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Abstract

Background: Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from
gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating
prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be
incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is
desirable.

Results: We introduce a new method to incorporate the quantitative information from multiple sources of prior
knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene
pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene
Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge
is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation
the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to
generate new candidate networks. We evaluated the new algorithm using both simulated and real gene
expression data including that from a yeast cell cycle and a mouse pancreas development/growth study.
Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations
recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling
is not always better than a random selection, demonstrating the necessity in network modeling to supplement the
gene expression data with additional information.

Conclusion: our new development provides a statistical means to utilize the quantitative information in prior
biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.

Background
Reverse engineering of genetic networks will greatly facil-
itate the dissection of cellular functions at the molecular
level [1-3]. The time course gene expression study offers
an ideal data source for transcription regulatory network
modeling. However, in a typical microarray experiment
usually up to tens of thousands of genes are measured in
only several dozens or less samples, data from such
experiments alone is significantly underpowered, leading
to high rate of false positive predictions [4]. Network

reconstruction from microarray data is further limited by
low data quality, noise and measurement errors [5].
Incorporating other types of data and existing knowl-

edge of gene relationships into the network modeling pro-
cess is a practical approach to overcome some of these
problems. It has been proven that data integration and
useful bias with relevant knowledge can improve the net-
work prediction accuracy from gene expression data [6,7].
Among the various approaches of network modeling,
Bayesian Networks (BN) have shown great promise and
are receiving increasing attention [8]. BN is a graphic
probabilistic model that describes multiple interacting
quantities by a directed acyclic graph (DAG). The nodes
in the network represent random variables (expression
levels), and edges represent conditional dependencies
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between nodes [9]. Learning a BN structure is to find a
DAG that best matches the dataset, namely maximizing
the posterior probability of DAG given data D: P (DAG|
D). The sound probabilistic schematics allow BN to deal
with the inherent stochasticity in gene expressions and the
noise brought in by the microarray technology. Further-
more, BN is capable of integrating prior knowledge into
the system in a natural way [9,10].
A number of studies demonstrated that adding prior

knowledge to BN improved the performance [4,11-14].
Many sources of data and information are useful to sup-
plement the gene expression data, and they can be incor-
porated at different steps of BN simulation, from prior
structure definition to structure simulation and evaluation.
Known protein-DNA interaction or other clues of the

relationships between transcription factors and their target
genes are useful to transcription regulatory network infer-
ence. Hartemink et al. included data from the chromatin
immunoprecipitation (ChIP) assay [15], and Tamada et al
incorporated promoter sequence motif information [16],
to define the prior probability of network structures. Infor-
mation of other types of gene pair relationship has also
been explored. Steele et al. developed a gene-pair associa-
tion score from the correlation of their concept profiles
derived from literature, and utilized that to define the
prior structure probabilities [12]. Larsen et al defined a
Likelihood of Interaction (LOI) score, which measures the
statistical significance of two genes interacting with each
other according to their shared Gene Ontology (GO)
information. They then restricted the candidate network
edges (interactions) to those with significant p -values of
LOI during the BN structure learning iterations [17,18].
By doing so, the quantitative information of the likelihood
is not fully utilized in the network modeling. Djebbari and
Quackenbush utilized literature, high-throughput protein-
protein interaction (PPI) data, or the combination of both
to define the seed (initial) network structure. They
observed an improved ability of the BN analysis to learn
gene interaction networks from the expression data [19].
Imoto et al formulated an novel approach to incorporate

prior biological knowledge within the BN framework by
adopting the energy concepts from statistical physics
[20,21], which was later further extended by Husmeier and
Werhli [22,23]. In this approach an energy function was
first defined to measure the agreement between a candi-
date network and the prior biological knowledge, and
prior distribution of network structure is hence calculated
using the Gibbs distribution in a canonical ensemble.
Using this approach, the two groups examined several
types of prior knowledge, including PPI, protein-DNA
interaction, binding site information, literature, and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
[22-24]. The algorithms were validated using yeast gene
expression data [20,21], and synthetic data [22].

Existing studies often utilize prior knowledge to con-
struct the prior distribution of network, or initial network
structure. It has been demonstrated that the sampling
method during simulation also affects the performance of
BN structure learning [25]. Though prior knowledge has
been utilized to bias the sampling step, it is normally done
through restricting the search space to sub regions, for
instance, only simulate candidate structures whose signifi-
cance is above a certain threshold according to prior
knowledge [17,18].
In searching for the network structure (DAG) that maxi-

mize P (DAG|D), the Markov Chain Monte Carlo
(MCMC) approach is regarded better than greedy search-
ing algorithms, especially for the microarray data with
small sample size where there is often no single structure
that is prominently better than others [9]. In this study we
propose a new approach to incorporate prior knowledge
in a quantitative way to bias the MCMC simulation of
candidate structure. It utilizes information of functional
linkage between gene pairs, assuming that functionally
linked genes are likely to interact with each other. It is
known that interacting proteins or genes often share simi-
lar function, and participate in the same biological path-
ways and processes [26]. Interaction has been utilized to
infer functional linkage and annotate gene functions [27].
Increasing evidence suggests that the reverse is also fre-
quently true [28]. In our algorithm a probability score is
first calculated that measures how likely two genes are
functionally linked based on prior knowledge; A candidate
edge reservoir is then constructed where the number of
copies of each edge is proportional to this probability
score; The reservoir is in turn used for sampling candidate
network structure during the MCMC simulation. This
way the quantitative information of the potential gene pair
link predicted by prior knowledge is retained.
We will consider two type of prior knowledge: co-citation

in PubMed literature and similarity in ontological annota-
tion according GO http://www.geneontology.org/. We will
demonstrate they both contain information of functional
linkage. The performance of the new algorithm is evaluated
using a synthetic data set as well as data from two real
microarray experiments: the yeast cell cycle study, and the
mouse pancreas development/growth study. We will
demonstrate that including the prior knowledge signifi-
cantly improves the performance of BN modeling of gene
expression data.

Results
Algorithm
BN is a graphical model to capture complex relationships
among a set of random variables {X1, X2,...,Xn} encoding
the Markov assumption, each node representing a vari-
able. In the context of gene network modeling, each node
represents a gene, while gene interactions are represented
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by directed edges between nodes. Each variable Xi in the
DAG is conditionally independent of its non-descendants
given its set of parents. Mathematically the joint distribu-
tion of the DAG can be decomposed into a product
form as:

P(DAG) = P(X1, X2, . . . , Xn) =
n∏

i=1

P(Xi/�i) (1)

where Πi denotes the parent set of the variable Xi.
This is referred as the chain rule for BNs [9,10]. Learn-
ing a BN structure is to find a DAG that best matches
the dataset, namely maximizing the posterior probability
of DAG given data P (DAG|D). Here we adopt the sam-
pling-based approach to Bayesian inference, and sample
network structures from a candidate edge reservoir with
the MCMC network learning method. In the reservoir
the edge representation is proportional to the likelihood
of the two genes being functionally linked according to
prior knowledge. This way, the edges between the
strongly-related gene pairs have higher chance to be
proposed as part of the candidate network. The overall
design is given in Figure 1. The major steps included:

1. Determine the probability of functional link plink
between each gene pairs

1.1 Calculate GO schematic similarity
1.2 Calculate p value of PubMed co-citation.
1.3 Integrate GO and PubMed information using
the Naïve BN to determine plink.

2. Construct candidate network edge reservoir in
which copy number of each edge is proportional to
the plink of the corresponding gene pair.

3. Learn network structure using the MCMC algo-
rithm through sampling the candidate network edge
reservoir.

At each step of the iteration, the proposed network is
retained with an acceptance probability that is deter-
mined by the relative posterior of the proposed versus
current network, penalized by the network complexity
[29,30]. In calculating the posterior we use the BDe
(Bayesian Dirichlet equivalence) scoring metric [10,31].
The prior distribution is assumed to be uniform.
To evaluate the performance of our BN algorithm, and

the benefit of adding prior knowledge, we compare it to
two alternative approaches: (1) Plain BN. In each itera-
tion, a new network is proposed by randomly changing
one edge in the current network. (2) The method devel-
oped by Husmeier and Werhli [22,23].

GO schematic similarity and significance of PubMed co-
citation
GO annotation and gene citation database (PubMed)
were downloaded from ftp://ftp.ncbi.nlm.nih.gov/gene/
DATA. Schematic similarity in GO taxonomy was first
calculated for each gene pair using the approach pro-
posed by Cao et al [32], which calculates the shared
information content of the GO terms. The value of this
measure ranges between [0 1], with 0 being no similarity,
and 1 being maximum similarity. The GO similarity
between each gene pair is defined to be the maximum
schematic similarity of all the GO terms they share.
For a given pair of genes, the total number of PubMed

abstracts in which each gene appears (n and m, respec-
tively), and in which both appear (k) were determined.

Figure 1 The framework of our BN modeling to incorporate the quantitative information in prior knowledge.
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The probability of co-citation frequency observed by
random chance is calculated by

pPubMed(# of co - citation ≥ k|n, m, N) = 1 −
k−1∑
i=0

p(i|n, m, N) (2)

where p(i|n, m, N) =
n!(N − n)!m!(N − m)!

(n − i)!i!(m − i)!(N − n − m + i)!N!
,

and N is the total number of abstracts in PubMed [1,2].

Construction of the candidate network edge reservoir
We used the Naïve Bayesian network to integrate the
GO and co-citation information, and a simple Bayesian
naïve classifier to predict the functional linkage prob-
ability plink for all gene pairs. Note that the prior knowl-
edge of functional linkage is undirected, i.e. plink (i, j) =
plink (j, i). An edge sampling reservoir was constructed,
in which the number of replicates for the edge between
gene i and j N (Edgei,j) is in proportion to their plink :

N(Edgei,j) = Ceil(10 × plink(i, j)) (3)

where Ceil(x) is the smallest integer no less than x.
In this definition, any gene pair will be represented
at least once and at most 10 times. The edges of
gene pairs with higher p l ink will appear more fre-
quently in the edge reservoir, and hence enjoy a
higher chance to be selected during the network
structure learning.

Implementation
Our BN simulation algorithm is implemented in Matlab
utilizing Kevin Murphy’s BNT package [33]bnt.google-
code.com, and is summarized in Table 1. Note that
steps 1 and 3.1 contain unique features that separate
our approach from others. The source code is available
upon request. The networks were visualized with Cytos-
cape [34].

Table 1 Implemention of the new BN structure learning algorithm

Input:

n: number of nodes in the network.

D: discretized expression data matrix.

BurnIn: number of steps to take before drawing sample networks for evaluation. Default value: 50 times the size of the sampling reservoir.

n_iteration: number of iterations. Default value: 80 times the size of the sampling reservoir.

Δ_samples: interval of sample networks being collected from the chain after burn-in. Default

value: 1000.

maxFanIn: maximum number of parents of a node.

Output:

A set of DAGs after reaching the max iteration step.

An average DAG in the form of a matrix.

Steps

1. Create a sampling edge reservoir based on plink.

2. Set all elements of the adjacency matrix for the initial DAG to 0.

3. for loop_index = 1: n_iteration do

(1) randomly select a element edge(i,j) from the edge sampling reservoir, corresponding to gene pair (i,j).

(2) if edge(i,j) exists in the current DAG, delete the edge; else if edge(j,i) exists in the current DAG, reverse edge(j,i) to edge(j,i); else add
edge(i,j). We name these operations as “delete”, “reverse” and “add”, respectively.

(3) check whether the newly proposed DAG remains acyclic and satisfy the maxFanIn rules to nodes (i,j). If not, keep the current DAG and
give up proposed DAG, go to (1).

(4) calculate log value of the marginal likelihood (LL)* of the expression data D of node j and its parents given the current DAG (LL_old) or
the proposed DAG (LL_new) and define bf1 = exp(LL_new - LL_old).

(5) if the operation is “delete” or “add”, bf2 = 1; if the operation is “reverse”, calculate bf2 for node i in same way as for node j in (4).

(6) calculate the prior probability* of current DAG (prior_old) and propose DAG (prior_new); calculate the Metropolis-Hastings ratio (RHM) of
the two DAGs; generate a random number u between 0 to 1, if bf1*bf2*prior_new/prior_old<u*RHM, keep the current DAG and give up
proposed DAG, go to (1).

(7) when loop_index>BurnIn and (loop_index-BurnIn) is exactly divisible by Δ_samples, record the proposed DAG and its posterior
probability.

4. End of loop, calculate the average DAG in the form of a matrix, where the elements are given by the averaged edges of all recorded DAGs
weighted by their posterior probabilities.

*Details of the definition of marginal likelihood, and how to calculate LL, prior probability of DAG, can be found in [10,31].
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Validation
Utility of GO similarity and PubMed co-citation in
discovering functional linkage between gene pairs
Lee et al developed an approach to evaluate if gene-pair
functional relationships can be predicted by a certain
type of high-throughput genomic data (gene expression,
PPI, ChIP-chip, etc) [35,36]. Assuming that p(L|D) and
(~ L|D) denote the probabilities of gene pairs to share or
not share functional annotation given that they are linked
by data D (for instance, co-expressed, sharing PPI, pro-
tein of one gene binds to the promoter of the other, etc),
and p(L) and p(~ L) represent the prior probabilities of
sharing and not sharing functional annotation, they pro-
posed a log likelihood score [35,36]:

LLS = ln
(

P(L|D)/P(∼ L/D)
P(L)/P(∼ L)

)
(4)

to describe the utility of data D in functional linkage
inference. An LLS close to 0 suggest that the data is not
more informative than random pairing, whilst higher
positive values of LLS indicates that data D contains
more information of functional linkage.
We adopted equation (4) to evaluate whether GO sche-

matic similarity and PubMed co-citation were useful in
identifying functional linkage. The KEGG http://www.gen-
ome.ad.jp/KEGG and Munich Information Center for Pro-
tein Sequences (MIPS, mips.gsf.de/) database [1,2] were
used to construct the benchmarks of functional linkage.
These databases were chosen for their high quality [37]. In
this study we utilized yeast and mouse gene expression
data to validate our algorithm. For each species, the posi-
tive control set consists of randomly sampled 5% (43,761
for yeast, and 35,424 for mouse) of all gene pairs that are
in the same KEGG pathways [38]. The choice of 5% rather
than all is to lower the computational complexity. The
negative control set was constructed with gene pairs that
encode proteins localized in different cellular compart-
ments, with the underlying assumption that they are func-
tionally unrelated and do not interact with each other.
Four categories in the MIPS annotation [39] were utilized:
70.03 cytoplasm, 70.10 nucleus, 70.16 mitochondrion, and
70.27 extracellular/secretion proteins.
Again we only kept 5% of all possible gene pairs, total-

ing 112,693 for yeast and 531,089 for mouse, respectively.

The same benchmark sets were also utilized to train the
Naïve Bayesian classifier when calculating plink.
The LLS of co-citation in discovering functional link-

age is then determined by:

LLSPubMed = ln
(

P(L|ppubMed)/P(∼ L/ppubMed)

P(L)/P(∼ L)

)
(5)

The LLS of GO schematic similarity was performed in
the similar fashion. The LLS value for gene pair sets in
different ranges of GO similarity and co-citation p-value
were given in Table 2. Gene pairs sets with higher GO
similarity or PubMed co-citation significance, have more
positive LLS values, and vice versa. Note that gene pairs
with negative LLS means they are less likely to be func-
tionally linked than random pairs, which is expected if
they share low GO similarity or co-citation. The results
suggest that PubMed Co-citation and GO similarity are
efficient at discriminating functionally linked gene pairs
from not linked ones.
We found that there is a marginal dependence

between the GO similarity and PubMed co-citation
(Fisher’s Z test, p~0.1). Theoretically naïve Bayesian
classifier is optimal when the attributes are independent
given class. However, empirical studies have shown that
the classifier still performs well in many domains when
there is moderate attribute dependences [40]. The weak
dependence between them indicates that the naïve Baye-
sian Network is an appropriate choice to integrate their
information [41]. Interestingly, the GO and MIPS cate-
gories, which are both functional annotations, also only
depend weakly on each other. This may be because the
present annotations are far from being perfect and com-
plete [42].

Utility of functional linkage information to interaction
network modeling
The distribution of plink for yeast gene pairs is given in
Figure 2. Note that only a small proportion of gene
pairs share high values of plink, for about 92% of the
gene pairs this value is less than 0.2. This indicates that
most gene pairs share no functional linkage, consistent
with the fact that gene networks are usually sparse. The
candidate edge reservoir is constructed according to
equation 3, and the MCMC samples this distribution to

Table 2 GO and PubMed citation contain information of functional linkage

interval GO similarity LLS, yeast LLS, mouse interval -log10(pPubMed)LLS, yeast LLS, mouse

[1, 1] 1.51 1.62 (4 ∞) 0.25 0.37

[0.2, 1) -0.71 -0.99 (3 4] 0.13 0.14

[0, 0.2) -1.61 -2.2 (1 3] 0.07 0.19

[0 1] -3.4 -3.6

Log Likelihood Scores of functional linkage in yeast and mouse, for gene pair in different value interval of GO similarity and PubMed co-citation significance.
Gene pairs with higher GO similarity or significance of co-citation are more likely to be functionally linked.
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propose new candidate network structure at each itera-
tion. In Figure 2 we have also included the distribution
for gene pairs predicted to be interacting to each other,
with and without the prior knowledge. Among all possi-
ble gene pairs, only ~8% with plink 0.6. In contrast, this
proportion increases to 28% among the predicted inter-
actions. It indicates that the prior knowledge did affect
the outcome of the BN learning. The results from the
other data sets are similar.
The assumption of incorporating prior knowledge of

functional linkage is that they can help network model-
ing. Existing data from yeast revealed that genes sharing
the same GO attribute interact genetically more often
than expected by chance (p < 0.05) [43,44]. In a very con-
servative estimate, over ~12% of the genetic interactions
are comprised of genes with identical GO annotation
(a 12 fold enhancement over what expected by chance,
p < 10-12); and over 27% are between genes with similar
or identical GO annotations (an 8 fold enhancement,
p < 10-10).
We examined whether plink can potentially discriminate

interacting gene pairs from non-interacting ones, using
the receiver operating characteristic (ROC) curve. ROC is
a graphical plot of the sensitivity versus (1-specificity),
namely the fraction of true positives versus the fraction
of false positives, as the discrimination threshold of a
classifier is varied. The area under curve (AUC) reflects
the performance. The ROC of a random classifier would
be a 45° line with AUC = 0.5. Figure 3 presents the ROC
plot for the nine yeast cell cycle regulating transcription
factors (TF): Fkh1, Fkh2, Ndd1, Mcm1, Ace2, Swi5,
Mbp1, Swi4, and Swi6, and their targets identified using
the ChIP-chip technology [45]. The AUC of 0.6064

indicating that is positively correlated with interaction
and therefore useful in interaction inference.

Convergence of simulation
In Figure 4A we plot the acceptance ratio versus number
of MCMC steps in the yeast cell cycle dataset. Obviously
in the later steps the probability to accept the new pro-
posed DAG is small and flattens. The results from the
other datasets are similar. In addition, the MCMC simu-
lation was repeated 20 times with independent initializa-
tions, and consistency in the marginal posterior
probabilities was examined. We found that they corre-
lated well between different runs: 0.83 ± 0.11 for the
simulated dataset, 0.68 ± 0.10 for the yeast data set, and
0.51 ± 0.26 for the mouse pancreas dataset. Figure 4B
presents the scatter plot of the edge posterior probability
from two typical runs that simulate the yeast dataset.

Validation using simulated data
In our network inference, the MCMC learning simulation
is repeated 20 times with independent initializations and
an interaction will be considered in the final network if it
is observed more than 15 times. Our new BN algorithm
was first tested in a simulated time course (50 time
points) gene expression dataset of an artificial network
generated using SynTReN [46]. This network contains 76
genes, of which 24 act as regulators with a total of 124
regulatory relationships (i.e. 124 edges). The results are
summarized in Table 3, 2nd column. It demonstrates that
incorporating the functional linkage as prior knowledge
allows the identification of a significantly higher number,
21 versus 14, of the true gene-gene relationships com-
pared with the plain BN modeling of gene expression

Figure 2 Distribution of functional linkage probability for all
possible gene pairs, and for predicted interactions with and
without prior knowledge.

Figure 3 ROC curve indicating that functional linkage contains
information for interaction. Plotted is the performance of plink as
a classifier to identify yeast TF-target pairs defined by ChIP-chip.
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data only. A random network of the same number of
edges was also created for the 76 genes [47]. The
improvement of BN with prior knowledge over random
is significant (p < 0.01, Table 3), while without prior
knowledge it is not (p~0.2, Table 3).

Validation using the yeast cell cycle data
Next the new algorithm was applied to one of the Stan-
ford yeast cell cycle data http://genome-www.stanford.
edu/cellcycle/, where the cells from a cdc15 temperature
sensitive mutant were studied [48]. To evaluate the per-
formance, we compared the predicted interactions from
our algorithm to the annotated interactions in BIND
http://bind.ca[49], and the transcription regulation pre-
dicted by the ChIP-chip data [45]. Tables 4, 5 list the

benchmark interactions for the 107 yeast cell cycle
genes that were recovered by the BN modeling. The sta-
tistical results are summarized in Table 3, columns 3-4.
Evidently, our method is capable of identifying a higher

number of the positive benchmarks compared with the
plain BN without prior knowledge. When evaluated with
the BIND annotation, the number of correctly identified
interactions doubled from 13 to 26 (p~0.13, c2~2.28). The
plain BN actually did not perform better than random
selection (p~0.11). In contrast, BN with prior knowledge
performed significantly better than random selection with
c2 = 24.5, p < 0.001. When evaluated with the ChIP-chip
data, the story is similar. The number of correctly identi-
fied gene regulatory relationships increased from 11 to 23
with the addition of prior knowledge (p < 0.01, c2 = 6.71).

Figure 4 Convergence of simulation. (A) Acceptance ratio versus the number of MCMC steps (B) scatter plot of the marginal posterior
probabilities of the edges, obtained from two separate MCMC simulations of the yeast cell cycle data.

Table 3 The improvement in network modeling with the addition of prior knowledge

Data set Simulated
data

Yeast cell cycle study,
benchmark from BIND

Yeast cell cycle study,
benchmark from ChIP-chip

Mouse
pancreas
study

Number of genes 76 107 107 36

Number of established regulations 124 114 190 24

Number of possible regulations 76*75 = 5700 107*106/2 = 5671* 9*106 = 954 36*35 = 1260

Number of known regulations recovered with
(without) prior knowledge

21 (14) 26 (13) 23 (11) 12 (6)

Total number of regulations predicted, with
(without) prior knowledge

503 (440) 436 (387) 58 (33) 322 (297)

Improvement over plain BN c 2 = 0.36,
p~0.54

c 2 = 2.28, p < 0.13 c 2 = 0.04, p~0.84 c 2 = 0.98,
p~0.32

Improvement: over random selection c 2 = 7.32,
p < 0.01

c 2 = 24.5, p < 0.001 c 2= 6.71, p < 0.01 c 2 = 2.87,
p < 0.09

Plain BN over random
selection

c 2 = 1.58,
p~0.2

c 2 = 2.42, p~0.11 c 2 = 1.6, p~0.2 c 2 = 0.01,
p~0.8

* We ignored edge direction with comparing to BIND since it contains both directed and undirected interactions.
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Without the prior knowledge, the plain BN is not different
from random selection (p~0.1).
Figure 5A-5C shows the ROC curves that give a more

quantitative view of the performance of BN with/with-
out prior knowledge, and of the Werhli and Husmeier’s
algorithm [22,23], in detecting TF-target gene interac-
tions. Incorporation of prior knowledge significantly
improved the performance with higher AUC. Our algo-
rithm performed slightly better than Werhli and
Husmeier’s.

Validation using mouse pancreas development data
We also validated our algorithm using a mammal data-
set. The experiment profiled gene expression changes in
pancreas during embryonic development or during com-
pensatory growth after partial pancreatectomy. Elucidat-
ing the networks is key to understand the complex
nature of pancreas development and function [50,51]. A

number of efforts have been made to manually annotate
the key transcription factors and the gene networks they
regulate based on low-throughput data, nicely reviewed
by Servitja and Ferrer [52]. In Table 6, we list the 24
experimentally confirmed gene-gene regulatory relation-
ships [52], and their network is depicted in Figure 6A.
With prior knowledge BN modeling of the expression
data is able to recover half of them (12), as shown in
Figure 6C and Table 6. In contrast, the plain BN is only
able to identify 6 of them (Figure 6B). This is again a
~two-fold enhancement. In Figures 7A-7C the ROC
curves are presented. Incorporation of prior knowledge
significantly improved the ability to detect known inter-
actions. Our algorithm performed comparably to Werhli
and Husmeier’s.
In Additional file 1, we listed the GO similarity and

PubMed co-citation of the gene pairs with known regu-
latory relationships that were missed by plain BN.
Clearly, almost all of them have high GO similarity and
share a significant number of co-citations. Adding the
functional linkage as prior knowledge helped to recover
them.

Discussion
In this study we proposed a new algorithm to quantita-
tively utilize prior biological knowledge in the network
modeling of gene expression data. First the functional
linkage of gene pairs was assessed based on multiple data
sources using the naïve Bayesian classifier. The result was
then utilized to construct a candidate network edge
reservoir, where the number of replicate edges between
each gene pair was proportional to their function linkage
probability. During simulation new candidate network
structure was formed by sampling from this reservoir at
each iteration. Since the edges of gene pairs with stronger
functional linkage had more representations in the reser-
voir, these biologically meaningful edges enjoyed a
preferential treatment in network simulation. With both
the simulated and real gene expression data, we demon-
strated that incorporating the prior knowledge signifi-
cantly improved the network modeling performance.
More information of the gene interaction network could
be extracted from the microarray data with higher accu-
racy. In contrast, in all datasets, without the prior knowl-
edge, though the number of benchmark regulations
recovered is more than a random selection, the improve-
ment is not statistically significant, demonstrating the
necessity to supplement the gene expression data with
additional information. This finding that plain BN did
not perform better than random selection was not unex-
pected, similar observations was recently reported for a
number of publically available reverse-engineering algo-
rithms when gene expression data is the sole source of
information [47].

Table 4 Predicted yeast gene regulatory relationships
that are annotated in BIND

BN with prior knowledge

HTA1®HHT1 FUS1®FAR1 FKH2®CLB2 GAS1®SWI4

SWI5®FKH1 DPB3®CDC45 DPB2®DPB3 CLN2®CLN3

ASF1®HHF1 GAS1®KRE6 CLN3®CLB6 CDC14®SIC1

SWI4®MBP1 MSH6®POL30 CLB6®CLN1 SWI4®CHS3

KAR3®NUM1 HHF1®HHT1 MOB1®DBF2 RFA1®RFA3

CLB1®CLB3 CLN1®CLN3 CDC45®CDC6 CLB1®CLB5

HHF1®HTB2 HPR5®RAD54

BN Without prior knowledge

HTA1®HHT1 FUS1®FAR1 FKH2®CLB2 GAS1®SWI4

SWI5®FKH1 DPB3®CDC45 DPB2®DPB3 CLN3®CLN2

DBF4®CDC5 CDC8®CIK1 CDC6®CDC45 CLB3®CDC6

SIC1®CDC14

Relationships in bold font are predicted both with and without prior
knowledge.

Table 5 Predicted yeast gene regulatory relationships
that are confirmed by ChIP-chip

BN with prior knowledge

FKH2®HHF1 FKH2®CLB2 SWI6®CLN1 FKH2®HHT1

SWI5®FKH1 SWI6®HO SWI6®POL30 SWI4®MFA2

FKH1®SWE1 FKH2®CDC6 FKH2®SWI4 SWI4®PSA1

SWI6®HHT1 SWI5®ASH1 SWI6®CLN2 FKH2®SWE1

FKH2®HPR5 SWI6®RAD54 FKH1®RAD51 SWI6®HHF1

SWI6®AGA1 SWI4®AGA1 SWI4®MBP1

BN without prior knowledge

SWI6®POL30 SWI6®CLN1 FKH2®HHT1 SWI5®FKH1

FKH2®HHF1 SWI4®MFA2 SWI6®HO FKH2®CLB2

SWI4®TIR1 FKH1®CDC6 FKH1®CDC20

Relationships in bold font are predicted both with and without prior
knowledge.
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Our algorithm provides a practical way to integrate the
probabilistic biological knowledge that is different from
previous efforts by others [2]. The quantitative nature
makes it capable to handle soft constraints. Using the
approach by Werhli and Husmeier for instance [22,23],
we differ in several key steps. First, they encode multiple
sources of prior knowledge in a weighted sum via an
energy function; we integrate information from multiple
sources through a Bayesian classifier. Furthermore, in

our approach the MCMC samples from a candidate edge
distribution defined by the prior knowledge, rather than
from the network posterior distribution where the net-
work prior is defined by the prior knowledge. Our algo-
rithm utilizes the prior knowledge at interaction level,
while theirs at the network level. Finally the Werhli and
Husmeier approach is more computational intensive. To
reduce the computational complexity, they sum over all
parent configurations of each node and limit the number

Figure 5 ROC curves for the network modeling of the yeast cell cycle data using plain BN (A), Werhli and Husmeier’s (B), and our
algorithm (C). ChIP-chip binding data were used as benchmark. Adding prior knowledge significantly improved BN performance at identifying
the TF-target pairs.

Table 6 Established pancreas gene regulatory relationships that are identified by BN modeling

Known regulatory relationship Identified by BN modeling with prior knowledge Identified by the plain BN without prior knowledge

Hes1®Neurog3 √

Hnf4a®Tcf1 √ √

Pdx1®Gck √

Pdx1®Hnf4a

Pdx1®Iapp

Pdx1®Ins2 √

Pdx1®Nr5a2 √ √

Mafb®Ins2

Mafb®Pdx1

Neurog3®Nkx2-2 √

Nkx2-2®Gck √ √

Nkx2-2®Iapp

Nkx2-2®Ins2

Onecut1®Pdx1

Onecut1®Neurog3

Onecut1®Tcf1 √

Pax6®Gck

Pax6®Iapp √ √

Pax6®Ins2 √ √

Pax6®Pdx1 √ √

Tcf1®Hnf4a

Tcf1®Pdx1

Tcf1®Pklr

Tcf1®Slc2a2 √

BN with prior knowledge can recover half of the experimentally confirmed transcriptional regulations during mouse pancreas development, two times more than
the plain BN without prior knowledge.
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of parents of each node to 3 or less; the complexity of

this operation is (N−1
m ) (where N is size of the network,

and m the maximum FanIn) [23]. We find that it is still
memory consuming for networks of moderate or large
sizes. For instance, a Dell Optiplex 755 with 2GHZ DUO
CPU, 3.25 GB RAM ran out of memory when simulating
the 107-gene yeast network. Our algorithm does not have
this problem.
We used two sources of prior evidence of functional

linkage to assist network modeling: the PubMed co-cita-
tion and GO schematic similarity. However, our frame-
work by design allows the integration of other types of
data or knowledge, for instance, high throughput geno-
mic data including PPI and ChIP-chip; gene-gene rela-
tionships derived from advanced methods including text
mining [53], database curation, and computational mod-
eling of sequence information; and many other sources.
It has been demonstrated that the degree of improve-
ment brought in by prior knowledge highly depends on
the quality of the information being added [54]. Low
quality prior knowledge could even lower the perfor-
mance of BN [54]. Presently, most of the available prior
knowledge each on its own suffers from high false

positive rate and being incomplete, which can limit their
efficacy in network modeling. Integration of data from
different sources and utilizing their consensus provides
an effective means to deal with this issue [1,2]. A caveat
here is, when considering more sources of data, the
inter-dependency among them need to be scrutinized
more carefully, and maybe a more sophisticated integra-
tion method than the naïve Bayesian classifier is needed.
A number of different approaches have been devel-

oped to integrate multiple sources of prior information
in the BN modeling of gene expression data, at the dif-
ferent steps of the simulation process [4,11-14]. It would
be of interest to compare the efficiency of the different
approaches, investigate whether the optimal approach
depends on the types of prior knowledge, and if the dif-
ferent approaches can be combined for a most efficient
utilization of prior knowledge in network modeling.

Conclusion
In this paper we proposed a new algorithm to integrate
and utilize the prior biological knowledge in the BN
modeling of gene expression data. Our study demon-
strated that incorporating prior knowledge at the step of

Figure 6 The pancreas development network already established by existing experiments (A), predicted by the plain BN (B), and by
BN + prior knowledge (C). The bold edges in (B) and (C) are those that overlap with the edges in (A).

Figure 7 ROC curves for the pancreas development data with plain BN (A), Werhli and Husmeier’s algorithm (B), and our approach
(C). 24 experimentally confirmed interactions were used as benchmark.
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network structure simulation is an efficient way to pre-
serve the quantitative information in it, and to improve
the performance of network modeling.

Methods
Preparation of gene expression data for algorithm
validation
Simulated data
The simulated time course gene expression dataset was
generated using SynTReN [46] for a artificial network
with 76 genes, of which 24 act as regulators with a total
of 124 regulatory relationships (i.e. 124 edges). The total
number of time points is 50. All parameters of SynTReN
were set to default values [46], except number of corre-
lated inputs, which was set to 50%. The topological
structure and inner interacting relationships are sampled
from the characteristics of the yeast transcriptional net-
work, therefore the results will be indicative of the algo-
rithm performance on real data.
Yeast cell cycle study
Yeast cell cycle gene expression data were downloaded
from http://genome-www.stanford.edu/cellcycle/. These
studies [48,55] profiled expression changes in 6178
genes at ~20 time points under each condition follow-
ing alpha factor arrest (18 time points from 0-119 min-
utes), elutriation ELU (14 time points from 0-390
minutes), and arrest of a cdc15 (24 time points from
10-290 minutes) and a cdc28 (28 time points from 0-
160 minutes) temperature sensitive mutant. Many genes
have missing data points. The cdc28 data is the most
severely affected, ~80% of genes contains at least 1
missing values. For the remaining three datasets, it ran-
ged 6-27%. In this study, we chose the cdc15 dataset, as
it contains the most number of time points out of the
three [56]. Network modeling was performed on the
107 known cell cycle genes [57]. The list is given in
Table 7. These are the genes that most likely to have
interesting interactions during the time course being
studied.
Mouse pancreas development and regeneration after
damage
The pancreas development and growth expression data was
downloaded from the RNA Abundance Database http://
www.cbil.upenn.edu/RAD, with study IDs 2 and 1790.
Study 2 profiled mouse pancreas gene expression at six dif-
ferent developmental time points: embryonic day 14.5,
16.5, 18.5, at birth, at postnatal day 7, and at adulthood. 4
samples at E14.5, and 6 at all the following time points,
totaling 34 samples. Study 1790 profiled gene expression in
mice pancreas following partial pancreatectomy and Exen-
din-4 treatment. Exendin-4 is a glucagon-like peptide-1
receptor agonist that augments the pancreatic islet beta-
cell mass by increasing beta-cell neogenesis and prolifera-
tion and by reducing apoptosis. Mice underwent 50%

pancreatectomy or sham operation, and received Exendin-
4 or vehicle every 24 hours. 3-4 animals from each group
were sacrificed at each time point of 12, 24 and 48 hr after
operation, together with 4 animals that received no opera-
tion, totaling 46 samples. Because the two studies each
only contain a few time points, we combined their data for
network modeling [58]. Replicate samples under the same
condition at the same time point were averaged.
The network modeling was performed on 36 genes

manually collected from a recent review by Servitja and

Table 7 The 107 Yeast cell cycle genes that were
simulated for their network structure

ACE2
(850822)

CLB6
(853003)

HHF2
(855701)

MSH6
(851671)

RFA3
(853266)

AGA1
(855780)

CLN1
(855239)

HHT1
(852295)

MST1
(853640)

RME1
(852935)

ASE1
(854223)

CLN2
(855819)

HHT1
(855700)

NDD1
(854554)

RNR1
(856801)

ASF1
(853327)

CLN3
(851191)

HHT2
(852295)

NUM1
(851727)

RNR3
(854744)

ASF2
(851330)

CTS1
(850992)

HHT2
(855700)

PCL1
(855427)

SED1
(851649)

ASH1
(853650)

CWP1
(853766)

HO (851371) PCL2
(851430)

SIC1
(850768)

CDC14
(850585)

CWP2
(853765)

HSL1
(853760)

PCL9
(851375)

SPC42
(853824)

CDC20
(852762)

DBF2
(852984)

HTA1
(851811)

PDS1
(851691)

SPO12
(856557)

CDC21
(854241)

DBF4
(851623)

HTA2
(852283)

PMS1
(855642)

SST2
(851173)

CDC45
(850793)

DPB2
(856305)

HTB1
(851810)

POL1
(855621)

STE2
(850518)

CDC5
(855013)

DPB3
(852580)

HTB2
(852284)

POL12
(852245)

SWE1
(853252)

CDC6
(853244)

EGT2
(855389)

KAR3
(856263)

POL2
(855459)

SWI4
(856847)

CDC8
(853520)

FAR1
(853283)

KAR4
(850303)

POL30
(852385)

SWI5
(851724)

CDC9
(851391)

FKH1
(854675)

KIN3
(851273)

PRI1
(854825)

SWI6
(850879)

CHS1
(855529)

FKH2
(855656)

KRE6
(856287)

PRI2
(853821)

TEC1
(852377)

CHS3
(852311)

FKS1
(851055)

MBP1
(851503)

PSA1
(851504)

TIP1
(852359)

CIK1
(855238)

FUS1
(850330)

MCD1
(851561)

RAD17
(854550)

TIR1
(856729)

CLB1
(853002)

GAS1
(855355)

MCM1
(855060)

RAD27
(853747)

UNG1
(854987)

CLB2
(856236)

GIC2
(851904)

MFA2
(855577)

RAD51
(856831)

YRO2
(852343)

CLB3
(851400)

HHF1
(852294)

MNN1
(856718)

RAD54
(852713)

CLB4
(850907)

HHF1
(855701)

MOB1
(854700)

RFA1
(851266)

CLB5
(856237)

HHF2
(852294)

MSH2
(854063)

RFA2
(855404)

In parenthesis are the corresponding gene IDs.
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Ferrer [52], which are known to be important in pan-
creas development. They are listed in Table 8.
Digitization of gene expression data
Expression data were further discretized into three
levels. In each data set, we calculated the mean (μ) and
standard deviation (SD) of expression across all time
points for each gene. Each expression value is then
assigned to 0, 1 or 2 according to whether the value is
less than μ-SD, between μ-SD and μ+SD, or above
μ+SD.
Prior data of interaction and transcription binding
Annotations of known yeast gene interaction were
downloaded from the Biomolecular Interaction Network
Database (BIND, http://bind.ca), a database designed to
store full descriptions of interactions, molecular com-
plexes and pathways [49]. BIND includes both directed
(such as protein-DNA interaction) and un-directed
(such as protein-protein interaction) interactions. There-
fore when comparing to BIND annotations, we ignored
direction.
Simon et al studied the transcription regulation of yeast

genes by 9 cell cycle regulating transcription factors (TF):
Fkh1, Fkh2, Ndd1, Mcm1, Ace2, Swi5, Mbp1, Swi4, and
Swi6, using the ChIP-chip technology [45]. These nine
TFs are among the 107 cell cycle genes that we performed
network modeling. The data were downloaded from
http://staffa.wi.mit.edu/cgi-bin/young_public/navframe.
cgi?s=17&f=downloaddata. For each TF, the study derived
a binding p-value for each gene which reflects the likeli-
hood that the TF binds to the promoter of this gene. We
constructed a positive control target set for each TF that
consists of those with p < 0.001, a negative control target
set for each TF that consists of those with p > 0.1. Note
that the transcription binding data provide directed
information.

Additional material

Additional file 1: Predicted regulatory relationships missed by the
plain BN. most established regulatory relationships missed by the plain

BN involve two genes that share significant GO similarity and PubMed
co-citation.
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