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Abstract

The ongoing SARS-CoV-2 pandemic stresses the need for effective
antiviral drugs that can quickly be applied in order to reduce
morbidity, mortality, and ideally viral transmission. By repurposing
of broadly active antiviral drugs and compounds that are known to
inhibit viral replication of related viruses, several advances could
be made in the development of treatment strategies against
COVID-19. The nucleoside analog remdesivir, which is known for its
potent in vitro activity against Ebolavirus and other RNA viruses,
was recently shown to reduce the time to recovery in patients with
severe COVID-19. It is to date the only approved antiviral for treat-
ing COVID-19. Here, we provide a mechanism and evidence-based
comparative review of remdesivir and other repurposed drugs with
proven in vitro activity against SARS-CoV-2.
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Introduction

Coronaviruses (CoV) are known to cause respiratory tract infections

in humans and animals. Since the emergence and subsequent char-

acterization of the severe acute respiratory syndrome coronavirus

(SARS-CoV) in 2002 (Drosten et al, 2003; Ksiazek et al, 2003; Peiris

et al, 2003) and Middle East respiratory syndrome coronavirus

(MERS-CoV) in 2012 (Corman et al, 2012), coronaviruses have

increasingly been recognized as potential source of epidemic

diseases. Both pathogens seem to cause zoonotic infections that

originate from viral reservoirs in bats (Guan et al, 2003; Li et al,

2005; Mohd et al, 2016). In 2020, a novel coronavirus (SARS-CoV-2)

emerged in China (Zhu et al, 2020) and spread globally in a very

short period of time. The rapid geographical extension of SARS-

CoV-2 in comparison to previous outbreaks with SARS-CoV and

MERS-CoV may be caused by an increased infectivity of the

pathogen (Sigrist et al, 2020; Wrapp et al, 2020). As of September

22, the ongoing coronavirus disease 2019 (COVID-19) pandemic

caused over 31 million detected SARS-CoV-2 infections and more

than 950,000 deaths (Johns Hopkins University, 2020). The

dramatic global implications of this pandemic stressed the urgent

need for therapeutic agents that can quickly be applied in the clinic

without a long-lasting preclinical development phase. Several thera-

peutic strategies were therefore investigated by repurposing of

known antimicrobial or immunomodulatory substances that might

be beneficial for patients with COVID-19. These agents can roughly

be divided into compounds with a direct antiviral effect that impairs

viral replication and host-directed drugs that may support recovery

from COVID-19 by attenuating an excessive host immune response.

In this article, we focus on repurposed drugs against COVID-19 with

proven antiviral effects against SARS-CoV-2 in cell-based studies.

The most advanced developed antiviral of this type is the nucle-

oside analog remdesivir that was previously unsuccessfully tested

against Ebolavirus disease in clinical trials (Mulangu et al, 2019).

Based on recent clinical and preclinical data on its efficacy against

COVID-19, remdesivir received emergency use authorizations

(EMA) in the United States and Japan and was recently approved by

the European Medicines Agency (EMA) for the treatment of adult

patients with severe COVID-19 that require supplemental oxygen.

Although approval of this drug is a very encouraging signal, its clini-

cal efficacy seems to be relatively modest based on available

evidence (Beigel et al, 2020; Goldman et al, 2020; Grein et al, 2020;

Wang et al, 2020c). We will review preclinical and clinical outcomes

of repurposed antivirals and their molecular mechanism of action

(MOA) to provide a comparative analysis of remdesivir with the

ultimate aim to support a rational appraisal of its efficacy.

SARS-CoV-2 life cycle
The viral life cycle of SARS-CoV-2 provides several attractive molec-

ular targets for viral inhibition that can be exploited by repurposed

antiviral drugs. Like all Coronaviriade, this b-coronavirus, is an

enveloped, positive-sense, single-stranded RNA virus. It is

composed of a core structure where the viral RNA is encapsulated

by the nucleocapsid (N) protein and the envelope, a lipid bilayer in

which the spike (S), membrane (M), and envelope (E) protein are
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anchored (de Haan & Rottier, 2005). Upon viral transmission,

mostly via droplet transmission, the life cycle of SARS-CoV-2 is initi-

ated by the attachment of the virion to the host cell by the spike

glycoprotein (S-protein) and its receptor. Several studies could show

that entry, as shown for SARS-CoV before, depends on binding of

the receptor-binding domain (RBD) (subunit S1) of the S-protein to

the human angiotensin converting enzyme receptor 2 (ACE2; Hoff-

mann et al, 2020a; Walls et al, 2020). Notably, the RBD of SARS-

CoV-2 shows a 10- to 20-fold higher affinity to ACE2 than SARS-

CoV, which may explain its increased transmissibility (Wrapp et al,

2020). Furthermore, single-cell RNA-sequencing data revealed a

high expression level of the ACE2 receptor in human nasal epithelial

cells, which may also enhance the efficiency of SARS-CoV-2 trans-

mission (Sungnak et al, 2020). After initial binding of the S1 subunit

to ACE2, entry into the host cell required proteolytic cleavage of the

S-protein at the S1/S2 and S2’ site, which leads to fusion of the viral

and cellular membrane mediated by the S2 subunit. Proteolytic

cleavage of the S-protein is induced by the membranous serine

protease TMPRSS2 of the host cell (Hoffmann et al, 2020a). Interest-

ingly, a new furin cleavage site at the S1/S2 boundary could be

found in SARS-CoV-2. The exact role of this site in pathogenesis is

controversially discussed (Walls et al, 2020; Xia et al, 2020a). Cleav-

age of S-protein exposes the S2 subunit which contains an internal

fusion peptide and two hydrophobic (heptad) repeat regions (HR1

and HR2). HR1 and HR2 self-assemble into a stable helical bundle

that brings viral and cellular membranes in close proximity for

fusion. Several bundles can form a fusion pore and finally release

the viral genome into the cytoplasm (Bosch et al, 2003; Xia et al,

2020b). Moreover, several studies could show that virus entry is not

only ensued by direct fusion with the plasma membrane, but rather

by endosomal/lysosomal uptake and intra-lysosomal activation of

the spike protein by cathepsin L followed by membrane fusion and

Glossary

Antiviral drugs
Drugs that directly interfere with the ability of a virus to replicate in vivo
or in cell-based models. Most antiviral drugs interfere with the host cell-
dependent life cycle of the virus. Thus, mode of action of most antivirals is
the inhibition of the viral entry into the host cell, blockage of viral
proteases, or inhibition of viral RNA replicase.

Bioavailability
Used to describe the fraction of a drug or its active metabolite that
reaches the systemic circulation and organ tissue after administration.

Cell-based assay
The term cell-based assay is commonly used to refer to any assay, where
living cells are used as model to study physiologic or pathophysiologic
processes under various conditions (e.g., exposure to an antiviral agent).
Due to their cost efficiency and high standardization/reproducibility, cell-
based assays are essential tools in preclinical drug discovery.

COVID-19 (coronavirus disease 2019)
The infectious disease caused by SARS-CoV-2 in humans.

Coronaviruses (CoV)
Coronaviruses are a group of RNA viruses that cause diseases in mammals
and birds. Coronavirus-associated diseases in humans include severe acute
respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and
coronavirus disease 2019 (COVID-19). In addition, there are endemic
human CoVs that cause mild respiratory infections.

Drug repositioning or repurposing
A term that describes a drug discovery strategy based on the identification
of new therapeutic approaches by using already known substances that
may be at a preclinical or clinical development stage. This strategy offers a
time- and cost-saving method to develop therapeutics against newly
emerged or neglected diseases.

Half-maximal effective concentration (EC50)
The concentration of a substance which is required to obtain 50% of its
maximal effect. It is used to determine potency of a drug. For some
analyses (for example antibacterial activity), the 50% inhibitory
concentration (IC50) is used in analogy. Besides the half-maximal
concentration, the 90% maximal effective concentration (EC90) can be
determined.

MERS-CoV
Middle East respiratory syndrome-related coronavirus causes the Middle
East respiratory syndrome (MERS) in humans which is associated with
severe respiratory symptoms and high mortality. The first confirmed case
of MERS was reported in 2012.

Nucleoside/nucleotide analogs
Nucleosides are endogenous compounds composed of a nucleobase and a
five-carbon sugar (ribose or 2’-deoxyribose), while nucleotides contain one
more phosphate group. Nucleosides/nucleotides are essential for the
synthesis of DNA and RNA but are also involved in other cellular processes
like signaling and metabolism. Nucleoside/nucleotide analogs are synthetic,
chemically modified nucleosides/nucleotides that are able to mimic their
physiological counterparts. Assembly of nucleoside/nucleotide analogs into
the RNA/DNA leads to premature termination of the strand synthesis and
inhibition of, e.g., viral replication.

Pseudovirions/pseudotyped particles
Pseudovirions are synthetic viral particles with modified genomes and/or
envelope proteins in order to facilitate specific investigations. The particles
usually lack genes essential for pathogenicity and cannot replicate. This is
an advantage for experiments on otherwise highly pathogenic viruses like
SARS-CoV-2. Pseudotyping is the combination of viral particles with foreign
viral envelope proteins. Pseudotyping can be used to study the function of
viral envelope proteins and mechanisms of viral entry.

SARS-CoV
The severe acute respiratory syndrome (SARS) coronavirus was first
described in 2003. It causes a respiratory disease that accompanies a high
rate of complications and mortality. After the epidemic outbreak in Asia in
2002-2003, sporadic cases have been observed in several countries until
2004.

SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2, initially described as
2019-nCoV, causes respiratory infections that can progress to viral
pneumonia in COVID-19. It emerged in December 2019 in Wuhan, China,
and rapidly developed to a pandemic which is still
ongoing.
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intracellular release of genomic RNA (Wang et al, 2008; Burkard

et al, 2014; Ou et al, 2020).

After release of viral RNA into the cytosol viral replication is

initiated by the translation of the replicase gene encoded by two

large ORFs (rep1a and rep1b), which express the two polyproteins

pp1a and pp1ab. The polyproteins contain several non-structural

proteins (nsp) (pp1a = nsp 1–11; pp1ab = 1–16) also including a

RNA-dependent RNA polymerase (RdRp) domain (nsp12) and

proteases that cleave the polyproteins (initiated by the enzyme’s

own autolytic cleavage from pp1a and pp1ab) (Anand et al, 2003;

Pertusati et al, 2012). Most of the nsp forms the replicase–transcrip-

tase complex (RTC): The RTC replicates the genomic RNA and sub-

genomic RNA, which encodes the structural proteins and other

accessory proteins. While the nucleocapsid (N) protein remains in

the cytosol and forms complexes with the genomic RNA, the viral

structure proteins M, E, and S are translated, inserted into the

membrane of the rough endoplasmatic reticulum (ER) and subse-

quently transported to the ER-to-Golgi intermediate compartment

(ERGIC) (Fehr & Perlman, 2015). Here, the genomic RNA–nucleo-

capsid complexes get enveloped by the virion precursors, are trans-

ported to the cell surface in vesicles, and are released by exocytosis.

An overview of the life cycle of SARS-CoV-2 including targets that

might be exploited for inhibition of viral replication is illustrated in

Figure 1. Based on its MOA, repurposed drugs with anti-SARS-CoV-

2 activity can be divided into substances that prevent viral entry

into host cells (1–2) and inhibit viral proteases (3) and inhibitors of

viral replicase (4). Other compounds elicit multiple effects, or its

specific MOA in SARS-CoV-2 is unknown.

Prevention of viral entry into the host cell

Viral entry is initiated by the S2 subunit, which requires prior S-

protein priming by proteolytic cleavage of the S1 subunit. As shown

for other coronaviruses, viral entry in cell lines depends on the

serine protease TMPRSS2 and the endosomal cysteine proteases

cathepsin B and L (Kawase et al, 2012; Hoffmann et al, 2020a).

However, several studies indicate that cell entry is driven preferen-

tially via the cell surface or early endosomes by TMPRSS2 and that

proteolytic cleavage of the S-protein by TMPRSS2 is crucial for infec-

tion of the host (Shirato et al, 2018; Iwata-Yoshikawa et al, 2019).

Thus, inhibition of the TMPRSS2 and/or cathepsin B and L seems a

promising target to prevent virus entry.

Camostat/Nafamostat
TMPRSS2 is a cell membrane-anchored serine protease and belongs

to the family of type II transmembrane serine proteases. These

proteases share a common catalytic mechanism involving a triad of

three amino acids, serine, aspartate, and histidine present in highly

conserved sequence motifs (Antalis et al, 2011). Serine proteases

underlie a strict regulation by endogenous inhibitors (e.g., a1/a2-
antitrypsin, and antithrombin III) and need a prior activation leading

to hemostasis under physiological conditions. Thus, imbalance can

cause several pathophysiological processes like thrombosis (Rau

et al, 2007). However, the exact physiological functions of TMPRSS2

are still unknown. Synthetic protease inhibitors like camostat mesi-

late or nafamostat mesilate have been clinically tested in patients

with acute or chronic pancreatitis, which is pathophysiologically

related to an inappropriate activation of digestive enzymes inside the

pancreas, including the serine protease trypsin (Chang et al, 2009;

Ramsey et al, 2019). Due to their capability to inhibit TMPRSS2,

serine protease inhibitors have been tested for their antiviral effects

on SARS-CoV-2 and other coronaviruses. Camostat partially blocked

the entry of vesicular stomatitis virus (VSV) pseudotyped particles

harboring the SARS-CoV-2 spike protein (pseudovirions) into the

human epithelial colorectal adenocarcinoma cell line Caco-2, Vero-

TMPRSS2+ cells, and human airway epithelial (HAE). A complete

inhibition of viral entry could only be reached when camostat was

used in combination with E-64d, an inhibitor of cathepsin B/L,

suggesting that SARS-CoV-2 can exploit both pathways for entry

into the host cell (Hoffmann et al, 2020a). However, TMPRSS2 is

essential for viral transmission and pathogenesis while CatB/L

activity is dispensable so that inhibition of TMPRSS2 displays a

rational antiviral strategy (Iwata-Yoshikawa et al, 2019).

Wang et al demonstrated inhibition of SARS-CoV-2 by nafamostat

with a 50% effective inhibitory concentration (EC50) of 22.50 lM in

Vero E6 cells (Wang et al, 2020a). A comparative assessment of the

serine protease inhibitors gabexate mesilate, camostat mesilate, and

nafamostat mesilate and their ability to inhibit viral entry was done

by Hoffmann et al Efficiency of entry inhibition was determined 16 h

post-inoculation by using Calu-3 cells infected with SARS-CoV-2-

pseudovirions. Nafamostat demonstrated an almost 15-fold higher

efficiency (EC50 5 nM) compared with camostat (87 nM), both supe-

rior to gabexate (EC50 1.2 M). Nafamostat also showed to inhibit

SARS-CoV-2 infection of lung-derived human Calu-3 cells in vitro

even at a low dose of 100 nM (Hoffmann et al, 2020b).

Although antiviral efficacy of TMPRSS2 inhibitors seems to be

inferior to other strategies (table 1), entry inhibitors may be devel-

oped that are beneficial in COVID-19 when given alone or in combi-

nation with other antivirals. Three randomized controlled trials

(RCT) are currently listed that evaluate nafamostat in patients with

COVID-19 (NCT04418128, NCT04352400, NCT04473053), but

currently no clinical data can be reported.

Umifenovir
Umifenovir is a broad-spectrum antiviral approved in Russia and

China for the prophylaxis and treatment of human influenza A and B

infections (Boriskin et al, 2008). Its antiviral mechanism of action is

thought to be related to an impaired virus-mediated membrane fusion

that is essential for viral entry. Umifenovir seems to modify the

physicochemical properties of the host cell membrane by influencing

the negatively charged phospholipids (Villalaı́n, 2010). Furthermore,

it has been shown that umifenovir interacts with hemagglutinin (HA)

of the influenza virus by preventing the pH-induced transition of HA

into its functional state (Leneva et al, 2009). In a recent study, the

efficacy of six currently available and licensed anti-influenza drugs

(umifenovir, baloxavir, laninamivir, oseltamivir, peramivir, and

zanamivir) were tested against SARS-CoV-2 in Vero E6 cells. Among

tested drugs, only umifenovir inhibited SARS-CoV-2 replication effi-

ciently with an EC50 of 4.11 lM (Wang et al, 2020b). These results

could be reproduced by another in vitro study with an EC50 of 3.5 lM
(Pizzorno et al, 2020). Although umifenovir demonstrated anti-SARS-

CoV-2 activity in vitro, a therapeutic role of umifenovir in COVID-19

is uncertain and results of qualitative clinical trials are lacking. Retro-

spective analyses currently indicate no significant impact on clinical

outcomes (Huang et al, 2020).

ª 2020 The Authors. EMBO Molecular Medicine 13: e13105 | 2021 3 of 15

Alexander Simonis et al EMBO Molecular Medicine



Blockage of viral proteases

A crucial step in SARS-CoV-2 replication is the proteolytic

cleavage and release of functional polypeptides from the polypro-

teins pp1a/pp1ab by viral proteases. Subsequently, released

non-structural proteins form the replicase–transcriptase complex,

which initiates the viral RNA synthesis machinery. Translated

viral structure proteins and replicated genomic RNA originate

new infectious virus particles, which are released from the

infected host cell. In coronaviruses, the main protease (Mpro)

also known as 3C-like protease (3CLpro) cleaves the polyprotein

at conserved sites between Leu-Gln and Ser-Ala-Gly. This well-
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Figure 1. Life cycle of SARS-CoV-2 and antiviral drug targets.

Attachment of SARS-CoV-2 to its host cell is mediated by binding of the viral spike protein to the ACE2 receptor. After proteolytic cleavage of the S1 domain by the

membrane-anchored serine protease TMPRSS2, fusion of the viral and host cell membrane is initiated by the exposed S2 subunit. Alternatively, SARS-CoV-2 can invade

the host cell upon endosomal uptake and activation of the spike protein by cathepsin L. Released viral RNA is translated by ribosomes of the host cell. Polyproteins

pp1a/pp1ab are cleaved mainly by the viral main protease (3C-like proteinase). Released non-structural proteins form the replicase–transcriptase complex, which

initiates the viral RNA synthesis machinery. Viral structure proteins and genomic RNA form new particles, which are released by exocytosis. The replication cycle of

SARS-CoV-2 can be inhibited at various stadiums: viral entry (1-2); protease inhibition (3), and RNA replication (4).
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characterized enzyme represents an ideal antiviral target as its

function is critical for viral replication (Anand et al, 2003; Zhang

et al, 2020b). Due to its intrinsic proteolytic activity and the

absence of homologous enzymes in humans, toxicity of specific

inhibitors is expected to be limited. Of known protease inhibitors

that were repurposed for SARS-CoV-2, the combination of lopi-

navir and ritonavir has been in focus of interest as other protease

inhibitors (e.g., darunavir) showed no in vitro activity at applica-

ble concentrations (De Meyer et al, 2020).

Lopinavir/ritonavir
Lopinavir/ritonavir is used as combination regimen in the treatment

of infections with human immune deficiency virus 1 (HIV-1). Both

lopinavir and ritonavir are inhibitors of HIV-1 protease, an enzyme

that cleaves the HIV polyproteins Gag and Gag-Pol by bond

hydrolysis. Since ritonavir also acts as inhibitor of cytochrome

P450-3A4 (CYP3A4), an enzyme that normally metabolizes protease

inhibitors, ritonavir is added to enhance the bioavailability of lopi-

navir (Sham et al, 1998). Lopinavir has been tested in vitro against

SARS-CoV, MERS-CoV, and human coronavirus 229E (de Wilde

et al, 2014). Here, the mean EC50 of lopinavir ranged from 6.6 µM

(� 1.1) µM (HCoV-229E) and 8.0 µM (� 1.5) MERS-CoV to

17.1 µM (� 1.0) (SARS-CoV). Recent analysis demonstrated that

lopinavir is also active against SARS-CoV-2 with an EC50 of 5.25–

26.1 µM (Choy et al, 2020; Pizzorno et al, 2020) while ritonavir

alone was not effective (Choy et al, 2020). In vivo efficacy of lopi-

navir/ritonavir has been assessed in mice and common marmosets

for MERS-CoV with ambiguous results: In a study published in

2015, lopinavir/ritonavir-treated marmosets had improved clinical

findings and reduced viral loads associated with a better outcome.

Table 1. In vitro efficacy and drug targets of repurposed investigational compounds with proven anti-SARS-CoV-2 activity

Antiviral target Investigational drug Isolate

EC50 in Vero E6 cells (µM)

ReferencesCPE RT–PCR VY

Viral entry Nafamostat Wuhan/WIV04/2019 ND 22.50 ND Wang et al (2020)

Umifenovir (Arbidol) Wuhan/WIV04/2019 ND 4.11 ND Wang et al (2020b)

France/IDF0571/2020 ND 3.54 ND Pizzorno et al (2020)

Viral protease Lopinavir Hong Kong/VM20001061/2020 25a 26.10a 26.62a Choy et al (2020)

France/IDF0571/2020 ND 5.25 ND Pizzorno et al (2020)

RNA synthesis Favipiravir Wuhan/WIV04/2019 ND 61.88 ND Wang et al (2020)

Hong Kong/VM20001061/2020 > 100 > 100 > 100 Choy et al (2020)

France/IDF0571/2020 ND > 100 ND Pizzorno et al (2020)

Penciclovir Wuhan/WIV04/2019 ND 95.96 ND Wang et al (2020)

Remdesivir Wuhan/WIV04/2019 ND 0.77 ND Wang et al (2020)

Australia/VIC01/2020 4.9 ND ND Ogando et al (2020)

Hong Kong/VM20001061/2020 25a 26.9a 23.15a Choy et al (2020)

France/IDF0571/2020 ND 0.99 ND Pizzorno et al (2020)

Ribavirin Wuhan/WIV04/2019 ND 109.50 ND Wang et al (2020)

Hong Kong/VM20001061/2020 500a > 500 > 500 Choy et al (2020)

Miscellaneous Berberine France/IDF0571/2020 ND 10.58 ND Pizzorno et al (2020)

Chloroquine Wuhan/WIV04/2019 ND 1.13 ND Wang et al (2020)

France/IDF0571/2020 ND 1.38 ND Pizzorno et al (2020)

Wuhan/WIV04/2019 ND 2.71-7.36b ND Liu et al (2020)

Wuhan/IVDC-HB-01/2019 ND 5.47 ND Yao et al (2020)

Hydroxychloroquine Wuhan/WIV04/2019 ND 4.06-12.96b ND Liu et al (2020)

Wuhan/IVDC-HB-01/2019 ND 0.72 ND Yao et al (2020)

France/lDF0372/2020 ND 2.2-4.4c ND Maisonnasse et al (2020)

Cyclosporine A France/IDF0571/2020 ND 3.05 ND Pizzorno et al (2020)

Emetine Hong Kong/VM20001061/2020 1.56a 0.50a 0.46a Choy et al (2020)

Homoharringtonine Hong Kong/VM20001061/2020 3.13a 2.14a 2.55a Choy et al (2020)

Nitazoxanide Wuhan/WIV04/2019 ND 2.12 ND Wang et al (2020)

EC50, 50% effective concentrations.
Assay types: CPE, cytopathologic effects; RT–PCR, real-time polymerase chain reaction; VY, virus yield assay.
aCalculation of EC50 based on viral loads fitted to log10 scale.
bTested in different MOI (0.01, 0.02, 0.8).
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Animals were treated with 2 mg/kg/day of lopinavir plus 3 mg/

kg/day of ritonavir given orally once daily at 6, 30, and 54 h post-

infection (Chan et al, 2015). However, treatment of infected mice

with lopinavir/ritonavir (160/40 mg + interferon beta) improved

pulmonary function but did not reduce virus replication or occur-

rence of severe lung damage (Sheahan et al, 2020). Clinical effects

in patients with severe COVID-19 were evaluated in a randomized

controlled clinical trial including 199 patients. Patients were

randomized in a 1:1 ratio to receive either lopinavir/ritonavir (stan-

dard dose of 400/100 mg) for 14 days or the standard care. The

primary end point of the study was clinical improvement or

discharge from the hospital. Unfortunately, treatment did not

improve clinical symptoms and mortality, or decreased viral loads

in pharyngeal swabs (Cao et al, 2020). The disappointing clinical

results might be related to sub-therapeutic levels for inhibition of

SARS-COV-2 because application of 400/100 mg of lopinavir/riton-

avir twice daily was shown to yield median serum concentrations of

7.2 mg/l (11.5 µM) in patients with HIV (van der Lugt et al, 2009),

which is significantly lower than the observed EC50 in the in vitro

studies. However, summarizing the relatively low efficacy against

SARS-CoV-2 in vitro in comparison with other repurposed drugs and

available in vivo data it is unlikely that lopinavir/ritonavir will play

a significant therapeutic role in COVID-19. Besides lopinavir and

ritonavir, other protease inhibitors with activity against SARS-CoV

and MERS-CoV were identified that might be repurposed to target

SARS-CoV-2 (Anand et al, 2003; He et al, 2020a).

Inhibition of viral RNA replicase

Once functional, non-structural proteins are released by proteolytic

cleavage of the polyproteins, the replicase–transcriptase complex,

which catalyzes the synthesis of the viral RNA, can be formed.

Synthesis is initiated by binding of the RdRp at or near the 3’ end of

the RNA strand. Subsequently, the complementary RNA strand is

generated in the elongation phase by repetitive nucleotidyl transfer

reactions. Several drugs are able to interfere with the RNA synthesis

machinery. Mainly, nucleoside/nucleotide analogs have been repur-

posed and tested against SARS-CoV-2. These drugs disrupt viral

replication by competing with endogenous nucleosides during the

elongation phase. After their insertion nucleoside analogs cause a

chain termination followed by an abrogation of RNA synthesis,

which is crucial to produce new viral particles.

Remdesivir
Remdesivir (GS-5734) is a prodrug of a monophosphoramidate nucle-

oside that is designed to easily pass the cell membrane and efficiently

deliver its active metabolite (Jordheim et al, 2013). Upon entering the

target cells, remdesivir monophosphate (RDV-MP) is rapidly

converted into its active triphosphate form due to its ability to bypass

an inefficient and rate-limiting first phosphorylation step (Murakami

et al, 2008). In RNA viruses, the metabolically active remdesivir

triphosphate (RDV-TP) acts as substrate for the viral replicase (RdRp)

where it competes with endogenous adenosine-triphosphate (ATP)

for incorporation in elongating RNA strands. After its incorporation,

RDV-TP causes a synthesis arrest by inducing delayed chain termina-

tion as demonstrated for Ebola virus (EBOV) (Tchesnokov et al,

2019), MERS-CoV (Gordon et al, 2020a), SARS-CoV, and SARS-CoV-2

(Gordon et al, 2020b). In SARS-CoV-2, incorporation of RDV-TP

causes termination of RNA synthesis after three additional nucle-

oside/nucleotide positions downstream (Gordon et al, 2020b).

Although related analogs of RDV have been under investigation and

pharmacological modification for many years (Cho et al, 2012; Seley-

Radtke & Yates, 2018; Yates & Seley-Radtke, 2019), the current mole-

cule as a candidate for the treatment of viral diseases was first

described in 2016 based on preclinical data from cell-based assays

and a macaque model of fatal EVD (Warren et al, 2016).

In fact, RDV has a very broad antiviral activity spectrum among

RNA viruses. Along with efficacy against EBOV and Marburg virus

that belong to the Filoviridae family, it was shown that RDV effec-

tively inhibits RNA viruses of the Paramyxoviridae, Pneumoviridae,

and Coronaviridae families with EC50 in the sub-micromolar range

(Warren et al, 2016; Lo et al, 2017; Sheahan et al, 2017). Efficacy

against SARS-CoV and MERS-CoV was mainly tested in human

airway cells (HAE or Calu-3). Using RT–PCR or reporter gene-based

assays, RDV yielded EC50 of 0.025–0.12 µM (MERS-CoV) and 0.069–

0.07 µM (SARS-CoV) (Sheahan et al, 2017; Agostini et al, 2018;

Sheahan et al, 2020). In addition, RDV inhibits zoonotic and

epidemic human CoVs (Brown et al, 2019). Inhibitory effects on

SARS-CoV-2 were evaluated in the African green monkey kidney cell

line (Vero E6) that supports entry and replication of SARS-CoV-2 by

a high expression of ACE2 (Banerjee et al, 2020; Hoffmann et al,

2020a). A clinical virus isolate from Wuhan (WIV04/2019) RDV

was inhibited with an EC50 of 0.77 µM in a RT–PCR-based assay

(Wang et al, 2020a). Another group assessed the reduction of

cytopathology effects (CPE) by RDV using an Australian isolate

(VIC01/2020). Here, the EC50 was significantly higher (4.9 µM)

which might reflect methodological differences as this increased

level was in the same order to a similarly tested SARS-CoV isolate

(Ogando et al, 2020). Recently, another preclinical evaluation was

done using a SARS-CoV-2 isolate from Hong Kong (20001061/2020).

The investigators found EC50 between 23.12 µM and 25 µM in dif-

ferent assay formats. However, these result cannot be readily

compared with previous findings because a logarithmic fitted calcu-

lation model was used (Choy et al, 2020).

RDV demonstrated beneficial therapeutic effects in several

animal models of CoV infections including mouse models of SARS-

and MERS-CoV infection and in MERS-CoV-infected non-human

primates (Sheahan et al, 2017; de Wit et al, 2020; Sheahan et al,

2020). Here, it also had prophylactic properties when 5 mg/kg was

administered 24 h before inoculation of rhesus macaques with

MERS-CoV. Recently, RDV was evaluated in a macaque model of

SARS-CoV-2 infection. Animals were treated 12 h post-infection

with 10 mg/kg (day 1) followed by 5 mg/kg daily (day 2-6)

which is an equivalent dose of that recommended for humans

(Gilead_Sciences, 2020). In contrast to animals treated with

placebo (n = 6), RDV diminished clinical signs of disease and

reduced lung virus titers and tissue damage in all six animals

treated (Williamson et al, 2020).

Clinically, RDV was evaluated in two randomized controlled clin-

ical trials of which results have been published. The first trial

conducted in China was unfortunately underpowered (nRDV = 158;

nplacebo = 79) due to insufficient recruitment of patients and there-

fore remained inconclusive. However, in a subgroup of patients that

were treated with RDV within 10 days of symptom onset there was

a numerical reduction of five days in time to clinical improvement
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that was not yet significant (hazard ratio 1.52 [95% CI: 0.95–2.43])

(Wang et al, 2020c). The adaptive COVID-19 treatment trial was an

international double-blind RCT that included 1063 patients. An

interim analysis was performed after completion of enrollment, with

a total of 301 patients in follow-up (before day 29) that was made

public to make positive results quickly available. In this preliminary

evaluation, treatment with RDV was associated with a significant

reduction in time to recovery from median 15 to 11 days (recovery

rate ratio 1.32 [95% CI: 1.12–1.55; P < 0.001]) which was most

pronounced in patients that require supplemental oxygen (RRR 1.47

[95% CI: 1.17–1.84]). Mortality rates by 14 days were reduced in

the treatment group (7.1% vs. 11.9%), which was not yet statisti-

cally significant (HR 0.7 [95% CI: 0.47–1.03, P = 0.06]) (Beigel et al,

2020). Based on these findings, RDV was given an Emergency Use

Authorization (EUA) in the United States and Japan and was

recently approved by the European Medicines Agency for the treat-

ment of patients with COVID-19 that require supplemental oxygen.

A randomized open-label study sponsored by Gilead Sciences

(NCT04292899) compared efficacy of a 10-day (n = 197) vs. 5-day

treatment course (n = 200) in patients with severe COVID-19.

Results from this analysis suggest similar effects of both regimens.

However, an overall assessment of RDV efficacy is not possible

based on these data as no control group was included in this trial.

Another Gilead Sciences sponsored phase 3 randomized controlled

trial evaluating RDV in moderate COVID-19 (NCT04292730) found a

significant better clinical status by day 11 (primary outcome) in

patients treated with a 5-day regimen of RDV compared with

placebo (odds ratio 1.65 [95% CI: 1.09–2.48, P = 0.02]). However,

the clinical significance of this finding remains unclear because a

10-day course had no influence on this outcome and the effect was

inconsistent with another evaluation on day 28 (Spinner et al,

2020). Of all results from clinical trials on RDV, only one publication

reports on its impact on SARS-CoV-2 viral load. Wang et al found

similar decreases in virus RNA of upper and lower respiratory tract

specimen of patients treated with either RDV or placebo. This

finding may be of limited significance as the study was generally

underpowered and only a limited number of patients was eligible

for this evaluation (67% had a PCR-positive upper respiratory speci-

men at baseline and expectorated sputa were obtained from 43% of

enrolled patients) (Wang et al, 2020c).

Safety data of RDV are available from 138 healthy volunteers

(phase I) and more than 1,500 patients treated within phase III trials

on COVID-19 or compassionate use programs (FDA, 2020). In

general, RDV was well tolerated and serious adverse events seem to

be rare. RDV is known to interfere with several hepatic drug-metab-

olizing enzymes like CYP2C8, CYP2D6, and CYP3A4 in vitro. In

healthy individuals, RDV increased the risk of transient transami-

nase elevations. However, in randomized clinical trials similar

elevations were observed in both RDV and placebo groups which

might be explained by COVID-19-associated liver injury (Fan et al,

2020; Lei et al, 2020; Zhang et al, 2020a). A complete overview of

safety information for RDV can be reviewed elsewhere (FDA, 2020).

Favipiravir
Favipiravir (T-705) is an oral pyrazine derivate that inhibits RdRp of

several RNA viruses. For influenza, it was shown that the active

triphosphate form functions as a nucleotide analog that competes

with ATP and guanosine-triphosphate (GTP) for incorporation into

the nascent RNA strand, thereby causing chain termination (San-

gawa et al, 2013). In addition to its action as competitive inhibitor

of viral RdRp, favipiravir-TP triggers accumulation of random point

mutations that ultimately lead to lethal mutagenesis of the virus

(Vanderlinden et al, 2016; preprint: Shannon et al, 2020). The drug

has potent antiviral activity against influenza A and B in vitro and is

currently approved in Japan for the treatment of influenza infections

(Furuta et al, 2002; Furuta et al, 2013). Furthermore, it demon-

strated a broad antiviral spectrum against other RNA viruses like

paramyxoviruses, human metapneumovirus, respiratory syncytial

virus, human parainfluenza virus and measles virus (Jochmans

et al, 2016). However, cell-based assays that evaluated efficacy

against SARS-CoV-2 showed only low activity at a high micromolar

range (Wang et al, 2020a) or no activity at the highest concentration

tested (Choy et al, 2020; Pizzorno et al, 2020). Despite its poor

in vitro efficacy, favipiravir was evaluated in an open-label non-

randomized trial which compared time to viral clearance and radio-

logical improvement after 14 days treatment with either lopinavir/

ritonavir (400/100 mg twice daily; n = 45 historical controls) or

favipiravir (1600 mg d1, 600 mg d2-14, twice daily; n = 35) plus the

standard of care (SOC) in hospitalized patients with COVID-19. The

investigators found a significant shorter median time to viral clear-

ance (4 days, IQR: 2.5–9 vs. 11 days, IQR: 8–13; P < 0.001) and a

higher rate of patients with improved chest imaging on day 14

(91.43% vs. 62.22%; P = 0.004) in the group treated with favipi-

ravir (Cai et al, 2020). However, these data are difficult to interpret

as there was no placebo control and all patients received additional

treatments with interferon (IFN)-a 1b. Taken together, no convinc-

ing evidence for favipiravir as antiviral agent against SARS-CoV-2

can be reported. Based on its poor in vivo efficacy, it seems unlikely

that this drug will be assessed in another clinical trial.

Ribavirin
Ribavirin is a guanosine analog with structural similarities to favipi-

ravir. Like other nucleoside or nucleotide analogs, it abrogates viral

RNA synthesis by incorporation into nascent RNA strands.

However, additional processes may also contribute to its antiviral

activity. For influenza, for example it was shown that ribavirin

provides a mutagenic effect on the viral genome and decreases

cellular GTP pools by interfering with cellular inosinmonophosphat-

dehydrogenase (Streeter et al, 1973; Wray et al, 1985). Ribavirin is

an approved drug for the treatment of chronic infections with

hepatitis-C virus (HCV) in combination with other antiviral drugs.

Like other RdRp inhibitors, ribavirin has a broad activity among

RNA viruses, especially in those belonging to the flavivirus family

(Crance et al, 2003). Although virtual molecular docking studies do

suggest an interaction with to SARS-CoV-2 RdRp, its efficacy against

SARS-CoV-2 is very limited (Choy et al, 2020; Wang et al, 2020a).

This is not surprising as ribavirin also lacks activity against related

coronaviruses (Cinatl et al, 2003). Therefore, ribavirin was not eval-

uated in vivo.

Penciclovir
Pencivlovir is another guanosine analog that is an approved antivi-

ral for topical treatment of herpes simplex virus infections or reacti-

vations. It is closely related to acyclovir but has a very poor

bioavailability. Its prodrug form, famciclovir, has an optimized

bioavailability and is used as systemic treatment for herpes
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infections including herpes zoster. Virtual binding studies based on

an nsp12 homology model suggest that pencivlovir binds to SARS-

CoV-2 RdRp with an affinity even higher than that of RDV (preprint:

Dey et al, 2020). Nevertheless, it demonstrated low efficacy against

SARS-CoV-2 in vitro (EC50 96 µM) (Wang et al, 2020a). Additional

preclinical or clinical studies with penciclovir or its prodrug famci-

clovir as treatment for COVID-19 have not been reported.

Miscellaneous or unknown MOA

Chloroquine/Hydroxychloroquine
Chloroquine (CQ) is a 9-aminoquinoline that has been used as anti-

malaria drug for decades but its use steadily decreased because of

emerging resistant Plasmodium falciparum (Wellems & Plowe,

2001). CQ and its derivate hydroxychloroquine (HCQ) however are

still in clinical use to treat rheumatic diseases where it has beneficial

immunomodulatory effects. Hydroxychloroquine demonstrated less

toxicity in animal studies that tested high doses in mice, rats, and

dogs (McChesney, 1983). In the past years, CQ/HCQ has gained

attention for its potential use as therapeutic agent in the field of

bacterial and viral infectious diseases because of its ability to inhibit

several intracellular bacteria, viruses, and fungi (Savarino et al,

2004; Rolain et al, 2007).

The MOA of CQ/HCQ is not completely understood and varies

among different pathogens to some extent. In general, non-proto-

nated forms of CQ/HCQ enter the cell and subsequently become

protonated according to the Henderson-Hasselbach law (Savarino

et al, 2004). Consequently, CQ/HCQ accumulates in acidic organelles,

such as endosomes, lysosomes, and Golgi vesicles. Within these

organelles, CQ/HCQ increases the pH because of its biochemical

behavior (O’Neill et al, 1998). Two main antiviral mechanisms have

been identified: I) low-pH-depended inhibition of viral conforma-

tional changes that are essential for responsible for viral fusion, pene-

tration, and uncoating; and II) inhibition/modification of post-

translational processing of viral glycoprotein’s in the trans-GOLGI

compartment and within endoplasmic vesicles (Randolph et al, 1990;

Sieczkarski & Whittaker, 2002; Rolain et al, 2007). A third mecha-

nism has been proposed, which is based on the immunomodulatory

and anti-inflammatory properties. Known effects related to this cate-

gory include inhibition of intracellular Toll-like receptors (such as

TLR9), inhibitory effects on the cyclic-AMP synthase pathway, and

interference with major histocompatibility complex presentation

(Rolain et al, 2007; Pal et al, 2020; Schrezenmeier & Dörner, 2020).

Antiviral activity of CQ/HCQ has been shown for viruses from

several families and seems to cover a relatively broad spectrum

(Rolain et al, 2007). Its antiviral mechanism is best explored in HIV

where CQ induces modifications of the glycosylation pattern and

amino acid charges from gp120 viral envelope protein, which may

affect the immune escape mechanism of HIV (Savarino et al, 2004;

Naarding et al, 2007). Although its clinical efficacy in HIV is not

comparable to current antiretroviral drugs, several clinical studies

have proven anti-HIV effects of HCQ in vivo (Paton et al, 2002;

Paton & Aboulhab, 2005). In CoVs different antiviral mechanisms of

CQ/HCQ have been proposed including modifications to the viral

spike glycoprotein (Gallagher et al, 1991; Vincent et al, 2005) and

terminal post-translational modification of ACE2-receptor glycosyla-

tion, which might interfere with virus binding and consequent

fusion (Li et al, 2003; Vincent et al, 2005). However, CQ/HCQ seems

to elicit multiple effects on virus and host cell that ultimately inhibit

viral replication. In a time-of-addition experiment, Liu et al con-

firmed that CQ/HCQ affects the viral life cycle both at cell entry and

post-entry stages. Intracellularly, CQ/HCQ showed to impair

endosome maturation at intermediate stages of endocytosis, a

crucial function for the transport of virions to its releasing site

(Liu et al, 2020).

Activity against SARS-CoV was demonstrated in Vero E6 cells

with an EC50 of 8.8 µM (� 1.2) which approximates the plasma

concentrations reached during treatment of acute malaria (Keyaerts

et al, 2004). In SARS-CoV-2, CQ yielded EC50 of 1.13–1.38 µM and

HCQ yielded 0.72–4.4 µM in RT–PCR-based assays (Maisonnasse

et al, 2020; Pizzorno et al, 2020; Wang et al, 2020a). Moreover, Liu

et al directly compared in vitro efficacy of CQ with that of HCQ. By

using Vero E6 cells that were exposed to SARS-CoV-2 with increasing

multiplicities of infection (MOI), they found EC50 of 2.71–7.36 µM

(CQ) and 4.06–12.96 µM (HCQ), respectively, in RT–PCR-based

assays (Liu et al, 2020). The authors concluded that HCQ is less

potent compared with CQ. In contrast, Yao et al found lower EC50 for

HCQ (0.72 µM) compared with CQ (5.47 µM) when using an MOI of

0.01 (the lowest MOI used by Liu et al). They also included a physio-

logically based pharmacokinetic (PBPK) model of hydroxychloro-

quine concentrations in lung fluid. Based on this model, they

predicted that an HCQ dose of 400 mg twice daily on day one

followed by 200 mg twice daily seems to yield appropriate drug levels

for treating COVID-19 (Yao et al, 2020). These simulations are in line

with an early pharmacokinetic study in children with rheumatic

disease where 6-6.5 mg/kg HCQ per day yielded serum levels of 1.4–

1.5 µM in humans (Laaksonen et al, 1974). Chloroquine yielded

plasma concentrations of 1–3 µM when applied with 3.6 mg/kg in

another study (Wollheim et al, 1978). Tissue levels of both CQ and

HCQ in animals were found to be 200–700 times higher than those in

the plasma, including lung tissue (Popert, 1976). This suggests that

sufficient drug concentrations may be reached at the site of infection

in humans when using recommended doses but final evidence is

lacking and pharmacokinetics can differ significantly in humans.

However, based on these models, clinical trials have been conducted

with maintenance doses of 400–600 HCQ mg daily.

Numerous clinical trials evaluating CQ/HCQ alone or in combi-

nation with additional drugs for the treatment of COVID-19 were

conducted or are still ongoing. At the time of writing, clinicaltrials.-

gov has registered 326 trials of CQ/HCQ in association with COVID-

19 treatment. However, most of the published results originate from

observational studies or had a low enrollment size. Meanwhile,

other trials have been halted due to emerging reports of HCQ-

induced cardiovascular events (Kalra et al, 2020; Kamp et al, 2020).

Consequently, there has been discussion in the media and scientific

community (Colafrancesco et al, 2020; Lenzer, 2020; Sharma, 2020).

Some debate leading clinical finding will be mentioned briefly.

Early reports from China suggested a breakthrough in COVID-19

treatment as results from more than 100 patients treated with CQ it

could be concluded that it has a positive impact on disease course,

viral clearance, lung images in contrast to control treatments (Gao

et al, 2020). Although no clinical data were reported to support this

hypothesis, HCQ was subsequently introduced in Chinese clinical

guidelines. In a small Chinese randomized trial of 63 patients, HCQ

seemed to reduce body temperature recovery time and the cough
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remission time (preprint: Chen et al, 2020b) and another small anal-

ysis of 26 patients treated with HCQ suggested effects on viral load

reduction without any clinical implication (Gautret et al, 2020).

Nevertheless, other studies could not identify any significant benefi-

cial effect of CQ/HCQ (Mahévas et al, 2020; Chen et al, 2020a) includ-

ing one observational study with 1376 patients enrolled (Geleris et al,

2020). One placebo-controlled RCT sponsored by the NIH

(NCT04332991) was recently halted after the forth interim analysis

that included enrolled 479 patients suggested no beneficial effects of

HCQ in COVID-19 (NIH, 2020). Meanwhile, HCQ with or without

azithromycin was tested in a non-human primate model of SARS-

CoV-2 infection where it showed no effects on viral load or clinical

endpoints. In additional in vitro analyses published along with this

animal study, anti-SARS-CoV-2 activity of HCQ evident in Vero E6

cells could not be reproduced in human airway epithelial (HAE) cells

which might explain diminished effects of CQ/HCQ in vivo (Maison-

nasse et al, 2020). In conclusion, CQ/HCQ seems to be a broadly

active antimicrobial agent that elicits multiple antiviral mechanisms

and has potent in vitro efficacy against SARS-CoV-2 when tested in a

Vero E6 cell model. However, clinical studies that demonstrate bene-

ficial effects are lacking and available data mainly point toward a

neglectable role in the clinical management of COVID-19.

Others
Myriads of clinical approved drugs have been tested regarding their

activity against SARS-CoV-2 in vitro. Although other potent inhibi-

tors could be identified, the clinical significance of those compounds

is currently uncertain. Moreover, in vivo efficacy and specific MOA

are largely unknown. Thus, we do not provide a detailed review of

those compounds.

Choy et al reported on antiviral effects of homoharringtonine

(omacetaxine mepesuccinate), a natural plant alkaloid used as a treat-

ment of patients with chronic myeloid leukemia, and emetine, an

antiprotozoal agent used in the treatment of amoebiasis. Both drugs

block protein synthesis in eukaryotic cells (Gupta & Siminovitch,

1977; Gandhi et al, 2014). In a SARS-CoV-2 infection model with Vero

E6 cells, the EC50 was 2.14–3.13 lM for homoharringtonine and

0.46�1.56 lM for emetine depending on antiviral assay (Choy et al,

2020). Wang et al found that nitazoxanide, a drug with broad-spec-

trum antiparasitic and broad-spectrum antiviral effects, inhibits

SARS-CoV-2 at low-micromolar concentration (EC50 = 2.12 lM)

(Wang et al, 2020a). Recently, Pizzorno et al evaluated cyclosporine

A, a calcineurin inhibitor used as an immunosuppressant medication,

and berberine, an alkaloid found in several plants for anti-SARS-CoV-

2 activity. Cyclosporine has previously demonstrated antiviral activity

against human coronavirus 229E (HCoV-229E) and mouse hepatitis

virus (MHV) but not SARS-CoV (de Wilde et al, 2011). For berberine,

inhibitory effects were shown against influenza, Chikungunya, and

enterovirus 71 (Varghese et al, 2016). Both drugs were found to

inhibit SARS-CoV-2 replication in Vero E6 cells significantly (EC50:

cyclosporine A 3.05 lM; berberine 10.58 lM). Further studies have

to clarify their potential role in COVID-19 treatments.

Concluding remarks and interpretation

In this comparative review, we focus on repurposed drugs with

antiviral effects against SARS-CoV-2 in cell-based assays as those

substances offer great opportunities for a treatment early in the

course of COVID-19 by inhibition of viral replication and might be

even suitable for preventive strategies as shown for neuraminidase

inhibitors in case of influenza (Jefferson et al, 2014). In contrast,

immunomodulatory drugs may be more beneficial in a later phase

of infection, when the peak of viral replication has been reached

and inflammatory processes dominate the pathophysiological

process. This hypothesis is supported by the fact that repurposed

immunomodulatory drugs like glucocorticoids seems to be benefi-

cial in severe or critical COVID-19 when used in a later phase after

several days of symptomatic disease (preprint: Corral et al, 2020;

Horby et al, 2020; Ramiro et al, 2020) but probably not within the

first week after symptom onset (Horby et al, 2020).

Many substances were tested in vitro for their direct antiviral

effects on SARS-CoV-2 replication or their ability to reduce

cytopathologic effects in Vero E6 cells. However, to date only thir-

teen of them demonstrated any activity against SARS-CoV-2

(Table 1). Of repurposed entry and viral protease inhibitors, to date

none has shown convincing evidence that support a clinical develop-

ment as single agent against COVID-19. Besides remdesivir which

inhibits viral replication with an EC50 of 0.77–26.9 µM (depending

on assay type, virus strain, and procedure of calculating), other

nucleoside/nucleotide analogs that target the viral RdRp like favipi-

ravir, penciclovir, or ribavirin were assessed but showed no or only

weak activity against SARS-CoV-2. Inhibitors of viral protease were

also investigated but only lopinavir had mentionable antiviral activ-

ity (EC50 5.25–26.62 µM). Unfortunately, the combination of lopi-

navir and ritonavir did not show any clinical effects in a randomized

controlled trial (Cao et al, 2020). The anti-parasite drug CQ/HCQ

was one of the most promising candidates against COVID-19 based

on preclinical studies but a clinical benefit could not be proven and a

recently published in vivo study demonstrated no beneficial effects

in a non-human primate model of SARS-CoV-2 infection (Maison-

nasse et al, 2020). Recent studies in vitro showed strong anti-SARS-

CoV-2 properties of compounds with different and partly unknown

modes of antiviral action like nitazoxanide, cyclosporine A, emetine,

and homoharringtonine. However, of those agents none have been

readily assessed in animal models or clinical trials (Table 2).

Therefore, remdesivir is the only antiviral drug that demon-

strated efficacy in the preclinical and clinical setting. In the latter

situation, it reduces time to recovery and may reduce mortality. A

meta-analysis which is available as preprint identified a statistically

significant reduction in mortality (relative risk 0.69; [95% CI 0.49–

0.99]) when pooling data of the two available RCTs (preprint:

Alexander et al, 2020). Final results of the ACTT-1 trial will provide

more data to evaluate effects of RDV on mortality and virologic

outcomes. In addition, a phase 1b/2a trial evaluating effects of RDV

on viral load when administered by inhalation of an aerosolized

solution is being planned (NCT04539262).

The relatively modest effect of the drug may be explainable by its

virostatic mechanism of action and the fact that effects were studied

after median 9 days of symptomatic disease (Beigel et al, 2020)

while viral replication is dominating in the first week of infection

(To et al, 2020; Wölfel et al, 2020; Zhou et al, 2020; He et al,

2020b). Early treatment with RDV was shown to be very effective in

a rhesus macaque model of SARS-CoV-2 infection where it reduced

clinical signs of infection, lung damage, and virus replication in

lower respiratory tract specimen (Williamson et al, 2020). Based on
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these considerations, we hypothesize that treatment with RDV

should therefore start early after symptom onset in the patient popu-

lation with treatment indication. In contrast to other antiviral drugs,

RDV is not available as oral formulation because of its poor

bioavailability that is inherent to its phosphonate-containing pro-

nucleoside design (Murakami et al, 2008; Pertusati et al, 2012). This

is a major disadvantage as it precludes an early treatment initiation

out of hospital. However, a clinical study that aims to evaluate

multiple intravenous doses of RDV in an outpatient setting

(NCT04501952) may increase our knowledge on its efficacy in early

stages of COVID-19.

The most successful antiviral therapies consist of combinations

of antiviral drugs with different MOA’s as shown for HIV and HCV-

therapy. Here, this approach is necessary to prevent development of

antiviral resistance during long-term treatments. Nevertheless,

combining of RDV with other antiviral or immunomodulatory

agents may be a successful strategy to improve treatment outcomes.
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Table 2. Published data from animal models and RCTs of repurposed drugs with proven anti-SARS-CoV-2 efficacy in vitro

Repurposed drug
SARS-CoV-2
animal model

RCTs on COVID-19
(identifier) Main conclusions References

Berberine N/A N/A N/A N/A

Chloroquine/
Hydroxychloroquine

ChiCTR2000029559a Reduced days of fever (2.2, SD 0.4 vs. 3.2, SD 1.3) and
cough (2.0, SD 0.2 vs. 3.1, SD 1.5) in 62 patients

Chen et al (2020b)

NCT04332991a No additional benefit compared with placebo control for
the treatment of COVID-19 in hospitalized patients
(n = 479; unpublished data)

NIH (2020)

Cynomolgus
macaque

No in vivo antiviral activity and no clinical efficacy,
regardless of the timing of treatment initiation

Maisonnasse et al
(2020)

Cyclosporine A N/A N/A N/A N/A

Emetine N/A N/A N/A N/A

Favipiravir N/A N/A N/A N/A

Homoharringtonine N/A N/A N/A N/A

Lopinavir (plus
ritonavir)

N/A ChiCTR2000029308 No clinical effect of 400/100 mg for 14 days Cao et al (2020)

Nafamostat N/A N/A N/A N/A

Nitazoxanide N/A N/A N/A N/A

Penciclovir N/A N/A N/A N/A

Remdesivir NCT04257656
Pre-term suspended
(N = 237)

No significant clinical improvement (HR 1.23 [95% CI 0.87-
1.75])

Wang et al (2020)

NCT04280705
(ACTT trial)

10 day course of RDV (200 mg d1, 100 mg 2-10): 1.
Reduction in time to recovery in adults hospitalized with
COVID-19 (hazard ratio: 1.31 [95% CI 1.12-1.54];
P < 0.001). 2. Lower mortality rate in treatment group (8
% vs. 11.6%; P = 0.059)

Beigel et al (2020)

NCT04292730b

(SIMPLE II)
No difference in clinical status distribution to placebo at
day 11 after a 10 day course of RDV but better clinical
status distribution after a 5 day course of RDV (odds ratio,
1.65 [95% CI 1.09-2.48; P = 0.02). The result is of unclear
clinical significance.

Spinner et al (2020)

Rhesus macaque RDV treated animals (n = 6) showed no clinical signs of
disease, had lower lung virus titers and less lung tissue
damage compared with the placebo group (n = 6)

Williamson et al
(2020)

Ribavirin N/A N/A N/A N/A

Umifenovir (Arbidol) N/A N/A N/A N/A

SD, standard deviation; CI, 95% confidence interval.
aPreliminary (not peer-reviewed published) data.
bRandomized controlled open-label trial (no blinding was performed).
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