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NK cells express a limited number of germline-encoded receptors that identify infected or transformed cells, eliciting
cytotoxicity, effector cytokine production, and in some circumstances clonal proliferation and memory. To maximize the
functional diversity of NK cells, the array and expression level of surface receptors vary between individual NK cell “clones”
in mice and humans. Cytomegalovirus infection in both species can expand a population of NK cells expressing receptors
critical to the clearance of infected cells and generate a long-lived memory pool capable of targeting future infection with
greater efficacy. Here, we discuss the pathways and factors that regulate the generation and maintenance of effector and
memory NK cells and propose how this understanding may be harnessed therapeutically.

Introduction
Natural killer (NK) cells are innate immune cells capable of
mounting a cytotoxic response and/or secreting cytokines upon
detection of infected or transformed cells. Detection of such
aberrant cells is achieved using a remarkably small number of
germline-coded receptors that activate NK cells in response to
the presence of “stress” ligands, viral proteins, or a loss of in-
hibitory ligands such as MHC class I. Humans (and mice) with a
defect in NK cell numbers or function are extremely susceptible
to certain viral infection and cancers (Morvan and Lanier, 2016;
Cerwenka and Lanier, 2016; Mace and Orange, 2019). NK cells
were first shown to mount antigen-specific acute and “memory”
immune responses in amodel of hapten (2,4-dinitrofluorobenzene
or oxazolone)–mediated contact hypersensitivity. Treat-
ment of Rag2−/− mice, which lack functional B or T cells,
with a specific hapten resulted in an NK cell–dependent
increased swelling upon treatment of the mouse’s ear with
the same hapten, which lasted for at least 4 wk (O’Leary
et al., 2006).

In a subsequent study, virus-induced NK cell memory was
demonstrated in response to mouse CMV (MCMV) infection
(Sun et al., 2009a). Ligation of the NK cell activating receptor
Ly49H by the virally encoded protein m157 initiates a clonal-like
proliferation of this NK cell subset, similar to T and B cells. This
expanded population of Ly49H+ NK cells, directly and through
activation of an adaptive immune response, controls peripheral
viremia and drives MCMV into latency, where virus can only be
detected in salivary glands. In humans, human CMV (HCMV)–

infected individuals similarly possess a population of “adaptive”
NK cells (NKG2C+CD57+) that can expand and persist as memory
cells (Lopez-Vergès et al., 2011; Gumá et al., 2004).

Finally, antigen-independent activation of NK cells can pro-
duce longevity and anamnestic responses through exposure to
homeostatic and inflammatory cytokines (Cooper et al., 2009;
Sun et al., 2011; Nabekura and Lanier, 2016a). Because antigen-
dependent memory NK cell formation has a strong dependency
on proinflammatory cytokines, it is possible that NK cell mem-
ory can be generated to pathogens other than CMV. Indeed,
there have been reports of putative memory NK cell generation
in response to hantavirus (Björkström et al., 2011) in humans
and influenza, vaccinia, and Friend viruses inmice (Gillard et al.,
2011; Littwitz-Salomon et al., 2018; van Helden et al., 2012).
Although future studies will elucidate greater details about the
mechanisms through which NK cell memory is generated to
such other viruses, currently, CMV-generated NK cell memory
represents the most well studied and best characterized. This
review will summarize the key findings highlighting the mem-
ory capability of NK cells, divided into the topics of clonal ex-
pansion, long-lived survival, functional importance, and clinical
application.

Clonal expansion of NK cells
A hallmark feature of immunological memory during primary
infection is the clonal proliferation of antigen-specific lympho-
cytes. Here, we will discuss the pathways involved in driving
proliferation as summarized in Fig. 1 A. DuringMCMV infection,
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the activating NK cell receptor Ly49H recognizes a virally en-
coded glycoprotein, m157, expressed on the surface of infected
cells (Smith et al., 2002; Arase et al., 2002). Similar to peripheral
CD8+ T cells triggered through their TCR by cognate foreign
antigens, Ly49H+ NK cells have the ability to clonally expand and
generate long-lived immune memory after binding to m157 and
signaling through the adapter DAP12 (Sun et al., 2009a; Dokun
et al., 2001). Further work has dissected this Ly49H+ population
to better understand its clonality, identifying the most potent
Ly49H+ NK cells responding to MCMV infection as being low
and negative, respectively, for the inhibitory receptors KLRG1
and NKR-P1B (Rahim et al., 2016; Kamimura and Lanier, 2015).
In humans, NKG2C+ NK cells that express the MHC class I–
binding inhibitory receptor CD158b/j+ (KIR2DL2/KIR2DL3/
KIR2DS2), but not CD156a/h+ (KIR2DL1/KIR2DS1) or KIR3DL1+

(CD158e), have an expansion advantage in hematopoietic stem
cell transplant patients that reactivated CMV and expressed their
respective ligands (Foley et al., 2012). This is in agreement with
the finding that KIR3DL1 is expressed at a lower frequency on
NKG2C+ NK cells than their NKG2C− counterparts in CMV-
seropositive donors who express the KIR3DL1 ligand HLA-Bw4
(Lopez-Vergès et al., 2011). In a recent study where single-cell
transfer of color-barcoded Ly49H+ NK cells was performed, the
maximum clonal expansion of a given NK cell clone during
MCMV infection reached 10,000-fold, on par with the expansion
measured in OT-1 CD8+ T cells, demonstrating the remarkable
capacity of virus-specific NK cells to undergo clonal expansion
(Grassmann et al., 2019).

Recently, ILC1 (the tissue-resident equivalent to the circu-
lating NK cell), abundantly found in organs such as the liver
(Peng et al., 2013; Weizman et al., 2017), have also been shown to
form a memory population in response to MCMV (Weizman
et al., 2019). These pathogen-experienced liver ILC1s possess a
transcriptional and epigenetic profile distinct from naive liver
ILC1s (Weizman et al., 2019). Distinguished by their expression
of IL-18 receptor (IL-18R), these memory ILC1s produced greater
levels of IFN-γ ex vivo and were better able to control MCMV
in vivo upon virus rechallenge than their naive counterparts
(Weizman et al., 2019). Generation of memory ILC1s was de-
pendent on the MCMV-encoded glycoprotein m12, which is a
ligand for the activating NKR-P1 receptors (NK1.1 and NKR-P1A
encoded by Klrb1c and Klrb1a, respectively) expressed on mouse
NK cells (Aguilar et al., 2017; Weizman et al., 2019).

In humans, HCMV-infected individuals similarly possess a
population of NK cells (NKG2C+CD57+) that undergo clonal ex-
pansion and persist as memory cells (Lopez-Vergès et al., 2011;
Gumá et al., 2004). These memory NK cells express the acti-
vating receptor NKG2C but are negative or low for expression of
the inhibitory receptor NKG2A (Zhang et al., 2013). Further-
more, these cells have a lower expression frequency of the ac-
tivating receptor adapter molecule FcRγ than NKG2C− NK cells
(Zhang et al., 2013). The shared ligand for both inhibitory
NKG2A and activating NKG2C (which also signals through
DAP12) is HLA-E. Sequencing of the HLA-E–presented UL40-
derived peptide from HCMV-seropositive individuals identi-
fied that the sequence of this peptide impacted the size of the

Figure 1. Regulation of proliferation and survival is critical to memory NK cell formation during MCMV infection. (A) Proliferation. IL-12 activates
STAT4, which drives a cascade of proliferation-promoting transcription factors (e.g., IRF8 and Zbtb32) in NK cells that results in the suppression of BLIMP-1, in
addition to up-regulating factors such as MyD88 and the neurotransmitter receptor ADRB2. Along with IL-12 and STAT4 signaling, IL-18 signals via MyD88 in
NK cells, and together, these two proinflammatory cytokines drive Ly49H+ NK cell proliferation. (B) Survival. IL-12 and IL-18 also cooperate to regulate SOCS1
and NOXA through a microRNA-155 (miR-155)–dependent mechanism. Signaling through IFNαR induces the ISGF3 complex (consisting of STAT1, STAT2, and
IRF9), protecting NK cells against NKG2D-mediated “fratricide” and ensuring their survival. Signaling through the costimulatory molecule DNAM-1 also fa-
cilitates survival in a PKCη- and FYN-dependent manner. Expression of RAG is critical to induction of DNA damage repair pathways that maintain viability
during rapid cell division. Dashed lines represent induction of mRNA. NKG2DL, NKG2D ligand.
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NKG2C+ NK cell population (Hammer et al., 2018). A similar
phenomenon has been reported in mice, with Ly49P and Ly49L
controlling MCMV in an MHC haplotype– and MCMV protein–
dependent manor, with Ly49L being shown to be capable of
driving antiviral proliferation (Pyzik et al., 2011; Kielczewska
et al., 2009). In humans, NKG2C+ NK cell activation and clonal
proliferation is further promoted by CD2 binding to LFA-3
(CD58; Hammer et al., 2018; Rölle et al., 2016), along with epi-
genetic changes during differentiation into memory cells
(Schlums et al., 2015; Lee et al., 2015; Luetke-Eversloh et al.,
2014).

As with antigen-specific B and T cells, Ly49H+ and NKG2C+

NK cells in mouse and human, respectively, undergo avidity
selection for NK cell clones that express the greatest amount of
virus-specific receptor (Adams et al., 2019; Grassmann et al.,
2019). In mouse studies, although both Ly49Hhi and Ly49Hlo

NK cells could undergo avidity maturation by increasing their
surface levels of Ly49H during MCMV infection, the Ly49Hhi

population proliferated in vivo more rapidly and demonstrated
greater cytotoxicity ex vivo than their Ly49Hlo counterparts by
making more productive contacts with m157-expressing target
cells (Adams et al., 2019). In contrast, Ly49Hlo NK cells were
shown to produce higher levels of IFN-γ duringMCMV infection
(Adams et al., 2019), highlighting a diversification of effector
function in the different subsets resulting in a “division of labor”
during the antiviral immune response. Further investigation is
required to determine the underlying mechanisms by which
Ly49H (or NKG2C) signaling drives clonal expansion and
memory formation of NK cells.

As rapidly responding innate lymphocytes, NK cells rely
heavily on cytokines to activate their antiviral function. Proin-
flammatory cytokines drive the early effector responses that are
a precursor to NK cell memory generation. IL-12 and IL-18 have
been shown to be critical for Ly49H+ NK cell expansion in re-
sponse to MCMV (Madera and Sun, 2015; Sun et al., 2012;
Andoniou et al., 2005). Using IL-12R–deficient NK cells in mixed
bone marrow chimera or adoptive transfer settings, IL-12–
induced STAT4 signaling drove NK cell proliferation, IFN-γ
production, and memory formation (Sun et al., 2012). The
adaptor proteins CRKII and CRKL have been shown to be re-
quired for optimal STAT4 and STAT1 phosphorylation, and mice
lacking both these proteins produce less IFN-γ and proliferate
less than WT NK cells during MCMV (Nabekura et al., 2018).
However, the identification of which NK cell receptors they act
downstream of requires further investigation. In co-culture as-
says of human NK cells with HCMV-infected fibroblasts, CD14+

monocyte-derived IL-12 was demonstrated to be a key driver of
CD25 up-regulation and NKG2C+ NK cell expansion (Rölle et al.,
2014).

Similarly to IL-12 and STAT4, IL-18–induced MyD88 signal-
ing was shown to be critical for optimal NK cell expansion and
IFN-γ production, where the IL-12/STAT4 signaling axis up-
regulated Myd88 gene expression to cooperatively drive effec-
tor and memory Ly49H+ NK cells during MCMV infection
(Madera and Sun, 2015). Interestingly, the few persisting
memory NK cells lacking IL-18R were able to proliferate simi-
larly to their WT counterparts upon secondary transfer into a

naive host followed by a rechallenge (Madera and Sun, 2015),
suggesting that IL-18 may be more critical during primary in-
fection and cytokine exposure but less so during a recall
response.

The hypothesis that naive and memory NK cells may respond
differently to the same stimuli during primary and secondary
virus infection is consistent with recent findings demonstrating
that significant epigenetic changes occur during the differenti-
ation of effector and memory cells, some of which became stable
in the long-lived NK cells (Lau et al., 2018). In NK cells activated
during MCMV infection, STAT4 bound to many putative gene
enhancer regions (e.g., intergenic and intronic) that also in-
creased in chromatin accessibility, as assessed by overlapping
STAT4 chromatin immunoprecipitation sequencing and ATAC-
seq (assay for transposase-accessible chromatin using sequenc-
ing) peaks (Lau et al., 2018). This increased chromatin accessibility
resulted in increased gene expression as determined by RNA se-
quencing, with several genes of critical effector molecules fol-
lowing this pattern, including Ifng (a key antiviral cytokine
produced by NK cells) and Fyn (a critical kinase downstream of
NK cell activating receptors, including NKG2D, CD137, and 2B4;
Lau et al., 2018; Dong et al., 2012; Lowin-Kropf et al., 2002;
Rajasekaran et al., 2013). Consistent with these findings, H3K4me3
chromatin immunoprecipitation sequencing showed that this
“permissive” histone modification increases in abundance at the
Irf8, Runx1, and Runx3 gene loci of NK cells upon IL-12 and IL-18
stimulation and in a STAT4-dependent manner (Adams et al.,
2018; Rapp et al., 2017).

The transcription factors IRF8, RUNX1, and RUNX3 have
themselves been shown to be key regulators of cell cycle genes
critical to the proliferative stage of the antiviral NK cell response
resulting in memory (Adams et al., 2018; Rapp et al., 2017). One
of the mechanisms by which IRF8 drives clonal proliferation of
NK cells in response to IL-12/STAT4 signaling is by promoting
the expression of the transcription factor Zbtb32, which antag-
onizes the anti-proliferative factor BLIMP-1 (Beaulieu et al.,
2014). Interestingly, STAT4 also up-regulates Adrb2, which
encodes the adrenergic signaling receptor, and expression of
ADRB2 was recently shown to be essential for optimal clonal
proliferation and memory formation (Diaz-Salazar et al., 2020).
This potential neuron–immune cell crosstalk highlights how
novel signals beyond traditional cytokine signaling and acti-
vating receptor engagement provide extrinsic inputs that drive
productive effector andmemoryNK cell formation (Diaz-Salazar
et al., 2020). Finally, the T-box transcription factors Tbet and
Eomes, which play an important role in NK cell maturation, also
aid the proliferation of effector NK cells and generation of
memory and were found to be STAT4 dependent (Madera et al.,
2018; Lau et al., 2018). Thus, IL-12–driven STAT4 signaling plays
a major and multifaceted role in driving clonal proliferation of
NK cells, critical to memory formation. In addition to these
classic inflammatory cytokines, IL-33 signaling through ST2
receptor has also been demonstrated to enhance m157-mediated
NK cell proliferation (Nabekura et al., 2015).

In parallel to the formation of NK cell memory driven by
Ly49H-m157 interactions, long-lived cytokine-induced memory
NK cells are also formed during MCMV infection. Cytokine-
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induced NK cells do not undergo the extensive expansion on the
order of Ly49H+ NK cells to MCMV infection, but do become
KLRG1hi, Ly6C+, and CD11b+, while down-regulating CD27 and
DNAM-1 (Nabekura and Lanier, 2016a). Ex vivo treatment of NK
cells with IL-12 + IL-18 primes them to proliferate more and
produce more IFN-γ when transferred into immunodeficient
hosts in comparison to untreated NK cells (Cooper et al., 2009).

In addition to proinflammatory cytokines, homeostatic cy-
tokines (such as IL-2 and IL-15 that are present in greater a-
bundance in lymphopenic mice) can also drive a transient
activation of NK cells leading to longevity. The adoptive transfer
of NK cells into Rag2−/− x Il2rg−/− mice or sublethally irradiated
mice caused a rapid homeostatic proliferation of NK cells fol-
lowed by a contraction and maintenance of memory-like cells
(Sun et al., 2011), likely driven by elevated levels of IL-2 or IL-15
in the lymphopenic hosts. The transferred NK cells were more
capable of producing IFN-γ in response to activating receptor
ligation ex vivo and expressed an elevated level of KLRG1 in
addition to a greater propensity to be CD27+, suggesting a dif-
ferentiation that contrasts with proinflammatory cytokine ex-
posure. Furthermore, even 60 d following transfer, the Ly49H+

population within the transferred NK cells robustly expanded in
response toMCMV infection (Sun et al., 2011). Thus, exposure to
specific homeostatic and proinflammatory cytokines can pro-
mote the formation of long-lived NK cells, a potential thera-
peutic strategy currently being tested in a variety of disease
settings.

Memory NK cell survival
Following the clonal expansion of NK cells during infection,
contraction of effector cells is essential to the formation of an
effective memory population. Rapid proliferation during the
expansion phase of the antiviral NK cell response generates
cellular stress that can lead to apoptosis if not properly con-
trolled. In this section, we will discuss the pathways that have
been identified to control memory cell survival, as summarized
in Fig. 1 B. Loss of the proapoptotic factor BIM (Bcl2l11−/−) re-
duced apoptosis in expanded Ly49H+ NK cells, resulting in the
generation of a memory pool that was greater in size but pos-
sessed a phenotype more similar to naive than memory cells
(Min-Oo et al., 2014). Furthermore, Bcl2l11−/− NK cells demon-
strated a reduced functional ability to protect against MCMV
(Min-Oo et al., 2014).

Although apoptosis of the majority of effector lymphocytes is
desirable for maintaining lymphoid tissue size and homeostasis
following viral clearance, survival of some cells that will go on to
form immunological memory is a critical aspect of host immu-
nity against subsequent infection. Unexpectedly, key media-
tors of NK cell “fitness” are the recombination-activating genes
(RAGs), whose expression during NK cell ontogeny was shown
to be critical for the induction of DNA damage repair pathways
essential to cell viability during rapid division (Karo et al., 2014).
Another important protective mechanism during the activation
and expansion of NK cells during MCMV infection is the up-
regulation of microRNA-155, which was shown to repress the
expression of pro-apoptotic Noxa and the STAT signaling re-
pressor Socs1 (Zawislak et al., 2013).

In addition to the IL-12/STAT4 signaling that induces many
proliferative pathways in NK cells during MCMV infection, the
type 1 IFN–activated transcription factor STAT1 is a key regu-
lator of NK cell survival during this same expansion phase,
protecting cells from “fratricide” via induction of NKG2D ligands
(Madera et al., 2016). STAT1, STAT2, and IRF9 represent mem-
bers of the ISGF3 complex and were shown to be activated and
transcriptionally up-regulated by IFN-α signaling in NK cells
(Geary et al., 2018). Deletion of any of the three components of
the ISGF3 complex impaired the ability of Ly49H+ NK cells to
expand in response to MCMV (Geary et al., 2018). Although
redundancy in function was observed among all three members
of the ISGF3 complex, there was not a complete overlap in the
genes they individually appeared to regulate. STAT1 signaling
was recently shown to also increase chromatin accessibility of
the Rsad2 locus, encoding the antiviral factor Viperin and aiding
the survival of effector Ly49H+ NK cells (Wiedemann et al.,
2020).

Interestingly, IFN-γ production by NK cells during MCMV
infection was increased in the absence of STAT1 but decreased in
the absence of IRF9, whereas the opposite was true for granzyme
B, a critical executor of apoptosis in target cells during NK
cell–mediated cytotoxicity (Madera et al., 2016; Geary et al.,
2018), suggesting individual members of this complex may be
regulated by signals independent of IFN-α. IFN-γ, although
important for viral clearance, was not found to be required for
the clonal proliferation or generation of memory in antiviral NK
cells following MCMV infection, and neither was TNF-α
(Andrews et al., 2003; Sun et al., 2012), suggesting a lack of
requirement for autocrine signals via these cytokines. Further-
more, IL-15 signaling, although critical to NK cell homeostasis,
was not essential for the clonal expansion of Ly49H+ NK cells
(Sun et al., 2009b), highlighting that proinflammatory cytokines
produced by cells other than NK cells appear to be more critical
in the generation of robust effector and memory NK cell re-
sponses during viral infection.

Receptor signaling can also initiate anti-apoptotic pathways.
The costimulatory molecule DNAM-1 that is expressed by a
subset of both Ly49H+ and Ly49H− naive NK cells was shown
to play an important role in NK cell survival and viral clear-
ance. Although DNAM-1 expression is up-regulated on Ly49H+

NK cells during MCMV infection, the DNAM-1+ population was
more sensitive to induction of apoptosis compared with their
DNAM-1− counterparts (Nabekura et al., 2014). Thus, whereas
DNAM-1 expression is clearly critical to clearance ofMCMV, loss
of its expression increases the chances of an effector NK cell
becoming a long-lived memory cell. In these studies, PKCη sig-
naling was essential for both phenotypes during MCMV infec-
tion, whereas FYNwas only critical for NK cell survival (Nabekura
et al., 2014).

In addition to DNA damage, other potential sources of stress
for an activated and rapidly dividing NK cell are an inability to
meet an increased metabolic demand and potential mitochon-
drial damage that may occur when trying to do so. mTOR
(mechanistic target of rapamycin) signaling, driven in part by
IL-15 signaling, is critical for the up-regulation of metabolism
during Ly49H+ NK cell expansion (Marçais et al., 2015). Among
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the mechanisms by which mTOR achieves this increased me-
tabolism is through activation of the inositol-requiring enzyme
1 and its substrate transcription factor X-box-binding protein 1,
which activates c-myc and increases oxidative phosphorylation
(Dong et al., 2019). However, this increase in metabolic activity
is also accompanied by an increase in mitochondrial-associated
ROS and decreased mitochondrial membrane potential, with
some mitochondria becoming dysfunctional (O’Sullivan et al.,
2015). Clearance of these dysfunctional mitochondria by au-
tophagy was shown to aid the formation of viable memory NK
cells (O’Sullivan et al., 2015). Thus, the metabolism of NK cells
must be carefully regulated during effector responses and
memory formation to provide these highly cytolytic cells with
ample energy and key metabolites for cellular processes while
avoiding cellular stress.

Functional characteristics of memory NK cells
Memory Ly49H+ NK cells generated during MCMV infection
have previously been shown to provide greater protection
against challenge with MCMV compared with an equal number
of naive Ly49H+ NK cells when transferred into immunodefi-
cient mice (Sun et al., 2009a). This greater protection by
memory NK cells is thought to be due to greater degranulation
and IFN-γ production (on a per-cell basis) upon activating re-
ceptor ligation (Sun et al., 2009a); both functions are enhanced
by IL-12 (Min-Oo and Lanier, 2014). Surprisingly, secondary NK
cell expansion in response to MCMV was similar in kinetics and
magnitude to that of a primary NK cell response (Sun et al.,
2009a). Because memory NK cells expressed reduced levels of
DNAM-1 and CD27 and higher levels of Ly49H, KLRG1, Ly6C, and
CD43 than naive Ly49H+ cells (Sun et al., 2009a; Nabekura and
Lanier, 2016a), one might imagine that they function differently
than naive NK cells in response to heterologous infections. A
summary of these differences is found in Fig. 2.

Indeed, memory Ly49H+ NK cells generated by MCMV in-
fection do not up-regulate CD69 or proliferate as efficiently as
naive Ly49H+ NK cells in response to challenge with a different
pathogen, such as influenza or Listeria monocytogenes (Min-Oo
and Lanier, 2014). Furthermore, IFN-γ production by memory
NK cells is also reduced in response to L. monocytogenes infection
when compared with naive NK cells (Min-Oo and Lanier, 2014).
However, against reexposure to MCMV, the memory Ly49H+

NK cells demonstrated a superior degranulation, IFN-γ pro-
duction, and cytotoxicity (Min-Oo and Lanier, 2014), suggesting
that these long-lived cells have dedicated themselves toward this
specific herpesvirus while ignoring heterologous infection and
bystander inflammation.

Interestingly, MCMV-induced memory NK cells do show
increased effector function against NKG2D ligand–expressing
tumor cells (Nabekura and Lanier, 2016a), suggesting that
NKG2D triggering may have occurred alongside Ly49H signals
in NK cells during primary exposure toMCMV. NKG2D is down-
regulated during the peak of MCMV-driven NK cell expansion
(Nabekura et al., 2017), even though MCMV inhibits expression
of NKG2D ligands on infected cells as an evasion mechanism
(Slavuljica et al., 2010); thus, it is not clear what drives NKG2D
down-regulation. In mutant viruses that cannot block NKG2D

ligand expression, NKG2D can promote Ly49H-driven NK cell
proliferation but cannot drive expansion in the absence of
Ly49H (Nabekura et al., 2017). In humans, CMV-activated
NKG2C+ NK cells that express a single self-reactive inhibitory
killer cell Ig-like receptors (KIR) produced more IFN-γ in re-
sponse to stimulation with K562 (Foley et al., 2012). Similarly, in
mice where H-2Dd (the ligand for the activating receptor Ly49D)
is expressed, Ly49H+ NK cells that coexpress Ly49D produce
more IFN-γ in response to MCMV infection and outcompete
their Ly49H+ Ly49D− counterparts during expansion and
memory formation by maintaining expression of the anti-
apoptotic gene Bcl2 (Nabekura and Lanier, 2016b). Higher
BCL-2 levels have also been reported in HCMV-driven memory
NK cells, suggesting a similar mechanism may control the
longevity of human memory NK cells (Zhang et al., 2013). Ad-
ditional mechanisms underlying the potency of memory NK
cells in response to activating receptor signaling remain to be
elucidated.

In NK cells activated through HCMV infection, several
changes in the expression of receptor signaling molecules have
been reported. Some HCMV-driven memory NK cells lack ex-
pression of FcRγ, the adaptor molecule that stabilizes the ex-
pression of CD16 and natural cytotoxicity receptors and delivers
downstream signals (Zhang et al., 2013). A reduction in the ex-
pression of natural cytotoxicity receptors such as NKp46 and
NKp30 was observed, in part explaining their reduced IFN-γ
production and degranulation in response to K562 and 721.221
tumor cell lines (Hwang et al., 2012; Zhang et al., 2013; Lee et al.,
2015). However, the ability of human memory NK cells to per-
form antibody-dependent cell-mediated cytotoxicity in response
to cells infected with HCMV, flu, or HSV (along with virus-
specific antibodies) was enhanced (Hwang et al., 2012; Zhang
et al., 2013; Lee et al., 2015). Although CD16 expression was
slightly reduced in the absence of FcRγ, it is thought that CD16
signaling via its alternative adapter molecule, CD3ζ, which
contains three immunoreceptor tyrosine-based activation motif
(ITAM) domains compared with one in FcRγ, may amplify the
downstream signaling of CD16 (Hwang et al., 2012; Shah et al.,
2018). Furthermore, expression of CD2, which synergistically
increases phosphorylation of ERK and S6RP, may amplify the
activation of adaptive NK cells triggered throughNKG2C or CD16
(Liu et al., 2016).

In addition to FcRγ down-regulation during HCMV infection,
NKG2C+CD57+ memory NK cells can also lose expression of ty-
rosine kinase SYK (spleen-associated tyrosine kinase) and the
signaling molecules DAB2 and EAT-2 (Lee et al., 2015; Schlums
et al., 2015), resembling cytotoxic CD8+ T lymphocytes that also
lack expression of these proteins (Schlums et al., 2015). Loss of
these signaling proteins was suggested to be due to hyper-
methylation of their promoter regions, accompanied by a loss of
expression of the transcription factor promyelocytic leukemia
zinc finger (PLZF; Lee et al., 2015; Schlums et al., 2015). These
memory NK cells express less IL-18R and do not phosphorylate
STAT4 as efficiently in response to IL-12 and IL-18 stimulation
and thus produce less IFN-γ in response to stimulation with
these cytokines (Schlums et al., 2015; White et al., 2014), similar
to findings in mice where memory NK cells become more
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“antigen focused” following CMV exposure. These studies also
highlight how NK cells (and their receptors) can be specifically
targeted for therapeutic applications, particularly in instances
where receptors and ligands are well defined or potent antibody-
dependent cell-mediated cytotoxicity–inducing antibodies exist.

In light of the finding that cytokines can induce memory-like
features in NK cells (Cooper et al., 2009), there has been a strong
incentive to develop in vitro protocols that use cytokine stim-
ulation to enhance the functionality or longevity of NK cells for
therapeutic purposes. Many of these current protocols incor-
porate low doses of IL-15 to maintain NK cell viability, along
with short exposure to high doses of IL-12 and IL-18 to mimic
exposure to a viral infection (Romee et al., 2012). The effector

function of NK cells was enhanced irrespective of the ex-
pression of inhibitory KIRs that have engaged a cognate lig-
and; however, expression of these receptors does still confer a
greater potency in response to CD16 stimulation (Wagner
et al., 2017). The increased IFN-γ production of these cytokine-
exposed NK cells (in vitro with human cells or in vivo with
mouse cells) in response to restimulation or incubation with
tumor cell lines was maintained for a number of weeks but di-
minished over time (Romee et al., 2012; Keppel et al., 2013). Thus,
this treatment appears to more similarly mimic the long-lived
mouse NK cells generated in lymphopenic mice (Sun et al., 2011)
rather than the memory NK cells from mice or humans infected
with CMV.

Figure 2. Human andmouse memory NK cell traits. As NK cells differentiate from naive to memory cells during viral infection, they become less responsive
to certain cytokines but more responsive to activating receptor engagement. This transition can be attributed in part to changes in the overall expression of
receptors, adaptor molecules, and signaling proteins regulated at the epigenetic and transcriptional levels.
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One strategy to overcome the lack of receptor engagement
in cytokine-activated NK cells has been to incubate the cells
ex vivo with tumor lines or their lysates, thus generating tumor-
activated NK cells (Sabry et al., 2011; North et al., 2007). These
tumor-activated NK cells up-regulate CD69, CD132, and CD25
driven by the binding of CD2 to its ligand CD15 on the tumor
cells, a process that can be amplified by NKG2D, NKp80, and
CD16A ligation (Sabry et al., 2011; Pahl et al., 2018). CD69 ex-
pression increases NK cell cytotoxicity against some CD69L-
expressing tumor cells (North et al., 2007). CD25 and CD132
expression increases sensitivity to IL-2 and IL-15, respectively,
increasing proliferation in response to these cytokines. Thus,
NK cell memory of prior tumor cell membrane engagement
appears to share a dependence on CD2 engagement with the
memory generated during CMV infection.

Clinical importance of memory NK cells
Recent studies report that HCMV latency/reactivation can pro-
vide protection during leukemia treatment with a hematopoietic
cell transplantation by inducing NK cell activation and expan-
sion (Foley et al., 2012; Elmaagacli and Koldehoff, 2016; Cichocki
et al., 2016; Jin et al., 2017; Bigley et al., 2016; Yoon et al., 2016;
Horowitz et al., 2015; Inagaki et al., 2016). When HCMV is re-
activated following hematopoietic cell transplantation, the
adaptive NKG2C+ subset of human NK cells has been shown to
expand and be a potent producer of IFN-γ (Foley et al., 2012).
Additionally, these NK cells were shown to be resistant to CD112-
and CD155-mediatedmyeloid-derived suppressor cell–dependent
contact inhibition (Sarhan et al., 2016). In contrast, a subset of
PD-1+ NK cells inHCMV-seropositive healthy donors and ovarian
carcinoma patients were described to be less responsive to cy-
tokine- and activating receptor–mediated stimulation (Pesce
et al., 2017). These superficially conflicting findings highlight
the need for further and detailed investigations into the impact
of CMV on the antitumor function of NK cells in order to de-
termine how best to harness or therapeutically recreate the
ability of CMV to promote NK cell–mediated tumor clearance.

Attempts are now being made to incorporate the above-
mentioned strategies of in vivo or in vitro cytokine stimula-
tion for the generation of memory-like NK cells to treat cancer.
These memory NK cells express higher granzyme B than naive
NK cells and have demonstrated increased IFN-γ secretion and
cytotoxicity against the leukemia cell line K562 and primary acute
myeloid leukemia (AML) cells in vitro (Romee et al., 2016). Fur-
thermore, such NK cells express the high-affinity IL-2 receptor
CD25, causing them to proliferate and increase in functionality in
patients in response to low and tolerable doses of IL-2 (Leong et al.,
2014; Romee et al., 2016). In an MHC class I–deficient lymphoma
(RMA-S) mouse model, tumors could be better controlled by in-
jection of cytokine-induced memory NK cells following radiation
treatment, provided that CD4+ T cells were present to support the
NK cells by production of IL-2 (Ni et al., 2012).

In a phase 1 clinical trial, when cytokine-induced NK cells
were transferred into lymphodepleted and relapsed/refractory
AML patients, remission was observed in some individuals
(Romee et al., 2016). Interestingly, these memory NK cells did
not cause the graft versus host disease (GvHD) associated with

T cell–focused therapies (Romee et al., 2016). In a separate study
where donor NK cells were primed overnight with the lysate of the
leukemia cell line CTV-1 (in the absence of recombinant cytokines)
and used to treat AML, a complete remission was reported in four
out of seven patients (Kottaridis et al., 2015). A second study using
the same NK cell activation strategy (with tumor cell lysates) re-
ported remissions that lasted >30 mo in 3 out of 12 AML patients
(Fehniger et al., 2018). These promising data highlight the potential
of NK cell–based therapies and how larger clinical studies (and
more precise phase 2 trials) need to be conducted to further dem-
onstrate increased patient survival dependent upon NK cells.

The precise conditions required for priming NK cells in
various disease settings are currently being refined. For example,
NK cells may benefit from a period of “rest” in low-dose IL-2 and/
or IL-15 following priming by proinflammatory cytokines, tumor
cells, or tumor components (Pahl et al., 2018). In addition to un-
derstanding how NK cell memory can be used to improve NK cell
transfer therapy, a detailed analysis of the molecular components
and signals required for long-term cancer remission is warranted.
Lastly, because effective vaccination of the NK cell compartment
has been shown to be dependent upon CMV serostatus (Goodier
et al., 2016; Darboe et al., 2017), this additional consideration
should be carefully assessed in future clinical studies.

Conclusions and future directions
The discovery and study of memory NK cells has taught us much
about the heterogeneity and functionality of this innate lym-
phocyte subset. The importance of proinflammatory cytokines
and downstream transcription factors in driving NK cell ex-
pansion and memory through epigenetic imprinting appears
conserved between mice and humans. This differentiation pro-
cess in NK cells is currently being harnessed for therapeutic
purposes against cancer and infectious diseases. Given the po-
tential of these cytotoxic cells in the treatment of a wide range of
diseases, we need a greater understanding of how cytokines and
ligand engagement impact effector and memory formation
in vitro in order to replicate the in vivo processes of NK cell
activation, differentiation, and memory formation.
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