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Abstract
Background: Post-translational modification of histones resulting in chromatin remodelling plays a key role in the
regulation of gene expression. Here we report characteristic patterns of expression of 12 members of 3 classes of
chromatin modifier genes in 6 different cancer types: histone acetyltransferases (HATs)- EP300, CREBBP, and PCAF;
histone deacetylases (HDACs)- HDAC1, HDAC2, HDAC4, HDAC5, HDAC7A, and SIRT1; and histone methyltransferases
(HMTs)- SUV39H1and SUV39H2. Expression of each gene in 225 samples (135 primary tumours, 47 cancer cell lines, and
43 normal tissues) was analysedby QRT-PCR, normalized with 8 housekeeping genes, and given as a ratio by comparison
with a universal reference RNA.

Results: This involved a total of 13,000 PCR assays allowing for rigorous analysis by fitting a linear regression model to
the data. Mutation analysis of HDAC1, HDAC2, SUV39H1, and SUV39H2 revealed only two out of 181 cancer samples
(both cell lines) with significant coding-sequence alterations. Supervised analysis and Independent Component Analysis
showed that expression of many of these genes was able to discriminate tumour samples from their normal counterparts.
Clustering based on the normalized expression ratios of the 12 genes also showed that most samples were grouped
according to tissue type. Using a linear discriminant classifier and internal cross-validation revealed that with as few as 5
of the 12 genes, SIRT1, CREBBP, HDAC7A, HDAC5 and PCAF, most samples were correctly assigned.

Conclusion: The expression patterns of HATs, HDACs, and HMTs suggest these genes are important in neoplastic
transformation and have characteristic patterns of expression depending on tissue of origin, with implications for
potential clinical application.
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Background
Epigenetics refers to modifications in gene expression that
are controlled by heritable but potentially reversible
changes in DNA methylation and/or chromatin structure.
Nucleosome remodelling complexes twist and slide
nucleosomes in an ATP-dependent manner facilitating
the accessibility of the DNA to transcription factors. Post-
translational modifications of the N-terminal tails of his-
tones within a nucleosome correlate with transcriptional
regulation. Variant histones that can replace canonical
histones in a nucleosome between S phases in a dynamic
manner, harbour distinct information to respond to DNA
damage. Methylation at the C-5 position of cytosine resi-
dues in CpG dinucleotides by DNA methyltransferases
facilitates static long-term gene silencing and confers
genome stability through repression of transposons and
repetitive DNA elements. Perturbationof epigenetic bal-
ances may lead to alteration in gene expression, ultimately
resulting in cellular transformation and tumorigenesis
[reviewed in [1] and [2]].

The histone proteins that package DNA into chromatin
play key roles in the regulation of transcription. The N-ter-
minal tails of these proteins are subjected to several post-
translational modifications such as acetylation, deacetyla-
tion, methylation, phosphorylation, ubiquitination,
sumoylation, and ADP-ribosylation [3]. The combination
of these covalent modifications gives rise to what is
known as the "histone code" [4]. Transcription becomes
active when histones are acetylated by histone acetyltrans-
ferases (HATs), silenced when histones are deacetylated
by histone deacetylases (HDACs) and silenced or acti-
vated when methylated by histone methyltransferases
(HMTs) [5]. In addition several studies have shown that
chromatin modifiers regulate the expression of different
sets of genes involved in tumorigenesis [6,7].

The histone acetyltransferases EP300 and CREBBP
acetylateseveral lysine residues on histone proteins H2A,
H2B, H3, H4, and PCAF acetylates histone H3. These
enzymes also acetylate several non-histone proteins such
as p53, β-catenin, GATA and HMGI(Y) [8,9]. Histone
deacetylases are grouped into three classes based on
homology to yeast histone deacetylases. Class I histone
deacetylases, _HDAC1, HDAC2, HDAC3 and HDAC8_,
are homologous to yeast RPD3. Class II histone deacety-
lases, _HDAC4, HDAC5, HDAC6, HDAC7A, HDAC9,
HDAC10, and HDAC11_, share homology with yeast
Hda1. The third class of human histone deacetylases has
seven members, SIRT1-7, withhomology to yeast Sir2
[10].

Several lysine residues on H3 and H4 are subjected to
methylation by lysinemethyltransferases and a few
arginine residues are methylated by arginine methyltrans-

ferases. The histone lysine methyltransferases,
SUV39H1and SUV39H2 are members of the SUV39 fam-
ily of SET domain containing proteins [11]. Methylation
of H3 K9 by SUV39H1 and SUV39H2 is associated with
transcriptional repression. The methylation of H3 K4 by
SET7/9 is associated with transcriptional activation.
EZH2, a member of the SET1 family of HMTs, methylates
H3 lysine 27, resulting in gene silencing [12]. CARM1 is a
histonearginine methyltransferase and methylates
arginine 2, 17, and 26 of H3 [13].

Several findings have suggested a role for HATs, HDACs
and HMTs in cancer. EP300 and CREBBP, are fused to MLL
in acute myeloid leukaemia [14]. EP300 somatic muta-
tions coupled with the deletion of the second allele were
reported in different primary tumours and cell lines
[15,16]. HDAC1 overexpression occurs in gastric cancer
[17] and modulates breast cancer progression [18]. A class
3 HDAC, SIRT1, was identified as an NAD-dependent p53
deacetylase [19]. InSIRT1 deficient mice, p53 hyper-
acetylation was observed and p53-dependent apoptosis
was affected [20]. In the double knockout Suv39h1/
Suv39h2 mouse the reduced level of H3 K9 methylation
is associated with genomeinstability and predisposition
to cancer [21]. Another indication suggesting SUV39H1
might be important in cancer, comes from the study
revealing the interaction of SUV39H1 with Rb and also
that Rb mutants found in human cancers fail to bind
SUV39H1 [22]. Overexpression of EZH2 is associated
with progression of prostate cancer and aggressiveness of
breast cancer [23,24].

Epigenetic modifications appear to occur in specific pat-
terns during neoplastic transformation. For example, a
profile of CpG island hypermethylation for each tumour
type allows classification using hierarchical clustering
[25]. A seminal report has shown that the global loss of
monoacetylation and trimethylation of histone H4 is a
common hallmark of human tumor cells [26]. More
recently it has also been reportedthat changes in global
levels of individual histone modifications assayed at the
tissue level are associated with cancer and that these
changes are predictive of clinical outcome in prostate can-
cer [27].

Understanding the molecular details behind epigenetics
and cancer holds potentially important prospects for
medical treatment, and might allow the identification of
new targets for drug development [1]. We carried out
sequence and expression analysis of selected members of
the 3 classes of histone modifier genes: HATs (EP300,
CREBBP, PCAF), HDACs (Class I-HDAC1, HDAC2, Class
II-HDAC4, HDAC5, HDAC7A, Class III-SIRT1), and
HMTs (SUV39H1, SUV39H2, EZH2) in 225 samples rep-
resenting 6 different solid tumour types. This represents
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the most comprehensive and rigorous evaluation of the
profiles of chromatin modifier enzymes in human cancers
done to date.

Results
Differential expression of histone modifier genes
The expression levels of the 12 chromatin modifier genes
were analysed using QRT-PCR in 47 cancer cell lines
(ovarian, breast, colorectal) and 178 primary samples: 20
colorectal tumour/normal pairs, 12 renal tumour/normal
pairs, 26 breast tumours, 5 normal breast tissue samples,
45 ovarian tumours, 15 glioblastomas, 17 bladder
tumours, and 6 normal bladder tissue samples. To capture
intra-assay variability all QRT-PCR reactions were carried
out in triplicate.

The expression data analysis strategy used is shown in
schematic form in Figure 1. Normalisation of the expres-
sion levels to an endogenous housekeeping gene has been
proposed [28,29] to account for sample to sample varia-
tions. The accuracy of normalising to such an internal
control gene rests mainly on the assumption that this ref-
erence gene is unregulated and that it is thus constantly
expressed across samples. However, as many studies have

now shown, see e.g [29], traditional housekeeping genes
such as GAPDH do show significant variability across
samples. It is therefore necessary to consider a set of can-
didate reference genes and to choose the most stable sub-
set for normalisation. Here we carried out RT-PCRfor a
total of eight candidate housekeeping genes (ACTB, B2M,
GAPDH, HMBS, HPRT, RPL3, SDH, and UBC) across the
whole sample set. The normalisation was done for tissues
and cell-lines separately using a three-step procedure.
First, expression values were normalised to correct for var-
iable amplification efficiencies across genes, as previous-
lyreported [28]. Second, we determined a subset of
housekeeping genes that were stably expressed relative to
the variability exhibited by the target genes. To do this we
first computed gene stability measures by modifying the
method of [29] to use ratios of "efficiency corrected" Ct
values [28]. This ensured that the variability computed
was less confounded by gene amplification efficiency dif-
ferences across samples and not confoundedby sample
loading variations [30]. We then used these measures to
model thestability of candidate housekeeping genes using
a randomised test of variance. We found that the expres-
sion level of housekeeping genes was morevariable in cell
lines as compared to tissue samples. Thus, whereas for
thetissue samples the stable subset included all eight
housekeeping genes, forcell lines the stable subset did not
include B2M, HPRT,and RPL3. Finally, to rigorously
quantify the normalisation errors incurred we fitted a lin-
ear model to the expression ratios obtained throughstep 1
by including all stable housekeeping genes, efficiency, and
replicate measurements (there are (12+8) × 178 × 3 =
10,680 measurements for tissues,and (12+5) × 47 × 3 =
2,397 measurements for cell lines). The output of the
model was an estimated matrix VG, which contained the
normalised relative expression ratios by gene (rows) and
samples (columns) (see Additional file 1 and file 2). Fit-
ting a model to data as was done here provided us with an
appropriate framework in which to carry out subsequent
robust inferences using a bootstrapping procedure
[31,32].

Figure 2 shows the normalized relative expression ratios
derived from the model for each of the 12 histone modi-
fier genes analysed (see also Table 1). Inspection of this
figure provides an overview of expression of each of the
genes analysed across all samples. For example, HDAC1
overexpression was seen in renal, bladder, colorectal
tumour and normal tissues, and a small proportion of
ovarian primary tumours. In contrast underexpression
was seen in most of the glioblastomas, 25% of the pri-
mary ovarian tumours and about 1/3 of the ovarian cell
lines, and most breast cancer cell lines. In normal breast
tissues and primary breast cancers HDAC1 expression
changes were mostly not significant.

Schema of RT-PCR data analysisFigure 1
Schema of RT-PCR data analysis.

A) 178 Tumour/Normals + 47 Cell-lines
12 target genes x 3 Ct values 
8 housekeepers x 3 Ct values 

+ 
B) Universal Comparator Sample

12 target genes x 25 Ct values 
8 housekeepers x 25 Ct values 

+ 
C) Universal Comparator + 3 Cell-lines
Gene amplification efficencies for all 

12 targets + 8 housekeepers 
  

Compute normalized log-expression ratios (Pfaffl)

Selection of an optimal housekeeper gene subset
Signal to noise metric 
Bootstrap stability test 

  

Renormalisation (Linear Regression/ANOVA Model)

New normalized expression matrix across targets and samples
relative to universal comparator

+ 
Quantification of residual errors/noise

Noise due to non-ideal housekeeping conditions 
Error due to variable amplification efficencies across samples 

IntraAssay variability 

Robust Statistical Inference
Bootstrapping residuals method 

RT-PCR
data
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One important aspect was to determine which genes
could be used to differentiate between tumour and nor-
mal tissues based on expression analysis (Table 2). Inspec-
tion of the data from the paired and unpaired tissues
suggested for example differential expression of HDAC5,
SIRT1, SUV39H1 and EZH2 (Figure 2). To test this, we
used the non-parametric Wilcoxon rank sum test as it
makes no assumptions about the distribution of expres-
sion values within tissue types and is robust to possible
unrepresentative outliers in the tissue sets. To further
check therobustness of the p-values from the rank sum
test we used the bootstrappingresidual method [31,32] to
model noise due to unstable housekeeping gene expres-
sion. We therefore generated an additional 99 VG matri-
ces representing perturbations around the estimated VG.
A robustness measure for each tumour/normal tissue pair
p-value was then obtained as thenumber of times (out of
100) the test was significant at a 0.001 significance level
(Table 2). This showed that colorectal tumours were dis-
tinguished as a group from normal colorectal tissues by
the expression of HDAC1, HDAC5, HDAC7A, SIRT1, and
SUV39H1. In pairwise comparisons, all colorectal cancers
showed significantly lower expression (P < 0.001) of
HDAC1, HDAC5, and SIRT1,than their respective nor-
mals, except for two colorectal tumours showing higher
expression of HDAC5. Higher expression of HDAC7A and
SUV39H1 was observed in most colorectal tumours. How-
ever, 3 colorectal tumours showed lower expression of
HDAC7A. Renal tumours were distinguished as a group
from normal renal tissues by the expressionof EZH2
(PCAF was useful in distinguishing the two groupsin less
than 50% of the simulations). In pairwise comparisons
with their matched normal tissue all renal tumours
expressed higher levels of EZH2. Breast tumours were dis-
tinguished as a group from normal breast tissues by the
expression of EZH2, CREBBP and HDAC4. Although the
number of normal breast samples available was small the
analysis is robust statistically and it is reassuring to see

thatfor the single gene (EZH2) out of the 3 that are dis-
criminatory and for which independent data exists the
results are concordant with our findings (EZH2 is overex-
pressed in cancers vs normals) [24]. Bladder tumours
could not be distinguished as a group from the bladder
normal tissues based on the individual expression of any
of the genes analysed. Further insight however was
obtained by application of Independent Component
Analysis [33] (see later).

Histone modifier genes have tissue-type specific patterns 
of expression
We also noted what appeared to be distinct expression
profiles for each tissue type (for example compare expres-
sion of CREBBP in glioblastomas versus renal cancers). To
investigate this further we clustered the samples based on
the similarity of expression across genes and then visual-
ized the data in a matrix format. We first used unsuper-
vised approaches because we were interested in
discovering novel associations without influence from
prior knowledge. Unsupervised algorithms that have been
used extensively for expression analysis include hierarchi-
cal clustering [34] and k-means [35]. However, both have
limitations: k-means is biased as it requires the number of
clusters to be specified in advance whereas hierarchical
clustering does not allow this number to be rigorouslyin-
ferred. The problem of inferring the number of clusters
has been addressed [36] in the context of a Gaussian mix-
ture model. There the Bayesian Information Criterion
(BIC) was used to infer the number of clusters. An alterna-
tive to BIC is provided by the variational Bayesian
approach [37]. This approach implements an ensemble
learning algorithm for the cluster parameters and provides
a rigorous framework in which to infer the optimal
number of clusters [38] (see Methods). Moreover, in com-
mon with the method in [39] it provides a framework in
which to test the robustness ofthe clusters to noise. Prior
knowledge may be easily incorporated, althoughfor this

Table 1: The range, mean value and variance of expression of the target genes across all samples.

Primary samples Cell Lines

GENE Minimum Maximum Mean Variance Minimum Maximum Mean Variance
HDAC1 -10 5.4 1.5 2.1 -1.9 2.5 1 1.2
HDAC2 -4.6 6.3 1.3 1.1 -2.1 3.2 1.8 1.9
HDAC4 -6.6 5.9 2.7 1.5 -6.1 3.8 4.2 2.1
HDAC5 -6.5 6.5 1.7 2.1 -7.2 5.9 0.2 3.8

HDAC7A -3.8 3.1 4.6 1.7 -2.7 3.9 4.7 1.5
SIRT1 -3.7 5.8 -0.2 4.8 -4.9 3.4 -0.9 6.7

SUV39H1 -3 3.9 0.9 1.2 -1.3 3 1.7 1.2
SUV39H2 -1.4 6.7 1 1.6 -2.8 3.2 1.5 1.5

EZH2 -4.9 7.2 0.5 3.2 -4.2 5.1 0.4 2.9
CREBBP -3.3 8.1 -0.5 6.4 -2.1 4.9 2.5 2.6

P300 -4.5 4.8 1.3 1.1 -1.5 2.9 0.7 0.9
PCAF -7.5 4.5 2.7 2.9 -3.8 4.3 -0.2 3.2
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unsupervised analysis we have implemented a version
with complete uninformative priors. The results of unsu-
pervised clustering using the ensemble-learning algorithm
as applied to the normalised expression matrix VG are
summarised in Table 3. On the set of 12 target genes, the
algorithm predicted the presence of six clusters (Figure 3).
One included most breast samples, a second included the
renal and bladder samples, and athird included most

colorectal samples. The ovarian samples were distributed
between two main clusters (a third cluster contained a sin-
gle case), one of which shared with glioblastomas. We
compared this clustering pattern with the one obtained
using hierarchical clustering and found that the patterns
were mostly concordant (see Additional file 3).

New insights were obtained using Independent Compo-
nent Analysis [33], whichis described in detail in Meth-
ods. The aim here was two-fold. One goal was to find in
an unsupervised manner data projections that may be of
specific biological interest and to find the major players
(genes) defining these projections. Secondly, ICA allows
the inherent dimensionality of the data set to be inferred
via a dimensional reduction step in which Gaussian
noise-like dimensions are filtered out [33]. Applying a
maximum likelihood version of ICA we were able to infer
only seven robust projections or modes. Thus, ICA
removed a five dimensional gene subspace for which the
data variance was smallest and along which the data dis-
tribution was Gaussian. Out of the seven modes, four
were particularly interesting (see Additional file 4-a)
clearly discriminating the various tumour types from each
other or from their normal counterparts. For example,
ML-IC7 showed a projection that separated tumour from
normal tissues across four different tissue types(Breast,
Renal, Bladder and Colorectal), which we verified with a
Wilcoxon rank sum test (p-values were 2 × 10e-5, 3 × 10e-
5, 2 × 10e-3 and 1 × 10e-2,respectively). Taken together
with its corresponding projection along genes(see Addi-
tional file 4-b) this mode defines a pattern of relative over-
and-underactivation of the twelve genes that discrimi-
nates tumours from normals and that may have biological
significance. Similarly, the other modes (see Additional
file 4) suggested that SIRT1 and CREBBP to be among the
top genes discriminating the various tissue types. An
ensemble learning clustering over the four genes with the
best signal tonoise ratios (see Additional file 4-c) con-
firmed that even with a small number of genes we could
separate tissue types from each other.

The unsupervised clustering results strongly suggest that
cancer tissues may be distinguished from each other on
the basis of the expression profiles of 12 or less chromatin
modifier genes. Many classification algorithms exist and
have been applied extensively to gene expression data (see
[40,41] and [42] for an overview). Because of the rela-
tively large number of classes (6 tissue types) and the
small number of predictors (12 target genes) our classifi-
cation problem is well suited for a parametric mixture
model based approach [42,43]. Here we adapted the vari-
ational Bayesian Gaussian mixturemodel to the super-
vised setting. To ensure robustness of the results to noise
we restricted the classifier to be in a seven dimensional
gene subspace spanned by the genes with the best overall

Normalized relative expression ratios of genes across all samplesFigure 2
Normalized relative expression ratios of genes across all 
samples. Primary samples are on the left panels and grouped 
along the horizontal axis by tissue type according to the fol-
lowing colour codes: renal tumours (LIGHT BLUE), renal 
normals (DARK BLUE), colorectal tumours (DARK 
GREEN), colorectal normals (LIGHT GREEN), breast 
tumours (PINK), breast normals (RED), bladder tumours 
(YELLOW), bladder normals (ORANGE), glioblastomas 
(BLACK), ovarian tumours (GREY). Cell line samples are 
on the right panels and are also grouped by tissue type: ovar-
ian (GREY), breast (PINK) and colorectal (DARK 
GREEN). The y axis shows the expression ratios on a log2 
scale. The horizontal dashed lines represent an averaged one 
standard deviation (-0.4 to 0.4) gaussian noise level arising 
from unstable housekeeping gene expression across the 
whole sample set. The vertical distance between the two 
dashed lines represents therefore a zero centred 70% aver-
age confidence interval for all the expression values.
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signal to noise ratios (HDAC5, HDAC7A, SIRT1,
SUV39H1, EZH2, CREBBP, PCAF). Two methods of inter-
nal cross-validation were used to partition the sample set
into training and test sets. In the leave-one-out method,
one sample from each tissue type was selected at random
and placed in the test set. In the second method we placed
20% of randomly selected samples from each type in the
test set. For a given classifier we learned from the training
set the meansand variances of the clusters associated with
each tissue type. This was done on a tissue-type basis. We
then assigned the test samples to a tissue type using a lin-
ear discriminant classifier (see Methods). The error rates
of the classifier on the training and test sets were recorded.
This was then repeated for 1000 different randomly
selected partitions of the sample set into training and test
subsets. The average and standard deviation of theerror
rates over these 1000 runs were then computed. Finally,
all these steps were repeated for all possible numbers and
combinations of genes out of the initial set of seven. That
is, for each possible subset of (HDAC5, HDAC7A, SIRT1,
SUV39H1, EZH2, CREBBP, PCAF) containing at least two
genes (a total of 1 + 7 + 2 × 21 + 2 × 35 = 120 subsets) we
did the analysis described above recording the average
error rate on the test set together with its standard devia-
tion (Table 4). From the classificationresults (Table 4) we
found that based on this data set we can very accurately
predict tissue type on the basis of very few genes. With as
few as three genes (SIRT1, CREBBP, HDAC7A) we can
obtain prediction rates over 80%. Moreover, we can see
(Table 4) that in fact many optimal classifiers exist. One
possible choice would be the classifier (SIRT1, CREBBP,
HDAC7A, HDAC5, PCAF), which gave averageprediction
rates of 87% and 86% for the training and test sets, respec-
tively. Using all 12 target genes in the classifier we
obtained 92% ± 1% and 86% ± 5% prediction rates for the
training and test sets, respectively. We found however this
last result not to be robust to noise arising from non-ideal

housekeeping gene conditions which is why we focused
on the genes with best signal-to-noise ratios. To test our
classifier(s) further we validatedour results against 86
independent breast tumour samples, which became avail-
able after our initial analysis. We found that with the opti-
mal two-gene classifier (SIRT1, CREBBP) about 80% of
these independent breast tumour samples could be cor-
rectly classified. This classifier's prediction rate on the
training set was 76% (training set) and 74% (internaltest
set) respectively.

Even though the accuracy and reproducibility of microar-
ray experiments is questionable, particularly, when the
focus is on a small number of genes, we decided to test our
results further by studying the expression profiles of our
chromatin modifier genes in an external independent
microarray data set [44]. Out of the 12 histone modifier
genes studied using RT-PCR there were 10 that were pro-
filed in this microarray study (SUV39H2 and HDAC7A
were not present on the array platform used) across many
different cancer types including 34 breast, 13 renal, 23
colorectal and 50 ovary samples. We first applied the Wil-
coxon rank sum test to see whether the 10 genes profiled
in [44] could discriminate any of these four tissue types
from each other (6 pairwise comparisons). We found that
many of the genes were discriminatory, yet when com-
pared with our study the number of genes discriminating
any given pair of tissue types was significantly smaller (see
Additional file 5). Thus, for a given pair of tissue types the-
number of discriminatory genes varied from 2 to 4 (out of
a possible 10), whilst for our study this number varied
from 7 to 11 (out of a possible 12). Applying, on the
microarray data, the same classification algorithm and
internal cross validation as before, showed that the genes
were not able toconsistently classify samples according to
tissue type (error rates were over 50% when classifying
with all 10 genes, the six discriminatory genes (see Addi-

Table 2: Differential expression analysis of tumour-normal pairs using a Wilcoxon rank sum test at a 0.001 significance level.

Breast Tum-Nor Renal Tum-Nor Bladder Tum-Nor Colorectal Tum-Nor

SUV39H2 0 0 0 0
SUV39H1 0 1 0 100

SIRT1 0 1 0 100
PCAF 0 37 28 0
P300 0 0 0 0

HDAC7A 0 0 0 100
HDAC5 6 0 0 100
HDAC4 97 0 0 0
HDAC2 0 0 0 0
HDAC1 0 0 0 100
EZH2 81 100 0 0

CREBBP 100 0 0 0

Rows label target genes, columns label tissue types. Numbers in table represent a robustness measure of the differential expression between the 
tumour-normal pair: they equal the number of times (out of 100 bootstrapped data and expression estimate sets) that the differential expression 
was significant at the 0.001 level.
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tional file 5 ), or with our optimal 4-gene classifier
(SIRT1,CREBBP,HDAC5 and PCAF)). However, when we
considered classifying only two tissue types at a time, we
obtained much better classification rates. Thus, using
internal cross validation with a 20% test set partition and
using the discriminatory genes as classifier genes we
found in some cases excellent prediction rates. For exam-
ple, usingthe classifier (HDAC1, HDAC2, HDAC4, EZH2)
we obtained 94% prediction rates for discriminating
colorectal from renal tumour samples. We confirmed this
by unsupervised clustering which clearly separated color-
ectal from renal tumours (data not shown). In summary,
theseanalyses support the existence of tissue-specific pat-
terns of expression ofchromatin modifier genes.

Mutations of HDAC1, SUV39H1, and SUV39H2 in 
epithelial cancers are rare
We also screened HDAC1, HDAC2, SUV39H1, and
SUV39H2 for mutations in 65 cancer cell lines and 116
primary tumours. Themutations and sequence alterations
identified in these genes are summarizedin Tables 5 and 6.

HDAC1 was analysed by SSCP, and a silent polymor-
phism was identified in one breast tumour sample.

HDAC2 was analysed with both SSCP and DHPLC. A sin-
gle nucleotide deletion was found in a colorectal cancer
cell line (HCT15), causing a frameshift starting at amino
acid 543 of the protein and resulting in the addition of 16
amino acids to its C-terminal. A insertion of a CAG triplet
was identified in the 5'UTR at nucleotide 143 (position -
37 from ATG) in 18% of the cancer samples. This inser-
tion was shown to be germline in all samples for which
matched normal DNA was available for testing. This
5'UTR alteration was found using capillary electrophore-
sis in only 10% of 192 normal DNA controls (p < 0.01,
Fisher's exact test). No correlation was foundbetween the
CAG insertion and expression levels of HDAC2 (data not
shown). In addition four cancer samples with intronic
polymorphisms were also identified.

SUV39H1 was analysed by SSCP and Capillary Electro-
phoresis based Heteroduplex Analysis (CEHA). A non-
sense mutation 862C>T causing the disruption of the

protein's SET domain (Q288STOP), was found in one
ovariancancer cell line (UCI101). A silent polymorphism
and an intronic sequence variant were also identified.

SUV39H2 was screened by SSCP. An insertion of a single
T in the 5'UTR (nucleotide 52 of cDNA Accession number
NM_024670, nucleotide -14 from start codon) was found
in a primary breast tumour. This alteration wassomatic. A
missense sequence alteration, R74Q (442A>C), was iden-
tified in 4% of the cancer samples. This alteration was
proven to be germline in the 5 primary tumours where
normal tissue was available for testing, and represents a
probable polymorphism. Two silent polymorphisms were
also identified.

Discussion
The rationale to study the alterations of chromatin modi-
fier genes in cancer samples and their respective normal
tissues seemed obvious to us given the biology and the

Cluster analysis of expression matrix of 12 genes across pri-mary samples using the ensemble learning algorithmFigure 3
Cluster analysis of expression matrix of 12 genes across pri-
mary samples using the ensemble learning algorithm. Red 
denotes overexpression, green underexpression. See Figure 
2 for detailed expression values.
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Table 3: Distribution of tumour and normal samples into clusters based on the normalized expression ratio of 12 chromatin 
remodelling genes.

BrTum BrNor RenT RenN BITum BINor CrTum CrNor Gilo Ovarian

Chapter1 92% 100% 17%
Chapter2 4% 6% 23%
Chapter3 4% 6% 100% 73%
Chapter4 100% 100% 88% 83%
Chapter5 100% 100% 2%
Chapter6 2%
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previous indications for their involvement in tumorigen-
esis. The mutational analysis reported here, and previous
work by our group and others, shows that inactivating
mutations of histone modifiers are rare, although EP300
and CREBBP are targets of chromosomal translocations in
human leukaemias and EP300 and CREBBP are an
uncommon target of mutations in epithelial cancers [13-
15,45-47]. A finding that needs confirmation in a larger
association study isthe observation that the CAG insertion
identified in the 5'UTR of HDAC2 could be associated
with cancer predisposition.

The expression profile of selected chromatin remodelling
genes from the three classes of histone modifiers was ana-
lysed in a large sample panel. This represents the most
comprehensive analysis of the expression alterations of
these important genes in human cancers and their corre-
sponding normal tissues. The analysis was done rigor-
ously with normalization of expression levels in
comparison with several stable housekeeping genes and
in relation to a universal reference RNA. By fittinga linear
regression model to the data we could quantify the resid-
ual error due to unstable housekeeping gene expression
and determine that the expression levels of the 12 chro-
matin modifier genes varied significantly across samples.
The main findings of the analysis were: 1- that there are
tissue-specific histone-modifier gene expression signa-
tures (some constituted by as few as 3 to 5 genes); 2- that
for certain tissue types there are significant expression
changes between normal and malignant cells;and 3- that
expression patterns in cell lines are frequently significant-
lydifferent from the corresponding primary tumours.

The existence of characteristic histone modifier gene
expression signaturesin different tissues is a remarkable
finding particularly when taken in thecontext of the recent
reports of global and characteristic changes in histone
modification in cancer [26,27]. Ensemble learning and
hierarchical clustering algorithms applied on the normal-
ized expression ratios of the 12 chromatin remodelling
genes successfully separated the tumour samples accord-
ing to their tissue types (Figure 3). We verified that the
clusters obtained using the ensemble learning algorithm
are robust to both the algorithm initialisation point and
the error due to unstable housekeeping gene expression.
This was done rigorously by bootstrapping residuals in
thelinear model [37,33] and building consensus groups
over a large number (~1000) of clustering runs. As few as
five genes (SIRT1, CREBBP, PCAF, HDAC7A, HDAC5)
were informative enough to group the samples success-
fully according to tissue type (Table 4). In an independent
microarray data set we found that these chromatin modi-
fier genes were also able to discriminate samples accord-
ing to tissue type, although the degree of discrimination
was much smaller. These findings suggest a mechanistic

link between the gene expression changes reported here
and global tumour-specific histone modifications
reported by others.

The expression levels of some of the genes could also be
used to distinguish between tumour and the respective
normal tissue. HDAC1, HDAC5, HDAC7A, SIRT1, and
SUV39H1 expression profiles were distinctive for colorec-
tal cancers and normal colorectal mucosa. EZH2 expres-
sion was found to be informative in distinguishing renal
tumour and normal renal tissue pairs, and also breast
tumours from breast normal tissues. Breast tumours and
normals were also distinguished by the expression profile
of HDAC4 and CREBBP. Using ICA we alsofound a pat-
tern of relative expression over all 12 genes (ML-IC7, see
Additional file 4) that is able to discriminate tumours
from normals acrossfour different tissue types (Breast,
Colorectal, Renal and Bladder). These findings raise the
prospect that there will be a therapeutic index when using
drugs that target these enzymes in the clinic.

Comparison of normalized expression ratios of tumours
with their relevant cancer cell lines revealed significant
differences highlighting some of theproblems of using cell
lines as models of cancer (Figure 2). Breast cell lines
showed downregulation of HDAC1, HDAC2, HDAC5,
EZH2, EP300, and PCAF compared to breast tumours.
CREBBP and SUV39H1 upregulation was observed in
breast cell lines compared tobreast tumours. Colorectal
cell lines showed SIRT1, EZH2, PCAF underexpression
and SUV39H1 overexpression compared to colorectal
tumours. PCAF downregulation was seen in ovarian cell
lines compared to ovarian tumours. This raises problem-
atic questions about using cell lines to model primary
tumours, for example when doing HDAC inhibitor com-
pound screening.

Chromatin remodelling genes and their involvement in
transcriptional regulation has been the focus of previous
studies although none as systematic as what we report
here. Overexpression of HDAC1 has been seen in gastric
and breast cancers [17,18]. In our study we did not
observe significant expression changes of HDAC1 when
comparing tumour and normal tissue samples, except for
colorectal cancers. EZH2 overexpression was previously
seen in prostate cancer [23]. Subsequently, it was shown
that EZH2 overexpression was associated with the aggres-
sivenessof breast cancer [24]. Our results confirm that
overexpression of EZH2 is found in breast tumours com-
pared to the normal breast samples and shows for the first
time EZH2 overexpression in renal tumours. Overexpres-
sion of HDAC2 was recently reported in colon cancer
[48]. In our series HDAC2 overexpression was observed in
50% of colorectal tumours compared to their normal
pairs.
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Conclusion
Our findings have implications for tumour biology, dif-
ferences in histone modifications between tumour types
and the application of histone-modification-altering
drugs. Ongoing work aims at correlating histone modifier
gene expression with global histone modification patterns
and obtaining a more systematic analysis of all known
histone modifiers enzymes using custom gene arrays.

Methods
Primary tumours and normal samples
Mutation analysis was performed on 59 primary breast
tumours, 37 primary ovarian tumours, and 20 colorectal
tumours. QRT-PCR analysis was done on RNA samples
from 20 colorectal tumour/normal pairs, 12 renal
tumour/normal pair, 27 breast tumours, 5 normal breast
tissues, 17 bladder tumours, 5 normal bladder tissue, 45
ovarian tumours, and 15 glioblastomas. A second valida-
tion series of 86 primary breast cancers was subsequently
profiled. Primary tumours were collected at Derby City
General Hospital, Addenbrooke's Hospital, Essex County
Hospital, and Freeman Hospital, Newcastle Upon Tyne.
In all cases the collection of material was done with Local
Research Ethics Committee approval. All tumours were
'flash' frozen immediately following surgery.

Cell lines
Mutation analysis was performed on 65 cancer cell lines
(30 ovarian, 18 breast, 4 lung, 8 pancreatic and 5 colorec-
tal). QRT-PCR was performed on 47cancer cell lines (21
ovarian, 19 breast, 7 colorectal). Cell lines were obtained
from ATCC and ECACC or as a gift from collaborating lab-
oratories (see Additional file 6).

Normal control samples
Normal control DNA samples (isolated from lymphoblas-
toid cell lines generated from apparently healthy ran-
domly selected individuals) were obtained from ECACC
(Human Random Control DNA Panel, HRC-1 and HRC-
2).

DNA isolation
Frozen primary tumours were serially sectioned onto
slides. Tumour tissue was microdissected away from nor-
mal tissue and DNA extracted by SDS-proteinase K diges-
tion. Germ-line DNA was prepared from either a
matching blood sample or from normal tissue microdis-
sected away from tumourtissue. Cell line DNA was
extracted by either proteinase K or DNAzol™ (Gibco BRL).

DNA PCR
HDAC1 was amplified in 15 fragments, HDAC2 was
amplified in 13 fragments, SUV39H1 was amplified in 8
fragments, and SUV39H2 was amplified in 7 fragments of
approximately 200–400 bp covering the exons and exon-

intron boundaries (Primer sequences is providedin Addi-
tional file 7). Amplification reactions (30 µl) contained
20 mM (NH4)2SO4, 75 mM TrisHCl, pH 9.0 at 25°C,
0.1% (w/v) Tween,2.5–3 mM MgCl2, 200 mM dNTP,
10pmoles of each primer and 2.5 U of Red Hot DNA
polymerase (Advanced Biotechnologies). The amplifica-
tions were doneusing a DNA Engine Tetrad, MJ Research
PTC-225 Peltier Thermal Cycler.

Single Strand Conformation Polymorphism/Heteroduplex 
Analysis (SSCP/HA)
HDAC1 and SUV39H2 were analysed by SSCP/HA. For-
mamide loading buffer was added to PCR products. The
mix was denatured at 95°C for 10 minutes and kept on ice
until loading onto 0.8XMDE (Mutation Detection
Enhancement) gel (Flowgen). Gels were run overnight at
120V and 4°C.

Denaturing High Performance Liquid Chromatography 
(DHPLC)
HDAC2 was analysed by DHPLC. PCR products were
denatured at 95°C for 5 minutes and cooled down -1°C/
cycle to 30°C. PCR products of 8 samples were pooled
and injected in the Transgenomics WAVE DHPLC using 3
different temperatures. Melting temperatures were calcu-
lated with the DNA Melt program [49].

Capillary Electrophoresis based Heteroduplex Analysis 
(CEHA)
SUV39H1 was analysed by CEHA. PCRs were carried out
using 10 pmol of 5'FAM labelled M13 forward primer 3
pmol of sequence specific forward primer with an M13
sequence tail and 10 pmol of sequence specific reverse
primer. PCR products of samples were mixed with control
PCR products denatured 10 min. at 95°C and cooled
down -1°C/cycle to 30°C.PCR products were diluted 1/10
in water mixed with 0.3 µl of GS500 size standard and run
on ABI3100 on GeneScan Polymer (5%GSP (ABI), 10%
Glycerol and 1XTBE) at 25°C.

Capillary Electrophoresis
The presence of HDAC2 CAG repeat insertion was investi-
gated in control DNA samples by capillary electrophore-
sis. A new primer pair was designed for an amplicon of
112 bp comprising the CAG repeat. PCR products were
run on ABI3100 genetic analyser on ABI POP-6 polymer
(Applied Biosystems, Foster, CA, USA). Size analysis was
done on GeneScan Analysis 3.7 software.

DNA sequencing
Purified PCR products were sequenced using ABI PrismR

BigDye terminators and an ABI3100 genetic analyser
(Applied Biosystems, Foster, CA, USA). All samples with a
mutation were re-amplified and re-sequenced.
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RNA isolation
Total RNA was isolated from primary tumours and cancer
cell lines using Trizol reagent (Gibco BRL).

cDNA synthesis and real time PCR
cDNAs were synthesized by reverse transcription of 2 µg
total RNA usingrandom hexamers. Real Time PCR was
carried out using SYBR Green PCR Master Mix (Applied
Biosystems) on an ABI 7900 Sequence Detection System
(Applied Biosystems). The specificity of the PCR products
was confirmed by melting curve analysis. The primer
sequences for the 12 chromatin modifier genes (HDAC1,
HDAC2, HDAC4, HDAC5, HDAC7A, Sirt1, SUV39H1,
SUV39H2, EZH2, EP300, CBP, PCAF) and the 8 house-
keeping genes (ACTB, B2M, GAPDH, HMBS, HPRT, RPL3,
SDH, UBC) is provided in Additional file 8. Standard
curves were used to determine the amplification efficien-
cies of the 20 genes across 4 test samples as described pre-
viously [28]. The normalized expression values of genes in
individual samples were determined relative to a com-
mon comparator RNA (using formula described in 28)
isolated from an immortalized B-lymphocyte cell line.
The lymphoblastoid cell line was selected to generate a
universal comparator RNA because it represents an inex-
haustible source of RNA, and also because we verified that
expression of both housekeeping genes and target genes
were very stable and reproducible, with low intra and inter
assay variability (in a set of 25 independent amplifica-
tions for all 12 target genes and 8 housekeeping genes).

Expression ratios

Following Pfaffl [28] the ratio of expression of target gene
t in sample s relative to our control sample c is given by

, where r labels the reference gene used

for normalisation. This formula corrects for variable
amplification efficiencies across genes as well as correcting
for unwanted sample-to-sample variation (such as RNA
quality), but is only an approximation and makes two
important assumptions:(i) that the reference gene has the
same expression in both samples and (ii) that the ampli-
fication efficiency is also the same between the two sam-
ples. To gauge the error incurred by assumption (ii) we
measured the amplification efficiency of all genes in three
cell-lines in addition to our universal comparator, thus
yielding four efficiency measurements labelled in what
follows as e (see Additional file 9).

Housekeeping gene selection

To evaluate whether a candidate housekeeping gene is
suitable for normalisation we must compare its variability
in expression with that of the target genes. For this pur-

pose we defined, for each reference target genepair (r,t),
an F-statistic [50] that can be interpreted as a signal-to-

noise ratio . The statistic evaluates whether the house-

keeping gene r is stably expressed relative to the variability
of the target gene t, and is defined by

where nr is the number of candidate housekeeping genes,
Vtr, denotes the sample variance of the log-ratios across
samples for target gene t as measured by reference gene r'
and Vrr' denotes the sample variance ofthe log-ratios
across samples for reference gene r as measured by refer-
ence gene r'. To motivate the above formula it is impor-
tant to realise that the variability of any gene (be it a target
or reference gene)can only be evaluated by comparison
with another "housekeeping" gene. Thus, if two reference
genes are true housekeepers than their Vrr' term will be
small. Thus, if the above statistic is larger than one then
the target gene shows more variability than the reference
gene. Confidence intervals for the statistic were found by
performing a large number of bootstraps, where in each
bootstrap reference genes were sampled with replacement
in the denominator and numerator separately [50], and
recomputing the statistic for each bootstrap. Over 5000
bootstraps were performed to obtain 95% confidence
intervals (CI) for each target and reference gene pair. For a
given target gene, those reference genes for which their
95% CI did not include the threshold value 1 were
declared as stable relative to that target gene. Reference
genes were then ranked according to the number of target
genes relative to which they were stably expressed. Finally,
the number of reference genes used for downstream anal-
ysis was determined by requiring a certain minimum
number of target genes relative to which the reference
genes were all stably expressed. To ensure reliable infer-
ences for all target genes we developed a linear model
based normalisation (see Additional file 9).

Normalization
Out of the eight candidate housekeeping genes we
selected a subset that were stably expressed relative to the
variability exhibited by the target genes. The subset was
chosen using the randomised variance test explained
above. We then normalised the PCR data relative to this
stable subset of housekeeping genes by fitting a linear
regression model to the log base two ratio values

log2Rtsre,i= µ + Gt+Vs+ Rr +Ee + (VG')st + (VR)sr + (GR)tr +
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where  is the expression ratio [28]

and where t, s, r, i label the target gene, sample, reference
gene and replicate (i = 1,...,9), respectively. (We combined
the triplicate Ct values to generate a set of nine replicates
using a bootstrapping approach.). In the above, Ete and Ere

denote the efficiencies of target gene t and reference gene
r for sample e, as explained previously. The terms in the
linear model represent the singleton and interaction
effects as commonly defined in linear regression analysis.

Thus, µ is the overall mean of the log-ratios, Gt is the

expression of target gene t averaged over all other factors
and VG'st is the specific sample-gene interaction. All other

terms are defined similarly. The only random term inthis

model is ε and represents a Gaussian noise term. The
parameters were estimated using maximum likelihood
subject to the constraints

and similarly for all the other interaction terms. The esti-
mation was carried out in a robust fashion by assigning
zero weights to outliers. The new normalised expression
values of target genes across samples relative tothe control
are given by the matrix VGst = µ + Vs + Gt+ VG'st. This linear
model approach allows rigorous quantification of the
error incurred in the normalisation due to unstable
housekeeping gene expression and variable sample effi-
ciencies through the simultaneous estimation of VR and
VE.

To test the robustness of our inferences to noise arising
from non-ideal housekeeping gene conditions we fitted
the alternative model with VR = 0. We then applied the
bootstrapping residual method of [31,32]to obtain a new
estimated matrix VG, that represents a perturbation
around the original VG. A standard error estimate for the
noisearising due to non-constant housekeeping gene

expression was obtained by the sample variance of the
residuals in the model with VR = 0 (see Additional file 9).
Software written in the R-language [51] that implements
the normalisation as described here is available on
request.

Clustering
Clustering was done in an unsupervised fashion using an
ensemble learning gaussian mixture model [reviewed in
[37]]. This is a variational bayesian procedure that allows
one to objectively compare mixture models with different
number of clusters. This is a main advantage over other
unsupervised clustering procedures such as hierarchical
clustering, k-meansor SOM where the number of clusters
that best describe the data cannot be reliably inferred.
Inference is carried out using an optimal separable
approximation to the true posterior density as explained
in [37].

For our model with parameters Θ the true posterior is the
product of the likelihood function

and the priors for µc, Ωc, πc. We used a Gaussian, Gamma
and Dirichlet prior distributions for these, respectively. In
the above, N denotes thenumber of samples to be clus-
tered, K the maximum number of components to try to
infer, c labels the component, D = {xn:n = 1....N} is the
data where each xn∈ Rd (d equals the dimension of the
gene space over which clustering is done), {µc, Ωc, πc} are
the parameters to be inferred, {µc, Ωc} denote the mean
vector and inverse covariance matrix of the Gaussian com-
ponent c, and πc denotes the weight of component c. One
hundred optimisation runs were performed with different
ensemble initialisations and the one maximising the evi-
dence bound [37] was selected. The number of clusters
andcluster membership probabilities of samples were
then determined using the estimated component weights
and parameters of the Gaussian components for this
selected run. Cluster memberships of samples were then
obtained in a hard/soft fashion using a maximum proba-
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Table 4: Mean and standard deviation of the error on test and training sets obtained in internal cross-validation using a 20% test set. 
Error rates shown only for the optimal classifiers for each possible number of genes in the classifier.

Classifier Mean error ± std (Train. Set) Mean error ± (Test Set)

SIRT1 & REBBP 0.24 ± 0.02 0.26 ± 0.05
SIRT1, CREBBP & HDAC7A 0.17 ± 0.02 0.20 ± 0.05
SIRT1, CREBBP, HDAC7A & HDAC5 0.15 ± 0.02 0.16 ± 0.05
SIRT1, CREBBP, HDAC7A, HDAC5 & PCAF 0.13 ± 0.02 0.14 ± 0.05
SIRT1, CREBBP, HDAC7A, HDAC5, PCAF & EZH2 0.13 ± 0.02 0.15 ± 0.05
SIRT1, CREBBP, HDAC7A, HDAC5, PCAF, EZH2 & 
SUV39H1

0.12 ± 0.02 0.15 ± 0.05
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bility criterion. The robustness of the procedure was tested
by performing ten separate 100 optimisation runs and
comparing the best runs for each batch. R-code,
vabayelMix, which implements the variational bayesian
clustering algorithm is availablefrom the R-website
[52]For the hierarchical clustering we used the R-function
hclust using an euclidean distance metric.

Independent component analysis

ICA [reviewed in [33]] was used here merely as an unsu-
pervised projection pursuit algorithm to find one dimen-
sional projections of the gene expression matrix VG that
are multi-modal in expression space. These multi-modal
projections are interesting since they may differentiate tis-
suetypes. Since a multi-modal projection is necessarily
non-gaussian, a set ofsuch interesting projections or
modes can be found by requiring these to bestatistically
independent across sample space. In detail, the model

used is , where the summation is over

the independent modes l, and where S and A denote the
"source" and "mixing" matrices respectively. Associated
with each mode we have two variational patterns, one
across genes (rows of A) and another across samples (col-
umns of S). The columns of S are inferred using the crite-

rion of statistical independence [33]. The estimation and
uniqueness of the independent modes relies on the distri-
bution of expression values of samples along these com-
ponents being non-gaussian [33]. This requires a
dimensional reduction to a maximally varying gene sub-
space to remove any gaussian noise components. A PCA
(principal component analysis) was done to project the
data onto such a maximally varying subspace. On our data
set we found that a projection onto a seven-dimensional
subspace was necessary to ensure the uniqueness of the
modes. Inference was then carried out within a maximum
likelihood framework (R-code, mlica, is available from
[52]) usingan iterative procedure similar to the one sug-
gested by Hyvaerinnen [33]. Robustness of the optimisa-
tion procedure to the initialisation point was ensured by
performing 100 runs and selecting the run that maximised
the log-likelihood. We further checked our estimated
modes against an alternative implementation of ICA [fas-
tICA 53] that uses negative entropy as a non-gaussianity
measure to estimate the mixing matrix. When reduced to
the seven dimensional subspace determined by PCA we
found complete consistency between the modes obtained
via both methods. Consistent modes were sorted accord-
ing to their relative data power [54].

VG S Ast sl lt
l
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Table 6: Summary of other sequence alterations identified in SUV39H1, SUV39H2, and HDAC2

Gene Sample Frequency Sequence Alteration Codon

SUV39H1 4 Ov. Tum. 2% IVS2-69G>C
1 Ov. Tum. 0.5% 525C>T F260F

SUV39H2 1 Br. Tum. 0.5% 55insT(5'UTR)
4CR, 1 Ov, 1 Br.Tumour, 1 

Ov. Cell Line
(4%) 442A>C R74Q

14 Ca.CL., 7 CR, 12Br, 12 
Ov. Tum.

20% 1008C>T Y336Y

3 Br., 1 Ov. Tum. 2%. 1083C>G L361L
HDAC1 1 Br. Tum 0.5% 1212G>A A383A
HDAC2 10 Ca. CL, 14 Br, 7 Ov, 3 

CR Tum.
18% 143InsCAG (5'UTR)

19 Ca. CL., 4 CR, 29 Br, 7 
Ov. Tum.

32% IVS4+30T>A

2 Ov., 1 Br. Tum. 1.6%. IVS4-9C>A
15 Ca. CL., 5 CR, 4 Br, 1 

Ov. Tum.
14% IVS11-13A>G

1 Ov. Ca. CL., Lymphocyte 1.1% IVS13-26A>T

Br. Breast, Ov. Ovarian, CR. Colorectal

Table 5: Summary of mutations identified in SUV39H1, SUV39H2, and HDAC2.

Gene Sample Mutation Codon

SUV39H1 UCI101 862C>T Q288STOP
HDAC2 HCT15 1637DelA FS541

FS: Frameshift
Page 12 of 15
(page number not for citation purposes)



BMC Genomics 2006, 7:90 http://www.biomedcentral.com/1471-2164/7/90
Classification and validation analysis
Our classification problem involved a relatively large
number of categories(tissue types) and a small number of
predictor variables (genes). Such a setting is well suited for
a parametric mixture model approach [42,43,55]. Follow-
ing [43] we performed the classification analysis using a
Gaussian mixture model adapting the variational Baye-
sian algorithm for learning fromthe training set. We used
two methods of internal cross-validation. In the leave-
one-out method the test set was made up of a randomly
selected samplefrom each tissue category. In the second
method we randomly selected 20% of samples from each
tissue category and placed them in the test set. Given a
partition of the samples into a training and test set we
applied the variational Bayesian Gaussian mixture model
to learn from the training set the cluster means and vari-
ances for each tissue category. The learning was done for
each tissue separately by setting K=1 in the model fitting.
Test samples were then assigned to categories using the
linear discriminant classifier [56]

D(c |xs) = - (xs - µc)TΩc(xs - µc) + log(detΩc) + 2log wc

where c labels the tissue type, xs is the expression vector of
test sample s, µc is the mean expression vector for category
c, Ωc is the inverse covariance matrix (positive definite) for
category c and wc is the prior weight for category c. We
recorded the error rates on the training and test sets for
1000 different randomly selected partitions and for each
of the two partitioning methods. The average and stand-
ard deviation of the test error rate over these 1000 random
partitions were then computed. Finally,these statistics
were computed for all possible combinations of genes
allowing us to find the optimal classifier(s).
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Table S1; VG matrix for cell lines.
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Additional File 2
Table S2; VG matrix for primary tumours.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-90-S2.xls]

Additional File 3
Hierarchical clustering; Hierarchical clustering of expression matrix 
across primary samples using all 12 genes. Red denotes overexpression, 
green underexpression. See Figure 2 for detailed expression values.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-90-S3.eps]

Additional File 4
Independent component analysis (ICA); a. The projected sample expres-
sion data along directions identified through ICA. b. The associated gene 
weight vectors specifying the modes (directions) in gene space. The y-axis 
in both panels measures the relative activation level of the mode across 
samples and genes, respectively. The scales within each panel can be set 
arbitrarily since it is only the scale and sign of the product SA that indi-
cates for each mode whether a gene is underexpressed oroverexpressed. For 
example, for projection 2 (ML-IC2) PCAF is overexpressedin renals rela-
tive to colorectal tumours. The scales in panel A were set sothat the col-
umns of S have unit variance. c. Ensemble learning clustering on primary 
samples based on expression ratio of 4 chromatin remodelling genes. Red 
denotes overexpression, green underexpression. See Figure 2 for detailed 
expression values. Sample colour codes: as in Figure 2.
Click here for file
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Additional File 5
Table S3; For each pairwise comparison of cancer tissue types (breast, 
renal, colorectal and ovary) profiled in our study ♦ and in an independent 
microarray study ♠ we indicate the genes thatdiscriminated the two tissue 
types according to the Wilcoxon rank sum test (p < 0.01). NP means not 
profiled in microarray study. Last row gives the error rates obtained on test 
set using 20% internal cross validation on the microarray data and the 
genes marked ♠ in the classifier.
Click here for file
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Table S4; List of cell lines.
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