobial
activities isolated from humans [40]. Since then, the term defensin has been expanded to
include peptides from non-human organisms possessing functional (antimicrobial proper-
ties) and structural (a compact cysteine-stabilized β-sheet structure) similarities. Defensins
constitute the largest, and most studied, group of AMPs [41]. These small proteins of
approximately 20–60 amino acids are ubiquitous and multipotent components of the innate
immune system of a wide range of organisms within the animal, plant and fungi king-
doms [42,43]. The defensins are cationic cysteine-rich peptides with a high diversity of
amino acid sequence. However, despite this low level of amino acid sequence identity,
most defensins bear some similarities in their tertiary structure stabilized into compact
shapes [44].

Defensins are separated into two principal super-families, the cis- and trans- defensins,
with an independent evolutionary origin and a convergent evolution of their structural
folds [44,45]. The cis- and trans-classification is based on the spacing and pairing of the
cysteine residues and the orientation of the peptide’s secondary structure. Defensins of the
cis-family contain two parallel cis-oriented disulfide bridges pointing in the same direction
and stabilizing the same β-strand to an α-helix. Cis-defensins have been reported in a
wide array of invertebrate animals, fungi and spermatophyte plants [44]. The cis-defensins
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have generally more diverse and longer amino acid sequences than trans-defensins. The
trans-family of defensins is characterized by two trans-oriented disulfide bridges pointing
in opposite directions from the final β-strand and thus stabilizing different structural
elements. Trans-defensins have either been observed in invertebrates or vertebrates [45]
and include α-defensins, β-defensins and big defensins, this last family being supposed to
be the ancestors of β-defensins [46]. In addition to these families, it is worth mentioning
the occurrence of θ-defensins, which are the only cyclic peptides of animal origin reported
to date [47].

The tertiary structure of defensins is characterized by the connectivity pattern of their
disulfide bridges, which is unique to their phylum and conserved within the defensin family
as represented in Figure 2 [44]. Thus, all vertebrate α-defensins have three disulfide bridges
between cysteine (Cys) residues, Cys1–Cys6, Cys2–Cys4, and Cys3–Cys5. In vertebrate
β-defensins, the three-disulfide bridges are between Cys1–Cys5, Cys2–Cys4, and finally
Cys3–Cys6. For cis-oriented defensins in invertebrates, the common linkage pattern is Cys1–
Cys4, Cys2–Cys5, Cys3–Cys6. In plant defensins, the disulfide bonds between cysteine
residues commonly share the same following pattern, Cys1–Cys8, Cys2–Cys5, Cys3–Cys6,
and Cys4-Cys7 [42]. In plant and some invertebrate (notably arthropods and mussels)
defensins, disulfide bridges connect one α-helix and three or two-strand antiparallel β
sheets leading to a stabilized motif called cysteine-stabilized alpha-beta (CSαβ) schematized
in Figure 3 [48]. Defensins containing a CSαβ motif, also designed as CSαβ-defensins,
have been categorized in three major types, namely antibacterial ancient invertebrate-type
defensins (AITDs), antibacterial classical insect-type defensins (CITDs) and antifungal
plant/insect-type defensins (PITDs) [49]. In contrast to plant and invertebrate defensins,
mammal defensins usually do not contain α-helices and consequently no CSαβ motif [50].
The presence of disulfide bridges in the defensin structure confers a high stability against
chemical and thermal extreme conditions to this class of peptides [51,52], such as protection
from cleavage by proteolysis [53]. Defensins often adopt an amphipathic structure with a
hydrophobic side facing a hydrophilic one, which, in addition to their typically cationic
state (net charge inter-quartile range from +1 to +5), facilitates the interaction and insertion
of the peptides into the anionic cell walls and the double layer of phospholipid membranes
of microorganisms [54]. Defensins possess a structural residue characterized as functionally
important located in the C-terminal β-sheet domain. This motif, conserved across all
classes of CSαβ-defensins, is called γ-core. The γ-core is assumed to be responsible for the
antimicrobial activity of defensins as it has been demonstrated for several plant defensins
including RsAFP2, Psd1, MsDef1, and MtDef4 [55–57], but also of metazoan defensins such
as tick defensins [36].

Defensins are synthetized as precursor proteins that possess an N-terminal endo-
plasmic reticulum targeting signal peptide followed by the mature defensin domain and
an optional C-terminal prodomain [58,59]. According to the presence or absence of the
C-terminal prodomain, plant defensins are divided into two classes: class I (absence of the
C-terminal prodomain) and class II (presence of the C-terminal prodomain). The role of the
C-terminal prodomain in the N. alata NaD1 defensin was investigated by Lay et al. [60].
The previous authors have shown that this pro-peptide which is reach in hydrophobic
and acidic amino acids is involved in targeting the vacuoles and eliminating the potential
detrimental effects caused by the basic nature of the defensin in the plant host cells [60].
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Figure 2. Disulfide bridges’ connectivity pattern characteristic of defensin families: vertebrate
α-defensin, vertebrate β-defensin, invertebrate cis-oriented defensin and plant defensin.

Figure 3. Representation of the cysteine-stabilized alpha-beta (CSαβ) motif present in the structure
of plant and of some invertebrate defensins: (a) schematic representation of the CSαβ motif present
in the plant defensin Mt-Def4; (b) schematic representation of the tridimensional structure of the
plant defensin Mt-Def4. PDB: 2LR3 from M. truncatula. The colors in the figure represent α-helix
(purple), β-sheets (yellow), turns (blue) and disulfide bridges (red). The structures were visualized in
VMD software version 1.9.3.

3. Activity of Defensins against Fungal Phytopathogens

While the bactericidal activity of defensins has been extensively characterized, their
antifungal activity has been relatively less studied [61]. In addition, most of the available
scientific literature refers to the activity of defensins against human fungal pathogens and
there is much less information regarding their capacity to inhibit the growth of fungal
plant pathogens. The available information regarding defensins and defensin-like peptides
(DLP) reported as active against economically important plant-infecting fungi including
mycotoxigenic fungi (e.g., Fusarium sp., Penicillium sp., Aspergillus sp., Alternaria sp.) is
presented in Table 1.
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Table 1. List of defensins and DLPs with antifungal effect on phytopathogenic and
mycotoxigenic fungi.

Defensin
Amino Acid (AA)
Sequence
(Accession n◦)

AA
n◦ber

MM
(Da)/pI

Organism
(Family)

Targeted Species (IC50 and
MIC) Ref.

Plant defensin

AX1

AICKKPSKFFKGACGR-
DADCEKACDQENWPG-
GVCVPFLRCECQRSC
(P81493)

44 4895.72/7.14

Beta vulgaris
L (Amaran-
thaceae)

Cercospora beticola
(IC50 = 0.79 µM *)

[62]

AX2

ATCRKPSMYFSGACFSD-
TNCQKACNREDWPNG-
KCLVGFKCECQRPC
(P82010)

46 5185.01/7.31 C. beticola (IC50 = 0.39 µM *)

Dm-AMP1

ELCEKASKTWSGNCGN-
TGHCDNQCKSWEGA-
AHGACHVRNGKHMC-
FCYFNC
(P0C8Y4)

46 4997.63/6.87

Dahlia
merckii
(Asteraceae)

B. cinerea K1147
(IC50 = 2.17 µM *); Cladosporium
sphaerospermum K0791
(IC50 = 0.54 µM *); F. culmorum
K0311 (IC50 = (0.18–0.9) µM *);
Leptosphaeria maculans LM36uea
(IC50 = 0.27 µM *); Penicillium
digitatum K0879
(IC50 = 0.36 µM *); Trichoderma
viride K1127 (IC50 = 18.1 µM *);
Septoria tritici K1097
(IC50 = 0.18 µM *); Verticillium
alboatrum K0937
(IC50 = 0.72 µM *)

[63]

Dm-AMP2 EVCEKASKTWSGNCGN-
TGHC 20 2111.33/6.36

B. cinerea K1147 (IC50 = 1.81 µM
*); C. sphaerospermum K0791
(IC50 = 0.54 µM *); F. culmorum
K0311 (IC50 = 0.54 µM *); L.
maculans LM36uea
(IC50 = 0.18 µM *); P. digitatum
K0879 (IC50 = 0.36 µM *); T.
viride K1127 (IC50 = 18.1 µM *);
S. tritici K1097 (IC50 = 0.18 µM
*); V. albo-atrum K0937
(IC50 = 0.36 µM *)

AhPDF1.1
QRLCEKPSGTWSGVCG-
NNGACRNQCIRLEKAR-
HGS

51 5707.65/7.74
Arabidopsis
helleri
(Brassicaceae)

F. oxysporum (MIC = 0.6 µM) [64]

At-AFP1

KLCERPSGTWSGVCG-
NSNACKNQCINLEKA-
RHGSCNYVFPAHKCIC-
YFPC
(P30224)

50 5539.44/7.53

Arabidopsis
thaliana
(Brassicaceae)

Alternaria brassicicola MUCL
20,297 (IC50 =1.8 µM *); B.
cinerea MUCL 30,158
(IC50 = 0.7 µM *); F. culmorum
IMI 180,420 (IC50 = 0.54 µM *); F.
oxysporum f. sp. lycopersici
MUCL 909 (IC50 = 0.54 µM *);
Pyricularia oryzae MUCL 30,166
(IC50 = 0.05 µM *); Verticillium
dahliae MUCL 6963
(IC50 = 0.27 µM *)

[29]

AtPDF2.3

RTCESKSHRFKGPCVST-
HNCANVCHNEGFGGG-
KCRGFRRRCYCTRHC
(Q9ZUL7)

49 5348.15/8.49

B. cinerea B05-10 (IC50 = 5.8 µM);
B. cinerea R16 (IC50 = 5.8 µM); F.
oxysporum 5176 (IC50 = 4.4 µM);
F. culmorum MUCL 30,162
(IC50 = 1.0 µM); V. dahliae
MUCL 19,210 (IC50 = 4.4 µM); F.
graminearum PH-1
(IC50 = 1.4 µM)

[65]
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Table 1. Cont.

Defensin
Amino Acid (AA)
Sequence
(Accession n◦)

AA
n◦ber

MM
(Da)/pI

Organism
(Family)

Targeted Species (IC50 and
MIC) Ref.

Hc-AFP1

RYCERSSGTWSGVCGN-
SGKCSNQCQRLEGAA-
HGSCNYVFPAHKCIC-
YYPC
(G8GZ62)

50 5483.21/7.33

Heliophila
coronopifolia
(Brassicaceae)

B. cinerea (IC50 = 4.56 µM *);
Fusarium solani
(IC50 = 4.56 µM *)

[66]

Hc-AFP2

QKLCERPSGTWSGVCG-
NNNACRNQCINLEKA-
RHGSCNYVFPAHKCIC-
YFPC
(G8GZ63)

51 5722.61/7.54
B. cinerea
(IC50 = (1.75–2.62) µM *); F.
solani (IC50 = (1.75–2.62) µM *)

Hc-AFP3

RYCERSSGTWSGVCG-
NTDKCSSQCQRLEGA-
AHGSCNYVFPAHKCI-
CYYPC
(G8GZ64)

50 5528.24/7.09
B. cinerea
(IC50 = (3.62–4.52) µM *); F.
solani (IC50 = 4.52 µM *)

Hc-AFP4

QKLCERPSGTWSGV-
CGNNGACRNQCIRLE-
RARHGSCNYVFPAHKC-
ICYFPC
(G8GZ65)

51 5735.66/7.75
B. cinerea
(IC50 = (2.61–3.49) µM *); F.
solani (IC50 = (0.87–1.74) µM *)

Rs-AFP1
QKLCERPSGTWSGVCG-
NNNACKNQCINLEKA-
RHGSCNYVFPAHKCIC-
YFPC
(P69241)

51 5694.60/7.53 R. sativus
(Brassicaceae)

A. brassicicola MUCL 20,297
(IC50 = 2.64 µM *); B. cinerea
MUCL 30,158 (IC50 = 1.41 µM *);
F. culmorum IMI 180,420
(IC50 = 0.88 µM *); F. oxysporum
f. sp. lycopersici MUCL 909
(IC50 = 5.28 µM *); P. oryzae
MUCL 30,166 (IC50 = 0.05 µM *);
V. dahliae MUCL 6963
(IC50 = 0.88 µM *)

[29]

Ascochyta pisi (IC50 = 0.88 µM *);
C. beticola (IC50 = 0.35 µM *);
Colletotrichum lindemuthianum
(IC50 = 17.61 µM *); F. oxysporum
f. sp. pisi (IC50 = 2.64 µM *);
Mycosphaerella fijiensis var.
fijiensis (IC50 = 0.7 µM *);
Nectria haematococca
(IC50 = 1.06 µM *); Phoma betae
(IC50 = 0.35 µM *); Pyrenophora
tritici-repentis (IC50 = 0.53 µM *);
P. oryzae (IC50 = 0.05 µM *);
Rhizoctonia solani
(IC50 = 17.61 µM *); Sclerotinia
sclerotiorum (IC50 = 3.52 µM *);
Septoria nodorum
(IC50 = 3.52 µM *); Trichoderma
hamatum (IC50 = 1.06 µM *); V.
dahliae (IC50 = 0.88 µM *)

[67]
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Table 1. Cont.

Defensin
Amino Acid (AA)
Sequence
(Accession n◦)

AA
n◦ber

MM
(Da)/pI

Organism
(Family)

Targeted Species (IC50 and
MIC) Ref.

Rs-AFP2
QKLCQRPSGTWSGVCG-
NNNACKNQCIRLEKAR-
HGSCNYVFPAHK-
CICYFPC
(P30230)

51 5735.70/7.94

B. cinerea K1147
(IC50 = 1.75 µM *); C.
sphaerospermum K0791
(IC50 = 0.52 µM *); F. culmorum
K0311 (IC50 = 0.26 µM *); F.
culmorum K0311
(IC50 = 0.87 µM *); L. maculans
LM36uea (IC50 = 2.1 µM *); P.
digitatum K0879
(IC50 = 0.26 µM *); T. viride
K1127 (IC50 = 5.25 µM *); S.
tritici K1097 (IC50 = 0.26 µM *);
V. albo-atrum K0937
(IC50 = 2.1 µM *)

[63]

A. brassicicola MUCL 20,297
(IC50 = 0.35 µM *); B. cinerea
MUCL 30,158
(IC50 = 0.35 µM *); F. culmorum
IMI 180,420 (IC50 = 0.35 µM *);
F. oxysporum f. sp. lycopersici
MUCL 909 (IC50 = 0.35 µM *); P.
oryzae MUCL 30,166
(IC50 = 0.7 µM *); V. dahliae
MUCL 6963

[29]

A. pisi (IC50 = 0.7 µM *); C.
beticola (IC50 = 0.35 µM *); C.
lindemuthianum
(IC50 = 0.52 µM *); F. oxysporum
f. sp. Pisi (IC50 = 0.35 µM *); M.
fijiensis var. fijiensis
(IC50 = 0.26 µM *); N.
haematococca (IC50 = 0.35 µM *);
P. betae (IC50 = 0.17 µM *); P.
tritici-repentis (IC50 = 0.26 µM *);
R. solani (IC50 = 17.49 µM *); S.
sclerotiorum (IC50 = 17.49 µM *);
S. nodorum (IC50 = 2.62 µM *); T.
hamatum (IC50 = 0.35 µM *); V.
dahliae (IC50 = 0.26 µM *);
Venturia inaequalis
(IC50 = 4.37 µM *)

[67]

Defensin-like
protein 4

QKLCERSSGTWSG-
VCGNNNACKNQCI-
NLEGARHGSCNYI-
FPYHRCICYFPC
(O24331)

51 5747.58/7.33
A. brassicicola (IC50 = 0.87 µM *);
B. cinerea (IC50 = 1.57 µM *); F.
culmorum (IC50 = 1.92 µM *)

[68]

Defensin-like
protein 3

KLCERSSGTWSG-
VCGNNNACKN-
QCIRLEGAQHGSC-
NYVFPAHKCI-CYFPC
(O24332)

50 5499.34/7.33
A. brassicicola (IC50 = 0.36 µM *);
B. cinerea (IC50 = 0.36 µM *); F.
culmorum (IC50 = 0.36 µM *)
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Table 1. Cont.

Defensin
Amino Acid (AA)
Sequence
(Accession n◦)

AA
n◦ber

MM
(Da)/pI

Organism
(Family)

Targeted Species (IC50 and
MIC) Ref.

Sa-AFP2

QKLCQRPSGTWSG-
VCGNNNACRNQC-
INLEKARHGSCNY-
VFPAHKCICYFPC
(P30232)

51 5721.63/7.74 S. alba
(Brassicaceae)

A. brassicicola MUCL 20,297
(IC50 = 0.79 µM *); B. cinerea
MUCL 30,158 (IC50 = 0.61 µM *);
F. culmorum IMI 180,420
(IC50 = 0.4 µM *); F. oxysporum f.
sp. lycopersici MUCL 909
(IC50 = 0.4 µM *); P. oryzae
MUCL 30,166
(IC50 = 0.05 µM *); V. dahliae
MUCL 6963 (IC50 = 0.21 µM *)

[29]

WT1

QKLCEKSSGTWSG-
VCGNNNACKNQC-
INLEGARHGSC-
NYIFPYHRCICY-FPC
(Q9FS38)

51 5719.56/7.33
Eutrema
japonicum
(Brassicaceae)

Magnaporthe grisea
(IC50 = 0.87 µM *); B. cinerea
(IC50 = 3.5 µM *)

[69]

Sm-AMP-D1

KICERASGTWK-
GICIHSNDCNNQC-
VKWENAGSGSCHY-
QFPNYMCFCY-FDC
(C0HL82)

50 5763.55/6.28

Stellaria
media L.
(Caryophyl-
laceae)

Bipolaris sorokiniana 6/10
(IC50 = 0.5 µM); F. oxysporum
16/10 (IC50 = 0.35 µM); F.
graminearum VKM F-1668
(IC50 = 0.52 µM); Fusarium
avenaceum VKM F-2303
(IC50 = 0.52 µM); B. cinerea
SGR-1 (IC50 = 1.0 µM); P. betae
VKM F-2532 (IC50 = 0.52 µM);
Pythium debaryanum VKM
F-1505 (IC50 = 1.0 µM) [70]

Sm-AMP-D2

KICERASGTWKGI-
CIHSNDCNNQCVK-
WENAGSGSCHYQF-
PNYMCFCY-FNC
(C0HL83)

50 5762.57/6.77

B. sorokiniana 6/10
(IC50 = 0.5 µM); F. oxysporum
16/10 (IC50 = 0.35 µM); F.
graminearum VKM F-1668 (IC50
= 0.52 µM); F. avenaceum VKM
F-2303 (IC50 = 0.52 µM); B.
cinerea SGR-1 (IC50 = 1.0 µM); P.
betae VKM F-2532
(IC50 = 0.52 µM); P. debaryanum
VKM F-1505 (IC50 = 1.0 µM)

So-D2

GIFSSRKCKTPSK-
TFKGICTRDSNCDTSC-
RYEGYPAGDC-
KGIRRRCMCSKPC

52 5803.79/8.34
S. oleracea
(Chenopodia-
ceae)

F. culmorum (IC50 = 0.2 µM); F.
solani (IC50 = 11 µM);
Colletotrichum lagenarium
(IC50 = 11 µM); Bipolaris maydis
(IC50 = 6 µM)

[71]

AB2

RTCENLANTYRG-
PCITTGSCDDHC-
KNKEHLRSGRCRD-
DFRCW

47 5469.18/7.33
Adzuckia
angularia
(Fabaceae)

B. cinerea (IC50 = 3.5 µM) [72]

Beta-astratide
bM1

CEKPSKFFSGP-
CIGSSGKTQCAYL-
CRRGEGLQDGNCK-
GLKCVCAC

45 4734.58/7.52

Astragalus
mem-
branaceus
(Fabaceae)

F. oxysporum CICC 2532
(IC50 = 4.92 µM *); Alternaria
alternata CICC 2465
(IC50 = 4.75 µM *); R. solani
CICC 40,259 (IC50 = 27.52 µM *);
Curvularia lunata CICC 40,301
(IC50 = 0.57 µM *)

[73]

Coccinin KQTENLADTY (P84785) 10 1182.25/4.19

Phaseolus
coccineus cv.
‘Major’
(Fabaceae)

F. oxysporum (MIC = 81 µM); B.
cinerea (MIC = 109 µM); R. solani
(MIC = 134 µM); Mycosphaerella
arachidicola (MIC = 75 µM)

[74]
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n◦ber

MM
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Organism
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Phaseococcin KTCENLADTYKGPPP-
FFTTG 20 2187.46/6.03

P. coccineus
cv. ‘Minor’
(Fabaceae)

F. oxysporum (MIC = 89 µM); B.
cinerea (MIC = 102 µM); R. solani
(MIC = 140 µM); M. arachidicola
(MIC = 70 µM)

[75]

Ct-AMP1

NLCERASLTWTGN-
CGNTGHCDTQCRNW-
ESAKHGACHKRGNWK-
CFCYFNC
(Q7M1F2)

49 5613.32/7.33
Clitoria
ternatea
(Fabaceae)

B. cinerea K1147
(IC50 = 3.56 µM *); C.
sphaerospermum K0791
(IC50 = 1.07 µM *); F. culmorum
K0311 (PDB medium)
(IC50 = 1.78 µM *); F. culmorum
K0311 (SMF medium)
(IC50 = 0.11 µM *); L. maculans
LM36uea (IC50 = =1.07 µM *); P.
digitatum K0879
(IC50 = 3.56 µM *); T. viride
K1127 (IC50 = 17.81 µM *); S.
tritici K1097 (IC50 = 0.36 µM *);
V. albo-atrum K0937
(IC50 = 0.36 µM *)

[63]

Gymnin KTCENLADDY (P84200) 10 1171.25/3.8
Gymnocladus
chinensis
(Fabaceae)

F. oxysporum (IC50 = 2 µM);
Cercospora arachidicola
(IC50 = 10 µM)

[76]

Lc-def

KTCENLSDSFKG-
PCIPDGNCNKH-
CKEKEHLLSGR-
CRDDFRCWCTRNC
(B3F051)

47 5449.23/7.08
Lens
culinaris
(Fabaceae)

Aspergillus niger VKM F-2259
(IC50 = 18.5 µM); Aspergillus
versicolor VKM F-1114
(IC50 = 18.5 µM); B. cinerea
VKM F-3700 (IC50 = 9.25 µM); F.
culmorum VKM F-844
(IC50 = (18.5–37.0) µM)

[77]

Limenin

KTCENLADTY-
KGPCFTTGGCDD-
HCKNKEHLLSG-
RCRDDFRCWCTRNC

47 5403.12/6.77 Phaseolus
limensis
(Fabaceae)

B. cinerea (MIC = 2.9 µM); F.
oxysporum (MIC = 2.1 µM); M.
arachidicola (MIC = 0.34 µM)

[78]

Limyin KTCENLATYYRGPCF 15 1766.03/7.51 F. solani (IC50 = 8.6 µM) [79]

Ms-Def1
(alfAFP)

RTCENLADKYRGPCF-
SGCDTHCTTKENAVSG-
RCRDDFRCWCTKR-C
(Q4G3V1)

45 5194.90/7.32
Medicago
sativa
(Fabaceae)

F. graminearum
(IC50 = (1.2–2.3) µM *) [80]

F. graminearum PH-1
(IC50 = (2–4) µM *); F.
graminearum PH-1 (MIC > 6 µM)

[56]

V. dahliae (MIC = 1 µM *) [81]

Mt-Def2

KTCENLADKYRG-
PCFSGCDTHCTTKE-
NAVSGRCRDDFRCWC-
TKRC
(Q5YLG8)

45 5166.89/7.32

M.
Truncatula
(Fabaceae)

F. graminearum PH-1
(IC50 = (0.75–1) µM) [56]

F. oxysporum f. sp. medicaginis
7F-3 (IC50 = 0.7 µM); F.
oxysporum f. sp. medicaginis
31F-3 (IC50 = 1.9 µM); Phoma
medicaginis STC (IC50 = 0.3 µM);
P. medicaginis WS-2
(IC50 = 2.6 µM); Clavibacter
insidiosus (IC50 = 0.1 µM)

[35]

Mt-Def4

RTCESQSHKFK-
GPCASDHNCASV-
CQTERFSGGR-
CRGFRRRCFCTTHC
(G7L736)

47 5343.08/7.97

F. graminearum PH-1
(IC50 = (0.75–1) µM) [56]

F. oxysporum f. sp. medicaginis
7F-3 (IC50 = 0.7 µM); F.
oxysporum f. sp. medicaginis
31F-3 (IC50 = 1.9 µM); P.
medicaginis STC (IC50 = 0.3 µM);
P. medicaginis WS-2
(IC50 = 2.6 µM)

[35]
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PsD1

KTCEHLADTYRG-
VCFTNASCDDHC-
KNKAHLISGTCHN-
WKCFCTQNC
(P81929)

46 5208.93/6.81

Pisum
sativum
(Fabaceae)

A. niger EK0197
(IC50 = 2.3 µM *); A. versicolor
40028LMR/
INCQS (IC50 = 1 µM *);
Fusarium moniliforme 2414UFPe
(IC50 = 4.2 µM *); F. oxysporum
2665UFPe (IC50 = 19.2 µM *); F.
solani 2389UFPe
(IC50 = 2.3 µM *) [82]

PsD2

KTCENLSGTFKGPC-
IPDGNCNKHCRNN-
EHLLSGRCRDDFR-
CWCTNRC
(P81930)

47 5404.15/7.33

A. niger EK0197
(IC50 = 1.9 µM *); A. versicolor
40028LMR/INCQS
(IC50 = 0.06 µM *); F. moniliforme
2414UFPe (IC50 = 1.85 µM *); F.
oxysporum 2665UFPe
(IC50 = 18.5 µM *); F. solani
2389UFPe (IC50 = 1.57 µM *)

PvD1_PTA2c

KTCENLADTYKGPCF-
TTGSCDDHCKNKEHLR-
SGRCRDDFRCWCTK-
NC
(F8QXP9)

47 5448.16/7.08
Phaseolus
vulgaris
(Fabaceae)

F. solani (IC50 = 18.35 µM *);
Fusarium laterithium
(IC50 = 18.35 µM *); R. solani
(IC50 = 18.35 µM *); F. oxysporum
(IC50 = 18.35 µM *)

[83]

B. cinerea (IC50 = 1 µM) [72]

P. vulagris
white cloud
defensin

KTCENLADTFRGP-
CFATSNCDDHCKN-
KEHLLSGRCRD-
DFRCWCTRNC

47 5472.18/6.77

P. vulgaris
cv. “white
cloud bean”
(Fabaceae)

B. cinerea (MIC = 2.8 µM); F.
oxysporum (MIC = 2.3 µM); M.
arachidicola (MIC = 0.72 µM)

[84]

Sesquin KTCENLADTY (P84868) 10 1157.27/4.19
Vigna
unguiculate
(Fabaceae)

B. cinerea (IC50 = 2.5 µM); F.
oxysporum (IC50 = 1.4 µM); M.
arachidicola (IC50 = 0.15 µM)

[85]

SPE10

KTCENLADTFRG-
PCFTDGSCD-
DHCKNKEHLI-
KGRCRDDFRCWCT-
RNC
(Q6B519)

47 5500.24/6.77
Pachyrhizus
erosus
(Fabaceae)

Aspergillus flavus
(IC50 = 5.45 µM *); A. niger
(IC50 = 8.18 µM *); B. maydis
(IC50 = 2.73 µM *); B. cinerea
(IC50 = 18.18 µM *);
Colletotrichum gloeosporides
(IC50 = 18.18 µM *); F.
oxysporum f.sp. lycopersic
(IC50 = 18.18 µM *); F.
oxysporum f.sp. vasinfectum
(IC50 = 18.18 µM *); Penicillium
spp. (IC50 = 18.18 µM *);
Rhizopus stolonifer
(IC50 = 18.18 µM *); V. dahliae
(IC50 = 18.18 µM *)

[86]

TvD1

KTCENLADTYRGP-
CFTTGSCDDHCKN-
KEHLLSGRCRD-
DFRCWCTK-RC
(Q2KM12)

47 5475.23/7.09
Tephrosia
villosa
(Fabaceae)

Nothopassalora personata
(MIC = 2.05 µM *); F. oxysporum
(MIC = 5.12 µM *); Fusarium
verticillioides (MIC = 5.12 µM *);
B. cinerea (MIC = 5.12 µM *);
Curvularia sp (MIC = 5.12 µM *);
R. solani (MIC = 7.78 µM *)

[87]

VaD1

KTCMTKKEGWG-
RCLIDTTCAHSCRK-
QGYKGGNCKGMR-
RTCYCLLDC
(A0A0S3QXX7)

46 5209.23/8.12
Vigna
angularis
(Fabaceae)

F. oxysporum (IC50 = 5.76 µM *);
F. oxysporum f. sp. pisi
(IC50 = 10.21 µM *)

[88]
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VrD1

RTCMIKKEGWGK-
CLIDTTCAHSCKN-
RGYIGGNCKGM-
TRTCYCLVNC
(Q6T418)

46 5122.15/7.92
Vigna
radiata
(Fabaceae)

F. oxysporum (IC50 = 1.1 µM *); F.
oxysporum CCRC 35,270
(IC50 = 3.4 µM *); F. oxysporum f.
sp. Pisi (IC50 = 2.4 µM *); P.
oryzae (IC50 = 4 µM *); R. solani
(IRTCENLADKYRGPCFSGCDT-
HCTTKENAVSGRCRDDFRC-
WCTKRCC50 = 17.7 µM *)

[89]

PgD1

RTCKTPSGKFKGVC-
ASSNNCKNVCQTEGF-
PSGSCDFHVANRKCYC-
SKPCP
(Q6RSS6)

50 5377.21/7.91

Picea glauca
(Pinaceae)

Nectria galligena
(MIC = 2.6 µM *); F. oxysporum
(MIC = 2.6 µM *) [51]

PgD5

RMCESQSHKFKGYC-
ASSSNCKVVCQTE-
KFLTGSCRDTHFGNRR-
CFCEKPC

50 5729.62/7.72
F. oxysporum (MIC = 1.92 µM *);
V. dahliae (MIC = 0.35 µM *); B.
cinerea (MIC = 0.7 µM *)

PsDef1

RMCKTPSGKFKGY-
CVNNTNCKNVCRTE-
GFPTGSCDFHVAGR-
KCYCYKPCP
(A4L7R7)

50 5601.58/8.12
Pinus
sylvestris
(Pinaceae)

F. solani UKM F-50639
(IC50 = 0.16 µM *); F. oxysporum
UKM F-52897 (IC50 = 0.52 µM *);
B. cinerea UKM F-16753
(IC50 = 0.07 µM *)

[90]

Ec-AMP-D1

RECQSQSHRYK-
GACVHDTNCASV-
CQTEGFSGGKC-
VGFRGRCFCTKAC
(P86518)

47 5107.82/7.54

Echinochloa
crusgalli
(Poaceae)

F. graminearum
(IC50 = 2.94 µM *); F.
verticillioides (IC50 = 1.66 µM *);
Diplodia maydis
(IC50 = 2.45 µM *); F. oxysporum
(IC50 = 19.97 µM *) [91]

Ec-AMP-D2

RECQSQSHRYKG-
ACVHDTNCASVCQ-
TEGFSGGKCVGF-
RGRCFCTKHC
(P86519)

47 5173.89/7.54 F. oxysporum (IC50 = 19.71 µM *)

Pp-AMP1

KSCCRSTQARNI-
YNAPRFAGGSRP-
LCALGSGCKIVD-
DKKTPPND

44 4697.39/8.61
Phyllostachys
pubescens
(Poaceae)

F. oxysporum IFO 6384
(IC50 = 0.43 µM *)

[92]

Pp-AMP2

KSCCRSTTART-
ARVPCAKKSNIYN-
GCRVPGGCKIQE-
AKKCEPPYD

45 4919.76/8.52 F. oxysporum IFO 6384
(IC50 = 0.41 µM *)

Sd1

RYCLSQSHRF-
KGLCMSSSNCA-
NVCQTENFPGGEC-
KADGATRKCFCKKIC
(B2CNV2)

49 5412.32/7.72

Saccharum
officinarum
(Poaceae)

A. niger (IC50 = 2.0 µM); F. solani
(IC50 = 1.0 µM)

[93]Sd3

RHRHCFSQSHKFVGA-
CLRESNCENVCKTEGF-
PSGECKWHGIVSK-
CHCKRIC

51 5864.82/7.73 A. niger (IC50 = 1.0 µM); F. solani
(IC50 > 20 µM)

Sd5

HTPTPTPICKSRSHE-
YKGRCIQDMDCNAAC-
VKESESYTGGFCNGR-
PPFKQCFCTKPCKRE-
RAAATLRWPGL
(A0A1B3B2K6)

71 7967.21/7.91 A. niger (IC50 > 20 µM); F. solani
(IC50 = 10 µM)
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SI alpha-1

RVCMGKSQHHSFPCI-
SDRLCSNECVKEEGGW-
TAGYCHLRYCRCQKAC
(P21923)

47 5382.26/7.33
Sorghum
bicolor
(Poaceae)

B. cinerea K1147
(IC50 = 18.58 µM *); C.
sphaerospermum K0791
(IC50 = 14.86 µM *); F. culmorum
K0311 (IC50 = 37.16 µM *); P.
digitatum K0879
(IC50 = 37.16 µM *); T. viride
K1127 (IC50 = 9.29 µM *)

[63]

Tk-AMP-D1

RTCQSQSHKFKGAC-
FSDTNCDSVCRTENF-
PRGQCNQHHVERK-
CYCERDC
(P84963)

49 5744.40/7.1
Triticum
kiharae
(Poaceae)

F. graminearum
(IC50 = 5.22 µM *); F.
verticillioides (IC50 = 5.22 µM *)

[91]

ZmD32

RTCQSQSHRFRGPCL-
RRSNCANVCRTEGF-
PGGRCRGFRRRCFC-
TTHC
(A0A317Y7J2)

47 5466.33/10.85

Zea mays
(Poaceae)

F. graminearum PH-1
(IC50 = 1 µM) [94]

ZmESR6

KLCSTTMDLLICGGA-
IPGAVNQACDDTCRN-
KGYTGGGFCNMK-
IQRCVCRKPC
(D1MAH4)

52 5516.57/7.52

F. oxysporum f.sp. Conglutinans
(IC50 = 3 µM); F. oxysporum
f.sp.lycopersici (IC50 = 3 µM);
Plectosphaerella cucumerina
(IC50 = 2 µM)

[95]

Fa-AMP1

AQCGAQGGGATCP-
GGLCCSQWGWCGST-
PKYCGAGCQSN-CK
(P0DKH7)

40 3887.42/7.07
Fagopyrum
esculentum
(Polygonaceae)

F. oxysporum IFO 6384
(IC50 = 4.89 µM *)

[96]

Fa-AMP2

AQCGAQGGGATCPGG-
LCCSQWGWCGSTPK-
YCGAGCQSNCR
(P0DKH8)

40 3915.44/7.07 F. oxysporum IFO 6384
(IC50 = 7.41 µM *)

Ns-D1

KFCEKPSGTWSGV-
CGNSGACKDQCIR-
LEGAKHGSCNY-
KPPAHRCICYYEC
(P86972)

50 5487.32/7.32

Nigella
sativa
(Ranuncula-
ceae)

A. niger VKM F-33
(IC50 = 0.64 µM *); B. sorokiniana
VKM F-1446 (IC50 = 0.55 µM *);
F. oxysporum (IC50 = 1.73 µM *);
F. graminearum VKM F-1668
(IC50 = 1.26 µM *; F. culmorum
VKM F-2303 (IC50 = 1.26 µM *);
B. cinerea (IC50 = 4.99 µM *) [97]

Ns-D2

KFCEKPSGTWSGV-
CGNSGACKDQCIRLE-
GAKHGSCNYKLPAH-
RCICYYEC
(P86973)

50 5503.36/7.32

A. niger VKM F-33
(IC50 = 0.64 µM *); B. sorokiniana
VKM F-1446 (IC50 = 0.33 µM *);
F. oxysporum (IC50 = 0.96 µM *);
F. graminearum VKM F-1668
(IC50 = 1.25 µM *); F. culmorum
VKM F-2303 (IC50 = 1.25 µM *);
B. cinerea (IC50 = 2.49 µM *)
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Ah-AMP1

LCNERPSQTWSGNC-
GNTAHCDKQCQD-
WEKASHGACH-
KRENHWKCFCYFNC
(Q7M1F3)

50 5863.53/6.82
Aesculus hip-
pocastanum
(Sapindaceae)

B. cinerea K1147
(IC50 = 4.26 µM *); C.
sphaerospermum K0791
(IC50 = 0.85 µM *); F. culmorum
K0311 (IC50 = 2.05 µM *); F.
culmorum K0311
(IC50 = 0.12 µM *); L. maculans
LM36uea (IC50 = 0.09 µM *); P.
digitatum K0879
(IC50 = 1.02 µM *); T. viride
K1127 (IC50 = 17.05 µM *); S.
tritici K1097 (IC50 = 0.85 µM *);
V. albo-atrum K0937
(IC50 = 1.02 µM *)

[63]

Hs-AFP1

DGVKLCDVPSGTWS-
GHCGSSSKCSQQCKD-
REHFAYGGACHYQ-
FPSVKCFCKRQC
(P0C8Y5)

54 5948.76/7.32
Heuchera
sanguinea
(Saxifragaceae)

B. cinerea K1147 (IC50 = 1 µM *);
C. sphaerospermum K0791
(IC50 = 0.2 µM *); F. culmorum
K0311 (IC50 = 0.2 µM *); L.
maculans LM36uea
(IC50 = 4.2 µM *); P. digitatum
K0879 (IC50 = 0.2 µM *); T. viride
K1127 (IC50 = 2.5 µM *); S. tritici
K1097 (IC50 = 0.1 µM *); V.
albo-atrum K0937 (IC50 = 1 µM *)

NaD1
RECKTESNTFPGICITK-
PPCRKACISEKFTDGH-
CSKILRRCLCTKPC
(Q8GTM0)

47 5304.37/7.91

Nicotiana
alata
(Solanaceae)

A. niger 5181
(IC50 = 2.1 ± 0.76 µM); A. flavus
5310 (IC50 > 10 µM); F.
oxysporum f.sp. Vasinfectum
(IC50 = 1.5 ± 0.25 µM); F.
graminearum
(IC50 = 0.4 ± 0.3 µM);
Colletotrichum graminicola
(IC50 = 4.4 ± 0.1 µM);
Aspergillus parasiticus 4467
(IC50 = 4.5 ± 0.27 µM)

[98]

V. dahliae (IC50 = 0.75 µM);
Thielaviopsis basicola
(IC50 = 1 µM); Aspergillus
nidulans (IC50 = 0.8 µM);
Puccinia coronata f.sp. Avenae
(IC50 = 2.5 µM); Puccinia sorghi
(IC50 = 2 µM)

[99]

NaD2

RTCESQSHRFKGPCA-
RDSNCATVCLTEGFSG-
GDCRGFRRRCFCTRPC
(A0A1B2YLI5)

47 5264.02/7.76

F. oxysporum f.sp. Vasinfectum
(IC50 = 8.3 µM); F. graminearum
(IC50 = 2 µM); V. dahliae
(IC50 > 10 µM); T. basicola
(IC50 = 7 µM); A. nidulans (IC50
= 5 µM); P. coronata f.sp. Avenae
(IC50 = 4 µM); P. sorghi
(IC50 = 5 µM)
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PhD1

ATCKAECPTWDSVC-
INKKPCVACCKKAKFS-
DGHCSKILRRCLCTKEC
(Q8H6Q1)

47 5211.33/7.67

Petunia
hybrida
(Solanaceae)

F. oxysporum
(MIC = (0–0.38) µM *); B. cinerea
(MIC = (0.38–1.92) µM *)

[100]

PhD2

GTCKAECPTWEGIC-
INKAPCVKCCKAQPE-
KFTDGHCSKILRRCL-
CTKPC
(Q8H6Q0)

49 5403.55/7.52
F. oxysporum
(MIC = (0.38–1.92) µM *); B.
cinerea (MIC = (0.38–1.92) µM *)

Vv-AMP1

RTCESQSHRFKGTC-
VRQSNCAAVCQTEGFH-
GGNCRGFRRRCFCTKHC
(D7TAI4)

47 5355.13/8.24 Vitis vinifera
(Vitaceae)

F. oxysporum ATCC 10,913
(IC50 = 1.12 µM *); V. dahliae
ATCC 96,522 (IC50 = 0.34 µM *);
F. solani (IC50 = 1.79 µM *); B.
cinerea (IC50 = 2.43 µM *)

[101]

Invertebrate defensin

AgDef1

ATCDLASGFGVGSSL-
CAAHCIARRYRGGYC-
NSKAVCVCRN
(B2FZB7)

40 4141.80/7.82
Anopheles
gambiae
(Insecta)

F. culmorum (MIC = (3–6) µM); F.
oxysporum (MIC = (1.5–3) µM) [30]

Defensin ARD1

DKLIGSCVWGAVNYTS-
NCNAECKRRGYKGGH-
CGSFANVNCWCET
(P84156)

44 4803.43/7.24

Archaeopre-
pona
demophon
(Insecta)

Aspergillus fumigatus GASP 4707
(MIC = 2.6 µM *) [102]

DEFC

ATCDLLSGFGVGDSA-
CAAHCIARRNRGGYCN-
AKKVCVCRN
(P81603)

40 4161.84/7.81
Aedes
aegypti
(Insecta)

F. culmorum
(MIC = (50–100) µM) [30]

Drosomycin

DCLSGRYKGPCAVWD-
NETCRRVCKEEGRSS-
GHCSPSLKCWCEGC
(P41964)

44 4897.59/6.75
Drosophila
melanogaster
(Insecta)

B. cinerea MUCL 30,158
(IC50 = 1.2 µM); F. culmorum IMI
180,420 (IC50 = 1.0 µM); A.
brassicicola MUCL 20,297
(IC50 = 0.9 µM); Alternaria
longipes CBS 62,083
(IC50 = 1.4 µM); N. haematococca
CollectionVanEtten160-2-2
(IC50 = 1.8 µM); F. oxysporum
MUCL 909 (IC50 = 4.2 µM); A.
pisi MUCL 30,164
(IC50 = 3.2 µM)

[103]

Gm
defensin-like
peptide

DKLIGSCVWGATNYTS-
DCNAECKRRGYKGGH-
CGSFWNVNCWCEE
(P85215)

44 4949.53/6.21

Galleria
mellonella
(Insecta)

A. niger (MIC = (1.4–2.9) µM);
Trichoderma harzianum
(MIC = (1.4–2.9) µM)

[104]

Galleria
defensin

DTLIGSCVWGATNY-
TSDCNAECKRRGYKG-
GHCGSFLNVNCWCE
(P85213)

43 4720.29/6.2

F. oxysporum (MIC = (8.5–16.9)
µM); A. niger (MIC = (1.1–2.1)
µM); T. harzianum
(MIC = (2.1–4.2) µM)

Heliomicin

DKLIGSCVWGAVNYTS-
DCNGECKRRGYKGGH-
CGSFANVNCWCET
(D3G9G5)

44 4790.39/6.87
Heliothis
virescens
(Insecta)

F. culmorum IMI 180,420
(MIC = (0.2–0.4) µM); F.
oxysporum MUCL 909
(MIC = (1.5–3.0) µM); N.
haematococca 160.2.2
(MIC = (0.4–0.8) µM); A.
fumigatus (MIC = (6–12) µM); T.
viride MUCL 19,724
(MIC = (1.5–3) µM)

[105]
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Table 1. Cont.

Defensin
Amino Acid (AA)
Sequence
(Accession n◦)

AA
n◦ber

MM
(Da)/pI

Organism
(Family)

Targeted Species (IC50 and
MIC) Ref.

PduDef

ATCDLLSAFGVGHA-
ACAAHCIGHGYRGG-
YCNSKAVCTCRR
(P83404)

40 4101.74/7.55
Phlebotomus
duboscqi
(Insecta)

A. fumigatus
(MIC = 12.5–25 µM); F.
culmorum (MIC = 1.56–3.12 µM);
F. oxysporum (MIC = 3.12–6.25
µM); T. viride
(MIC = 3.12–6.25 µM)

[30]

Phormicin
ATCDLLSGTGINHSA-
CAAHCLLRGNRGGY-
CNGKGVCVCRN
(P10891)

40 4066.69/7.55
Protophormia
terraenovae
(Insecta)

F. culmorum IMI 180,420
(MIC = 3 µM); F. oxysporum
MUCL 909 (MIC = 6 µM)

[105]

F. culmorum
(MIC = (1.5–3.0) µM); F.
oxysporum (MIC = (3–6) µM); N.
haematococca (MIC = (0.8–1.5)
µM); T. viride (MIC = (6–12) µM)

[106]

PxDef
RIPCQYEDATEDTICQ-
QHCLPKGYSYGICVS-
YRCSCV

37 4233.84/5.27
Plutella
xylostella
(Insecta)

B. cinerea (MIC = 15.0 µM);
Penicillium crustosum
(MIC = 13.0 µM); Colletotrichum
gloeosporioides Penz.
(MIC = 17.3 µM); Colletotrichum
orbiculare (MIC = 12.5 µM); F.
oxysporum (MIC = 8.0 µM)

[107]

Royalisin

VTCDLLSFKGQVNDS-
ACAANCLSLGKAGG-
HCEKGVCICRKTSFK-
DLWDKRF
(P17722)

51 5525.45/7.5
Apis
mellifera
(Insecta)

B. cinerea (MIC = 4.9 µM *) [108]

Termicin

ACNFQSCWATCQA-
QHSIYFRRAFCDRSQ-
CKCVFVRG
(P82321)

36 4221.89/7.82

Pseudacan-
thotermes
springer
(Insecta)

F. culmorum
(MIC = (0.2–0.4) µM); F.
oxysporum (MIC = (0.8–1.5) µM);
N. haematococca
(MIC = (0.05–0.1) µM);
Trichoderma viridae
(MIC = (6–12) µM)

[106]

Cg-Def

GFGCPGNQLKCNNH-
CKSISCRAGYCDAATLW-
LRCTCTDCNGKK
(Q4GWV4)

43 4642.40/7.53
Crassostrea
gigas
(Bivalvia)

B. cinerea (MIC > 20 µM); P.
crustosum (MIC > 20 µM); F.
oxysporum (MIC = 9 µM)

[109]

MGD-1

GFGCPNNYQCHRHC-
KSIPGRCGGYCGGW-
HRLRCTCYRC
(P80571)

38 4351.07/7.99

Mytilus
galloprovin-
cialis
(Bivalvia)

F. oxysporum (MIC = 5 µM) [110]

DefMT3

GYYCPFRQDKCHRH-
CRSFGRKAGYCGNF-
LKRTCICVKK
(A0A089VRA3)

38 4531.39/9.09

Ixodes
ricinus
(Arachnida)

F. culmorum (IC50 = 4 µM); F.
graminearum 8/1 (IC50 = 4 µM)

[36]
DefMT5

GFFCPYNGYCDRHCR-
KKLRRRGGYCGG-
RWKLTCICIMN

38 4533.43/9.11 F. culmorum (IC50 = 4 µM); F.
graminearum 8/1 (IC50 = 4 µM)

DefMT6
GFGCPLNQGACHNH-
CRSIKRRGGYCSGII-
KQTCTCYRK

38 4217.95/8.76 F. culmorum (IC50 = 12 µM); F.
graminearum 8/1 (IC50 = 2 µM)
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Holosin 2

GFGCPLNQRACHR-
HCRSIGRRGGFCA-
GLIKQTCTCYRK
(A0A5C1Z8V5)

38 4256.05/9.39
Ixodes
holocyclus
(Arachnida)

F. graminearum PH-1
(MIC = 5 µM)

[111]

Holosin 3

GFGCPNEWRCNAH-
CKRNRFRGGYCDSWF-
RRRCHCYG
(A0A5C1ZAY3)

36 4400.01/8.59 F. graminearum PH-1
(MIC = 5 µM)

Juruin

FTCAISCDIKVNGKPC-
KGSGEKKCSGGW-
SCKFNVCVKV
(B3EWQ0)

38 4012.80/7.99
Avicularia
juruensis
(Arachnida)

A. niger (MIC= (5–10) µM) [112]

Scapularisin-3

AFGCPFDQGTCHSHC-
RSIRRRGERCSGFAKRT-
CTCYQK
(B7Q4Z2)

38 4355.00/8.49

Ixodes
scapularis
(Arachnida)

F. culmorum (IC50 = 0.5 µM); F.
graminearum 8/1 (IC50 = 1 µM)

[113]

Scapularisin-6

GFGCPFDQGACHR-
HCQSIGRRGGYCAG-
FIKQTCTCYHN
(Q5Q979)

38 4180.76/7.55 F. culmorum (IC50 = 1 µM); F.
graminearum 8/1 (IC50 = 2 µM)

Vertebrate defensin

Hepcidin-1
(Hepcidin-6)

CRFCCRCCPRMRGC-
GLCCRF 20 2374.04/7.77

Acanthop-
agrus
schlegelii
(Sparidae)

A. niger CGMCC 3.316
(MIC = 20–40 µM); F.
graminearum CGMCC 3.3490
(MIC = 20–40 µM); F. solani
CGMCC 3.5840
(MIC = 20–40 µM) [114]

Hepcidin-2
SPAGCRFCCGCCPN-
MRGCGVCCRF
(Q68M56)

24 2531.12/7.33

A. niger CGMCC 3.316
(MIC= 40–60 µM); F.
graminearum CGMCC 3.3490
(MIC > 60 µM); F. solani
CGMCC 3.5840 (MIC > 60 µM)

Hepcidin
GCRFCCNCCPNMSGC-
GVCCRF
(P82951)

21 2263.79/7.08 A. niger (MIC = 44 µM) [115]

Crotamine

YKQCHKKGGHC-
FPKEKICLPPSSDFGKM-
DCRWRWKCCKKGSG
(Q9PWF3)

42 4889.85/8.58

Crotalus
durissus
terrificus
(Viperidae)

A. fumigatus IOC 4526
(MIC >25.5 µM *) [116]

Spheniscin-2

SFGLCRLRRGFCARGRC-
RFPSIPIGRCSRFVQCCRR-
VW
(P83430)

38 4507.47/11.47
Aptenodytes
patagonicus
(Spheniscidae)

A. fumigatus (MIC= (3–6) µM) [117]

Human
drosomycin-
like
defensin

CLAGRLDKQCTCR-
RSQPSRRSGHEVGRP-
SPHCGPSRQCGCHMD

43 4751.43/8.15
Homo
sapiens
(Hominidae)

A. fumigatus ATCC MYA1163
(MIC = 6.25 µM); A. nidulans
AZN 2867 (MIC = 6.25 µM);
Aspergillus ustus (MIC = 12.5
µM); F. solani AZN 6836
(MIC = 25 µM); F. oxysporum
(MIC = 6.25 µM)

[118]
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Fungus defensin

AFP

ATYNGKCYKKD-
NICKYKAQSGKTAICK-
CYVKKCPRDGAKCEF-
DSYKGKCYC
(P17737)

51 5805.86/8.34

Aspergillus
giganteus
(Trichocoma-
ceae)

Fusarium sporotrichioides IfGB
39/1601 (MIC = 0.02 µM *); F.
moniliforme IfGB 39/1402
(MIC = 0.02 µM *); A. niger
ATCC 9029 (MIC = 0.17 µM *);
A. niger NRRL 372
(MIC = 0.17 µM *); A. niger IfGB
15/1803 (MIC = 0.17 µM *);
Fusarium equiseti IfGB 39/0701
(MIC = 0.17 µM *); Fusarium
lactis IfGB 39/0701
(MIC = 0.17 µM *); F. oxysporum
IfGB 39/1201 (MIC = 0.17 µM *);
Fusarium proliferatum IfGB
39/1501 (MIC = 0.17 µM *);
Fusarium sp. IfGB 39/1101
(MIC = 0.17 µM *); Aspergillus
awamori ATCC 22,342
(MIC = 0.34 µM *); F. oxysporum
f.sp. lini IfGB 39/0801
(MIC = 1.38 µM *); Fusarium
bulbigenum IfGB 39/0301
(MIC = 1.72 µM *); F. oxysporum
f.sp. vasinfectum IfGB 39/1301
(MIC = 1.72 µM *); F. solani IfGB
39/1001 (MIC = 20.67 µM *);
Fusarium poae IfGB 39/0901
(MIC = 31 µM *); A. nidulans
DSM 969 (MIC = 34.45 µM *); A.
nidulans G191
(MIC = 34.45 µM *); A. giganteus
IfGB 15/0903
(MIC = 68.90 µM *); A. giganteus
MDH 18,894
(MIC = 68.90 µM *); Fusarium
aquaeductuum IfGB 39/0101
(MIC = 68.90 µM *); F. culmorum
IfGB 39/0403
(MIC = 68.90 µM *)

[119]

PAFB

LSKFGGECSLKHNTCT-
YLKGGKNHVVNCGS-
AANKKCKSDRHHCE-
YDEHHKRVDCQTPV
(D0EXD3)

58 6500.36/7.74
Penicillium
chryso-
genum
(Trichocoma-
ceae)

A. fumigatus (MIC = 0.25 µM); A.
niger (MIC = 0.50 µM);
Aspergillus terreus (MIC = 1 µM)

[120]

PAF

AKYTGKCTKSKNEC-
KYKNDAGKDTFIKC-
PKFDNKKCTKDNNK-
CTVDTYNNAVDCD
(Q01701)

55 6250.08/7.89
A. fumigatus (MIC = 1 µM); A.
niger (MIC = 0.25 µM); A. terreus
(MIC = 32 µM)

AnAFP

LSKYGGECSVEHNTC-
TYLKGGKDHIVSCPSA-
ANLRCKTERHHCEY-
DEHHKTVDCQTPV
(A2QM98)

58 6517.29/6.24
A. niger
(Trichocoma-
ceae)

A. flavus KCTC 1375
(MIC = 8 µM); A. fumigatus
KCTC 6145 (MIC = (4–8) µM); F.
oxysporum KCTC 6076
(MIC = (8–15) µM); F. solani
KCTC 6326 (MIC = 8 µM)

[121]
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AcAFP
ATYDGCKCYKK-
DNICKYKAQSGKT
(D3Y2M3)

24 2717.14/8.43

Aspergillus
clavatus
(Trichocoma-
ceae)

F. oxysporum (MIC = 8.57 µM *);
F. oxysporum (IC50 = 1.25 µM *) [122]

NFAP

LEYKGECFTKDNTC-
KYKIDGKTYLAKCP-
SAANTKCEKDGNKCT-
YDSYNRKVKCDFRH
(A1D8H8)

57 6625.56/7.92

Neosartorya
fischeri
(Trichocoma-
ceae)

A. niger
(MIC = (3.77–15.09) µM *); A.
nidulans (MIC = 30.19 µM *)

[123]

The literature, from which the data presented were compiled, was selected from papers published from 1990 to
2021, using the search engines PubMed and ResearchGate, with different associations of the keywords “defensin”,
“antifungal” and “plant”. Defensins were classified into four groups based on their organism of origin: the
vertebrates, the invertebrates, the plants and the fungi. The minimum inhibitory concentration (MICs) and half-
maximal inhibitory concentrations (IC50) noted “*” were calculated from the mass concentrations and molecular
mass. The molecular mass (MM) was calculated as the average mass with peptide 2.0. The iso-electric was
calculated with IPC 2.0. The accession number is the reference from Uniprot.

As shown in Table 1, most defensins that have been characterized to date for their
capacity to restrain the growth of plant-infecting fungi belong to the plant defensin group.
Among the 67 plant defensins and DLPs identified through our literature search, the major-
ity of them were isolated from plants of the Fabaceae (mainly related to various Medicago,
Vigna and Pisum species) and Brassicacea (e.g., Raphanus, Sinapis, Arabidopsis and Brassica
species) families. RsAFP1 and RsAFP2 from Raphanus and Brassica species [29,63,67], Mt-
Def2 and MtDef4 from M. truncatula [35,56] and Nad1 and Nad2 from N. alata [98,99] were
those for which the antifungal activity against plant pathogens were the most extensively
documented. Regarding invertebrate defensins, 22 peptides have been shown as efficient
to restrain the growth of plant infecting fungi. With the exception of Cg-Def isolated
from C. gigas [109] and MGD-1 from M. galloprovincialis [110], these antifungal invertebrate
defensins have been found in insect and arachnid species. The literature review high-
lighted six defensins from filamentous fungi and six defensins from vertebrates with a
reported activity against phytopathogenic fungi: three occurring in fish species, one from
a snake species, one in a penguin species and one homologue of the Drosophila-derived
drosomycin observed in humans [114–118]. The small proportion of fungi and animal
defensins listed in Table 1 supports previously published conclusions indicating that plant
defensins primarily exhibited activity against fungi while fungal and animal defensins
have efficient antibacterial properties [48]. The previous statement should, however, be put
in balance with the history of research dedicated to defensins. Actually, as illustrated in the
review of Silva et al. [41], the research addressing the antifungal bioactivity of defensins has
only increased in a really more recent past that dedicated to antibacterial effects. It is there-
fore reasonable to assume that the antifungal activity of animal defensins, which were the
first identified defensins, has been understudied. To evidence the antifungal properties of
defensins, a broad set of targeted fungi has been used. The list reported in Table 1 includes
fungi responsible for major plant diseases, such as the phytopathogenic fungi of cereal
crops (F. culmorum and F. graminearum, S. tritici and Pycularia oryzae) or of cruciferous crops
(Leptosphaeria maculans), fungi affecting grape quality (B. cinerea) and fungi infecting fruit
and vegetable crops (F. oxysporum, F. solani, N. haematococca). Among this list of targeted
fungi, several species are acknowledged as responsible for crop contamination by myco-
toxins. This is the case, for example, of F. graminearum and F. culmorum that are the main
causal agents of cereal contamination with deoxynivalenol mycotoxin [8] of F. verticillioides
that produces fumonisins on maize grains [124] and of the ochratoxin-producing A. niger
species and the sterigmatocystin-producing A. versicolor and nidulans species [125].

To assess the antifungal efficacy of defensins, MIC and/or IC50 were used (Table 1).
It should be borne in mind that the heterogeneity of experimental procedures targeting
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the fungal strain and fungal growth assessment method—especially with regard to culture
conditions—makes it difficult to compare results from different studies. Nevertheless, for
the tests realized within a same study and using similar protocols, differences in MIC and
IC50 values may reveal the occurrence of variations in the specificity of defensins towards
pathogens and/or in their mode of action. Thus, the data reported in Table 1 indicate a
significantly higher efficacy of the AFP defensin from A. giganteus against F. sporotrichioides
(MIC value of 0.1 µg/mL which corresponds to a 0.02 µM concentration) than against F.
culmorum (MIC value higher than 70 µM) [119]. Such differences in antifungal efficacy
were also reported for the RsAFP1 defensin from R. sativus that has been characterized by a
0.05 µM MIC value when tested against the rice blast fungus P. oryzae and a 17.6 µM MIC
value against the Basidiomycota R. solani [67]. The RsAFP1 defensin was also shown to be
twice as efficient against F. oxysporum f. sp. Pisi (IC50 = 2.65 µM) than against F. oxysporum f.
sp. Lycopersici (IC50 = 5.3 µM) [29,67]. Additionally, as illustrated with PAF and PAFB from
P. chrysogenum tested against various Aspergillus species [120], different defensins from
the same origin can display important disparity in their antifungal effectiveness and their
target specificity. Finally, data gathered in Table 1 also support the point that one fungal
species can be more or less affected by defensins of different origin. Thus, B. cinerea was
shown to be approximately twice as sensitive to the DM-AMP1 defensin from D. merckii
than to the Ah-AMP1 defensin from horse chestnut A. hippocastanum [63].

In addition to assessing the antifungal efficacy of defensins, some authors have con-
sidered the specific activity of their γ-core. For instance, Tonk et al. [36] have reported
that the γ-core of the defensin DefMT3 was two to four times more efficient in inhibiting
the spore germination of F. graminearum and F. culmorum than the mature defensin. In
contrast, the γ-core of the defensins MtDef4 and MtDef5 exhibited a lower inhibitory po-
tential against Ascomycota F. oxysporum and P. medicaginis than the parental defensins [35].
These opposite results may be related to the absence/presence of disulfide bridges and/or
creation of oligomers. To identify the determinants of the γ-core activity, structure/function
investigations have been implemented; and γ-core sequences and degree of inhibitory
efficiency have been compared. Such approaches have allowed Lacerda et al. [126] and
Leannec-Rialland et al. [127] to demonstrate that the positively charged amino acids located
in the γ-core were essential for the antifungal activity; other structural motifs responsible
for antimicrobial activity being the α-patch, the γ-patch, and m-loop [128,129].

Although several reports have documented the antifungal activity of defensins against
plant pathogens, very few have investigated their potential to inhibit the yield of mycotoxins.
To our knowledge, this potential was first demonstrated by Leannec-Rialland et al. [127],
who showed the remarkable efficacy of the γ-core of the tick defensin DefMT3 to inhibit
the production of type B trichothecenes by F. graminearum. The previous authors also
evidenced that the tertiary structure of the peptide, the occurrence of dimer forms and its
cationic properties were primary factors involved in the mycotoxin inhibition activity of
DefMT3 γ-core.

4. Antifungal Mechanism of Action of Defensins

Defensins with an acknowledged antifungal activity are classified into two groups
according to their antimicrobial action: (i) the morphogenic defensins, causing a reduced
hyphal elongation with an increase in hyphal branching; and (ii) the non-morphogenic
defensins that lead to a reduction in the hyphal elongation without provoking observable
changes in hyphae morphology [80,130,131]. For instance, MsDef1 from M. sativa that
induces the important hyperbranching of fungal hyphae belongs to morphogenic group
while MtDef4, from M. truncatula, is non-morphogenic [132]. A variety of key features have
been proposed to explain the antifungal activity of defensins. These features, schematized
in Figure 4 and detailed in the following, are related to fungal membrane binding and the
induction of membrane disorders, as well as to the production of reactive oxygen species
(ROS) and their interaction with fungal specific targets once the defensin has entered the
cytoplasm. According to this multifaceted mechanism of action, defensins have been shown
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to affect various fungal pathways. In the recent publication of Aumer et al. [133], the use of a
proteomic approach has allowed evidencing the alteration of spliceosome, ribosome protein
processing in endoplasmic reticulum, endocytosis, MAPK signaling pathway and oxidative
phosphorylation in B. cinerea exposed to an analogue of the insect defensin heliomicin. In
addition to being comprehensively reviewed by Parisi et al. [134] and Struyfs et al. [135],
the antifungal activity of different defensins can result from different mechanisms. While
some defensins require crossing the fungal cell wall and plasma membrane to induce cell
death, others can exert their toxic effects from the extracellular side of the fungal cells.
Moreover, a single defensin can have different mechanisms of action depending on the
targeted fungal species [136].

4.1. Interactions with Host Membrane Components and Induction of Fungal Membranes Disorders

For some defensins, the interaction with specific sphingolipids and phospholipids
of the plasma membrane is a prerequisite for their antifungal activity [137]. For exam-
ple, the binding of the DmAPM1 defensin from D. merckii to the sphingolipid mannosyl
di(inositolphosphoryl)-ceramide has been shown to be critical for triggering its antifungal
activity [138]. The specific target of several defensins including MsDef1 from the barre
clover M. sativa, Sd5 from the sugarcane S. officinarum, RsAFP2 from the radish R. sativus
and Psd1 from the pea P. sativum has been identified as glucosylceramide [139–142]. Mt-
Def4 from M. truncatula has been shown to specifically interact with phosphatidic acid, a
precursor of membrane phospholipids and a signaling lipid, and this interaction has been
indicated as necessary for MtDef4 entry into fungal cells [143]. Regarding the defensin
NaD1 from N. alata and the tomato defensin TPP3, their interaction with phosphatidylinos-
itol (4,5)-bisphosphate, located in the inner leaflet of the membrane, has been reported as
essential for the initiation of their cytotoxic effects [144,145]. More recently, the membrane
modeling approach used by Leannec-Rialland et al. [127] indicated that the γ-core of the
tick defensin DefMT3 was recruited by the phospholipids POPS, POPA and POPG that
are present in the F. graminearum membrane. Using the in silico modeling or mutational
analysis of amino acids, some specific residues located in the loop region of the γ-core motif,
such as Phenyl-alanine 28 and Isoleucine 29 in the DefMet3 protein [32] or the RGFRRR
motif in MtDef4 [143], have been predicted as critical for the interaction with the lipid
bilayer membrane. The binding site of NaD1 was also characterized: this binding site
is formed by the Lysine 4 residue and a KILRR motif located between the β-strands of
its γ-core motif [144]. In addition to structural features of the γ-core motif, the specific
residues located in loop 1 of some defensins have been demonstrated to be involved in the
binding with fungal membranes. For example, the Phenylalanine 15 and the Threonine
16 residues present in Loop 1 of the Psd1 defensin have been shown to be involved in the
interaction with glucosylceramide [146].
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Figure 4. Summary of known and suspected modes of action of defensins displaying antifungal (yellow inserts) and/or antimycotoxin (orange inserts) activity.
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As a result of the binding with membrane components, defensins can create pores
and permeabilize the membranes, which is, however, acknowledged as only one among
several mechanisms involved in the antimicrobial action of defensins [147]. This capacity of
pore formation is not shared by all defensins; certain defensins such as plectasin—a fungal
defensin from Pseudoplectania nigrella—does not affect fungal membrane integrity [148]. Ac-
tually, neither pore formation, nor changes in membrane potential, nor carboxy-fluorescein
efflux from liposomes were detected by the previous authors when Bacillus subtilis were ex-
posed to plectasin. The mechanism involved in plectasin bactericidal activity was reported
to be associated with an inhibition of membrane-associated steps of cell-wall biosynthe-
sis [148]. The membrane permeabilization of Neurospora crassa caused by various plant
defensins was reported by Thevissen et al. [149]—the extent of which is dependent on the
defensin dose. Such a membrane-permeabilizing activity was also evidenced for NaD1,
which was reported to form a relatively stable aperture with an internal diameter ranging
between 14 and 23 Å in F. oxysporum membrane [150] and for MtDef5 in F. graminearum
and N. crassa [151]. The capacity of defensins to cause membrane permeabilization is
dependent on the fungal target as illustrated for MtDef4. Indeed, while MtDef4 has been
shown to induce permeabilization in F. graminearum, this mechanism did not appear to
contribute to the antifungal effect of MtDef4 against N. crassa [136]. Some defensins form
oligomers and those oligomers were reported as being the active structures associated with
membrane permeabilization and antimicrobial activity [152]. This is the case of defensin
SPE10, from the plant P. erosus, for which the dimeric form was shown to possess high
antifungal properties, possibly favored by its increased hydrophobicity [86]. Similarly,
the TPP3 tomato defensin can form a dimeric cationic grip through antiparallel alignment
of the β strands, stabilized by hydrogen bonds and salt bridge interactions, which was
shown as critical for its interaction with PIP2 (phosphatidylinositol 4,5-bisphosphate) and
cytolytic activity [145]. NAD1 from N. alata was observed to create an arrangement with
seven dimers binding to the anionic headgroups of 14 PIP2, leading to a complex oligomer
seemingly important for cell permeabilization [144].

There are currently at least three different commonly accepted models describing
the possible membrane-permeabilizing activity of defensins: the barrel-stave pore model,
the toroidal pore model and the carpet model. To address these specific pore models in
greater depth, we strongly encourage the readers to consult the relevant review of Brogden
published in 2005 [153]. Briefly, in the barrel-stave model, antifungal peptides self-aggregate
in the membrane in a way that their hydrophobic sites face the phospholipid layers of the
membrane while their hydrophilic segments face the lumen of transmembrane pores. In
the toroidal model, antifungal peptides and membrane lipids interact to form pores that
are lined by both peptide and lipid headgroups. In the carpet model, antifungal peptides
bind, in a monomeric or oligomeric form, onto the surface of the negatively charged
target membrane and surround it in a carpet-like manner, leading to the disruption of the
bilayer curvature and the disintegration of the membrane. The immediate consequence
of pore-formation induced by some defensins in fungal membranes is the dissipation of
ionic gradients and membrane potential across the cytoplasmic membrane of target cells,
triggering cell death. The such dysfunction of calcium influx and potassium efflux can also
directly result from the binding of defensins with fungal membrane components. In this
way, a membrane potential disruption effect has been proposed to explain the activity of
a synthetic tick defensin against Micrococcus luteus [154]. Similarly, the plectasin fungal
defensin [155] and the Arabidopsis defensin AtPDF2.3 [65] were proven to interfere with
potassium channels. The pea defensin Psd1 was also characterized for its capacity to
disturb potassium channels in mammalian cells; however, this activity was not observed in
fungal cells [156]. The maize defensin called γ-zethionin was also reported to affect sodium
currents by hindering voltage-operated channels [157]. In the same way, MsDef1 was
evidenced to perturb calcium exchanges in mammalian cells; a blocking of calcium channels
was also supposed to be involved in its antimicrobial action against F. graminearum [80].
According to the reports of Zhu et al. [158] and Meng et al. [159], the structural Csαβ-
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motif could be a key determinant involved in the capacity of defensins or DLPs to block
ion channels.

4.2. Induction of Oxidative Stress and Apoptosis

There is compelling evidence that defensins can induce ROS accumulation within
the targeted fungal cells. This has been notably demonstrated for RsAFP2 in C. albi-
cans [160,161], for NaD1 in C. albicans [162,163] or in F. oxysporum [150] and for HsAFP1 in
C. albicans [164]. It should be noted that internalization is not required for inducing ROS
production as RsAFP2, which is not internalized, induces the production of ROS [161]. ROS
can instantaneously and nonspecifically react with essential biological molecules and lead
to an alteration of cellular functions by inducing damages such as mutations in DNA, oxi-
dations of proteins, or the peroxidation of lipids. These damages are generally deleterious,
and could lead to apoptosis and cell death. The induction of apoptosis in C. albicans cells
exposed to the OsAFP1, RsAFP2 and HsAFP1 defensins, has been clearly demonstrated
thanks to the use of epifluorescence methods [161,164,165]. Regarding the effect of RsAFP2
in C. albicans, apoptosis induction was shown to concomitantly occur with an activation of
caspases or caspase-like proteases [161]. Since it is strongly suspected that the biosynthesis
of mycotoxins could help the fungal cell maintain safe levels of intracellular ROS [166],
it makes sense to suggest that ROS accumulation triggered by defensins could affect the
production of mycotoxins by toxigenic fungi. However, to date, this potential link between
ROS induction by defensins and modulation of mycotoxin yield has not been addressed.

4.3. Internalization and Intracellular Targets

Th use of fluorescently labeled peptides coupled to confocal microscopy has boosted
the demonstration of cell internalization of various defensins. The translocation of defensins
across fungal cell membrane can occur in a non-disruptive manner, frequently for peptide
concentrations and/or exposure times that do not lead to significant growth alteration. For
instance, while MtDef4 was shown to permeabilize the plasma membrane of F. graminearum
before its entry into fungal cells, the internalization of MtDef4 into N. crassa cells was
reported to occur without membrane permeabilization [136]. According to previous works,
MtDef4 internalization in N. crassa could be related to endocytosis. Similarly, NaD1 has
been reported to bind to a putative cell wall receptor of C. albicans and to be taken up
to the cytoplasm through endocytosis, causing cytoplasm granulation [150,163]. In fact,
the mechanism of non-lytic defensin internalization remains poorly understood [135].
When internalized, defensins can bind intracellular specific targets, inducing signaling
cascades. Due to their cationic nature, most defensins are likely to bind nucleic acids
which might result in a broad inhibition of DNA synthesis, transcription and/or mRNA
translation inside the target cells [167,168]. Such an effect on gene expression could explain
the non-morphogenic activity of some defensins and their capacity to interfere with the
fungal secondary metabolism, including mycotoxin biosynthesis [127]. One of the most
documented defensins for its interaction with intracellular targets is certainly the pea
defensin, Psd1. Psd1 has been shown to be translocated to N. crassa fungal nucleus and to
interact with distinct nuclear proteins including cyclin F and consequently to lead to the
disruption of the cell cycle control function in the nuclei [169].

5. Exploiting Defensins to Protect Crops from Phytopathogenic Fungi and
Mycotoxin Contamination

As illustrated above, several defensins possess efficient and interesting capacities to
prevent and/or restrain the growth of phytopathogenic fungi including toxigenic ones
and their mechanisms of action have been the subject of numerous investigations. This
bioactivity makes defensins promising candidates for consideration in control methods as
alternatives to the use of synthetic fungicides. Two application strategies might be explored:
the creation of transgenic plants overexpressing antifungal defensins and the formulation
of defensin-based plant-care products.
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5.1. Transgenic Plants Overexpressing Defensin for an Enhanced Resistance to
Phytopathogenic Fungi

Gene constructions based on sequences coding for defensins have been expressed in
various plant models and/or crops of economic interest. As first reviewed by Montesinos
in 2007 [170] and thereafter by Sher Khan et al. [171], these biotechnological developments
can provide higher degrees of protection against distinct plant fungal pathogens, either
biotrophic, hemi biotrophic or necrotrophic ones. Thus, Gao et al. [81] and Abdallah
et al. [172] have reported the increased protection against F. oxysporum and Verticilium dahlia
of potato and tomato plants overexpressing the MsDef1 defensin from M. sativa. Similarly,
tobacco transformation with MsDef1 led to an improved resistance to Ralstonia solanacearum
and A. niger [173]. DmAMP1 from D. merckii, when expressed in papaya, was shown to
upscale the resistance to Phytophthora palmivora [174] and to reduce symptoms caused by
M. oryzae and R. solani when expressed in rice [175]. The use of RsAFP2 from radish as
transgene was demonstrated to enhance tobacco resistance to the pathogen A. longipes [68],
tomato resistance to F. oxysporum [176] and wheat resistance to R. solani [177]. Tobacco and
potato genetically engineered with NmDef02 from Nicotiana megalosiphon were reported to
be more tolerant against the oomycete Phytophthora infestans [178]. The introduction of the
previous NmDef03 transgene was also shown to protect soybean from Phakopsora pachyrhizi
and Colletotrichum truncatum [179]. Lastly, the overexpression of WT1 from Wasabia japonica
in rice, tomato, potato, egusi melon or tobacco was reported as an efficient strategy to
decrease their susceptibility to several phytopathogenic fungi [180–183]. In several studies,
a combination of two defensin genes was used. Thus, the genetic engineering of A. thaliana
with DmAMP1 and RsAFP1 [184], of rice with DmAMP1 and RsAFP2 [185] and of peanut
with NPR1 and Tfgd was successfully experimented. Defensins from non-plant origin were
also considered in these biotechnological applications. For example, rice transformation
with a transgene related to the fungal defensin AFP from A. giganteus was shown to improve
plant resistance to the pathogen M. grisea [186]. Genetically modified tobacco with genes
coding for the arthropod defensins, heliomicin or drosomycin, was reported to exhibit a
slight but statistically significant enhanced resistance to the fungal pathogen Cercospora
nicotianae [187]. Lastly, in a few studies, the inserted DNA fragment contains a defensin
gene associated with a non-defensin one. Thus, the co-expression of the RsAFP1 gene and
the chitinase Chit42 gene from Trichoderma atroviride was demonstrated to enhance canola
resistance to sclerotinia stem rot disease [188].

Genetic engineering exploiting the bioactivity of plant defensins could also offer a
promising approach for manipulating susceptibility to disease induced by toxigenic fungi
and for minimizing mycotoxins in harvests. A small number of defensin transgenes have
been explored in order to generate crops that display enhanced resistance or tolerance
to Fusarium head blight which is mainly caused by F. graminearum or to Aspergillus spp.
disease. The study of Li et al. [177] described reduced symptoms in wheat lines transformed
with RsAFP2 compared to the transgenic control cultivar, cultivated in greenhouse and
field trials and artificially inoculated with F. graminearum. Similarly, an increased resistance
to Fusarium head blight was reported in transgenic wheat lines overexpressing the TAD1
defensin gene [189]. Moreover, the potential of defensin-based engineering strategies to
alleviate contamination with mycotoxins was clearly demonstrated in the report of Kaur
et al. [190] that indicated significantly reduced amounts of deoxynivalenol in the siliques of
Arabidopsis transgenic lines expressing MtDef4.2 that were inoculated with a toxigenic F.
graminearum strain. MtDef4 and MtDef5 from M. truncatula have also been used to boost
the resistance of peanut against A. flavus and to minimize the contamination of seeds with
aflatoxin [151,191].

However, despite the promising results described above, no defensin transgenic plants
that confer improved resistance to pathogenic fungi are yet in the market. Indeed, most
of the developed countries have set up full and detailed genetically modified organism
regulations that require the achievement of a comprehensive risk assessment procedure
prior release on the market and this risk assessment is far from being completed with regard
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to defensin transgenic plants. Moreover, the implementation of field trials also remains
highly insufficient to allow concluding on critical issues including reproducibility, stability
and environmental effects such as the potential occurrence of side effects affecting the crop
productivity. Actually, while the expression of Dm-AMP1 in Solanum melongena [192] or
MtDef4.2 in wheat [193] was reported as harmless to mycorrhizal fungi, some detrimental
effects were also observed in a few defensin transgenic plants. The overexpression of DEF2
was reported to alter the architecture of the tomato plant, to reduce pollen viability as well
as seed production [194]. Transgenic A. thaliana expressing the plant defensins MsDef1,
MtDef2, and RsAFP2, were also negatively affected in their growth, root and root hair
development [195]. Lastly, political and ethical concerns related to genetically modified
organisms should also not been neglected, representing an additional obstacle that the
development of defensin transgenic crops has to overcome before reaching the market.

5.2. Developing Defensin-Based Plant Protection Products for the Control of
Phytopathogenic Fungi

Given their antifungal efficiency even at low doses, defensins are attractive candidates
to replace synthetic fungicides or to reduce their amount by a combinatorial use in plant
disease management strategy. The capacity demonstrated by some defensins to inhibit
the production of mycotoxins, more precisely of deoxynivalenol [127], is an additional
argument in favor of their exploitation in agro-products. Indeed, deoxynivalenol is ac-
knowledged to act as a virulence factor for F. graminearum infecting wheat; the fungus
used deoxynivalenol production to circumvent the plant’s defense system and invade
spikelets [196]. In addition, since deoxynivalenol production is reported as part of the
adaptive response of F. graminearum to stressful conditions as those induced by exposure
to fungicides [197], it is highly recommended that a fungicide solution that also target the
production of deoxynivalenol is applied, which will allow avoiding an increased yield of
toxins as has been observed with some synthetic fungicide treatments [198]. Moreover, the
multifaceted mechanism employed by defensins against fungi is likely to reduce the risk
of the emergence of resistant fungal strains through selective pressures [23]. Actually, as
exhaustively reviewed by Fisher et al. [199], the emergence of new virulent and fungicide-
resistant strains, mainly due to the intensive use of single-target fungicides, has become a
critical threat for agriculture of today and tomorrow. Available published data support the
fact that AMPs seem to not induce neither antibacterial nor antifungal resistance [200,201].
Furthermore, some fungal defensins were reported to be able to kill antibiotic-resistant
bacteria isolates, supporting the promising use of this class of AMPs [202]. Nevertheless,
even though unlikely, it cannot be entirely ruled out that phytopathogenic fungi, that are
known as remarkable in their ability to adapt in response to selection pressures, could
evolve and develop mechanisms to counter the fungicidal action of pesticide, including
cell membrane rearrangement, membrane potential and ionic currents change, or peptide
degrading enzyme production [41]. Despite increasing evidence supporting the promising
use of defensins, the development of defensin-based protection products requires solutions
to several hurdles which will be briefly addressed in the following. The first one is the insuf-
ficient amount of data supporting the in vivo lack of toxicity of defensins, which hampers a
comprehensive assessment of risk and health hazards related to their use as plant protection
products and their registration by competent authorities. Indeed, while in vitro cytotoxicity
studies converged on the null or reduced the toxic side effects of defensins [203], the body
of knowledge that has been developed using animal models remains limited and mainly
restricted to defensins of bacterial origin [204].

The second major limitation to the application of defensins for controlling phy-
topathogenic fungi is the lack of optimized process for their production on a large scale.
The yields of defensins from natural sources are generally low and the extraction and
purification steps are time-consuming and expensive. Chemical synthesis has for a long
time been considered as an economically viable solution but only for short peptides and
high-value applications [205]. However, recent advances in peptide synthesis method-
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ologies have paved the way for the successful synthesis of defensins conserving their
biological activity and for reducing associated costs. One of the latest successes of defensin
chemical synthesis is the production of the PvD1 defensin from the P. vulgaris [206]. In
recent years, genetic engineering, which is the privileged technology for the production
of large amounts of proteins, has been subject of intense investigation for the large-scale
production of defensins. Different heterologous expression systems were studied, including
E. coli [207], yeasts (Saccharomyces cerevisiae or Pichia pastoris) and insects. Indeed, the use of
advanced insect cell-based expression systems was proposed to overcome limitations due
to the antimicrobial activity of defensins that could hamper their heterologous production
in bacteria and yeasts and to allow the properly synthesis of folded functional peptides
which is more challenging using bacteria [208]. In addition, to minimize the lethal effects
of the peptide in the host cell, to protect them from proteolytic degradation and improve
their solubility, various strategies were elaborated. The most common strategy is based
on the use of fusion proteins, associating a defensin and a carrier protein [209,210]. Thus,
thioredoxin [211] and small ubiquitin-related modifier [212–215] have frequently been
used as AMPs fusion partner for improving the folding and solubility of the peptide. The
promising use of heterologous expression technology to produce defensins and preserve
their bioactivity against toxigenic fungal species has been reported by Kant et al. [216]
who described the capacity of a recombinant PDC1 corn defensin, expressed in E. coli or P.
pastoris, to inhibit the growth of F. graminearum. Interest in the E. coli expression system
was also recently supported by the study of Al Kashgry et al. [217] which reported the
successful production of the MzDef maize defensin and its antifungal activity against F.
verticillioides and A. niger.

Another factor that must be considered for the development of defensin-based plant
care products is their stability. As generally small peptides, defensins can be subject to
proteolytic degradation by various proteases, resulting in their poor bioavailability and
decreased efficacy. However, the intramolecular structure stabilized by disulfide bonds
that characterizes defensin makes this class of peptides less proteolytically degradable
compared to linear peptides. The occurrence of disulfide bonds has also been reported to
confer a high structural stability to defensin at extreme temperatures and pH values [218].
To protect defensins from degradation, improve their solubility and consequently their
bioavailability, the use of engineered nano-carriers may be a promising route. Nanoen-
capsulation systems including micro/nano -suspensions, -emulsions, -particles, -capsules
and -hybrids are currently under practice for chemical pesticide application [219], and
intensively investigated for medicinal applications of defensins [220].

Last but certainly not least, economic and social acceptance of the use of defensin-based
plant fungicides should not be neglected. While integrated pest management practices with
less environmental impact including the adoption of biofungicide solutions are convincing
an increasing number of farmers [221], the balance between the efficiency and cost of
environmentally friendly pesticides can be a barrier for the adoption of these new plant
protection solutions. As previously mentioned, efforts should be dedicated to improving
the large-scale and low-cost production of defensins and demonstrate their efficiency in
field trials. Once these issues are solved, defensin-plant-based solutions will have to be
integrated in the framework of policies implemented to change farmer behavior and incen-
tivize the adoption of new practices, which includes advisory services and training, the
demonstration of the economic benefits of new and sustainable protection products but
also financial support to accompany the transition towards agricultural systems with less
use of chemical pesticides [222]. Actually, the adoption and acceptability of defensin-based
biopesticides will be impossible without the relevant and wide dissemination of the benefits
of their use to stakeholders, which represents a critical step to combat the sometimes nega-
tive perception related to new sustainable solutions and avoid their dismissal as a feasible
and efficient option for pest management [223]. Defensin-plant-based solutions will also
have to meet the requirements for their registration as biofungicides. The term biofungicide
mostly refers to fungicides that contain a microorganism as active ingredient, but also in-
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volve formulations exploiting the bioactivity of naturally occurring substances. Antifungal
peptides with native chemical structure fall within the former definition. The biopesticide
registration data portfolio is close to that required for conventional chemical pesticides and
includes, among others, information about the mode of action and proof of efficacy, host
range testing, toxicological and eco-toxicological evaluations [223]. The guidance of the
Organisation for Economic Co-operation and Development (OECD) is that biopesticides
should only be authorized if they pose minimal or zero risk. This registration procedure
is cumbersome and expensive and can jeopardize the commercialization of a biopesticide
such as a defensin-based one if the market seems too small to justify the expenses inherent
to its registration. To try solving this issue and boost the development of biopesticides,
some countries have modified their legislation so that biological products automatically
enter a fast-track review process. This is for instance the case of Canada and the United
States, which have implemented a joint review process for biological products whereby a
registration dossier receives speedier analysis and once the biopesticide is approved and
granted, its commercialization is allowed in both countries simultaneously [224].

6. Conclusions

The present review highlights the promising potential of defensins in plant disease
treatments to protect crops from phytopathogenic fungi including toxigenic ones. In
addition to their efficient antifungal activity and capacity to inhibit the production of
mycotoxins, several rationales support the bright future held by this class of natural
peptides: defensins exhibit low toxicity to plants and mammals, high stability and solubility,
fall within the biopesticide definition and have a possibly low cost of production through
microorganism engineering. The development of defensin-based plant protection products
could be a new lever to facilitate the transition between current crop production systems
based on an intensive use of chemical pesticides towards more sustainable ones. However,
despite this outstanding potential, the development of defensin-based biocontrol solutions
still faces numerous obstacles. Efforts should be pursued to translate defensin-based in vitro
research findings into plant protection products. In addition, the potential offered by
defensins in plant disease management is today certainly largely underestimated. Indeed,
available knowledge on defensin bioactivity against phytopathogenic fungi is mainly
restricted to their antifungal effect and to defensins from plant origin. As previously
published [111,113,127], defensins could also exhibit highly promising antimycotoxin
efficiency and defensins of invertebrate origin could be an additional source of bioactive
peptides. The expansion of peptide libraries and defensin databases, together with the
development of bioinformatics and proteomics tools, will certainly contribute to broaden
the field of defensin investigation [225].
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