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Abstract

Retinitis Pigmentosa (RP) begins with the death of rod photoreceptors and is slowly followed
by a gradual loss of cones and a rearrangement of the remaining retinal neurons. Clusterin
is a chaperone protein that protects cells and is involved in various pathophysiological
stresses, including retinal degeneration. Using a well-established transgenic rat model of
RP (rhodopsin S334ter), we investigated the effects of clusterin on rod photoreceptor sur-
vival. To investigate the role of clusterin in S334ter-line3 retinas, Voronoi analysis and
immunohistochemistry were used to evaluate the geometry of rod distribution. Additionally,
immunoblot analysis, Bax activation, STAT3 and Akt phosphorylation were used to evaluate
the pathway involved in rod cell protection. In this study, clusterin (10ug/ml) intravitreal treat-
ment produced robust preservation of rod photoreceptors in S334ter-line3 retina. The mean
number of rods in 1mm? was significantly greater in clusterin injected RP retinas (postnatal
(P) 30, P45, P60, & P75) than in age-matched saline injected RP retinas (P<0.01). Clusterin
activated Akt, STAT3 and significantly reduced Bax activity; in addition to inducing phos-
phorylated STAT3 in Mdiller cells, which suggests it may indirectly acts on photoreceptors.
Thus, clusterin treatment may interferes with mechanisms leading to rod death by suppress-
ing cell death through activation of Akt and STATS3, followed by Bax suppression. Novel
insights into the pathway of how clusterin promotes the rod cell survival suggest this treat-
ment may be a potential therapeutic strategy to slow progression of vision loss in human

RP.
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Introduction

Retinitis Pigmentosa (RP) is the cause of inherited blindness that results from gene mutations
[1-6]. Regardless of the underlying genetic defect, the disease begins with the degeneration of
rods followed by the degeneration of cones. This event eventually leads to a rewiring of the
inner-retinal neurons [3, 4, 7-12]. Most studies involving retinal degeneration models have
focused on naturally occurring models of RP [7, 9, 13-17]. These models are great tools for
understanding the dynamics and mechanisms of retinal degeneration. However, a flaw of the
naturally occurring RP models is that most express recessive forms of RP. The transgenic mod-
els of S334ter rat and P23H rat express a thodopsin gene mutation that account for more than
25% of autosomal dominant human RP patients [18-20]. In the RP rhodopsin S334ter-line3
retina, rods die in” hot spots” or clusters [21]. These clusters of rod death appear to be embed-
ded in a background of random cell death in the P14-P17 whole-mount retinas. Subsequently
around P21, the rod cell deaths are propagated and expanded radially away from these clusters
and form holes in the rod mosaic [21]. Some rod holes are visible until P45, and by P60, surviv-
ing rods are scattered in the whole-mount in the S334ter retina[22].

Recently we discovered that retinal ganglion cells are still functional at later stage of S334ter
rats. The recordings of RGCs at P60 (i.e. nearly all rods were lost, but cones remained) showed
that distinct RGC types are functionally intact. This result indicates that parallel processing of
visual pathways remains largely intact in S334ter at P60 [23].

Clusterin, a multifunctional heterodimeric glycoprotein (70-80 kDa), is constitutively syn-
thesized by a variety of tissues and plays a role in several biological events such as programmed
cell death, lipid transport, sperm maturation, complement regulation and barrier cytoprotec-
tion [24-32]. Up-regulation of clusterin has been reported in response to pathological condi-
tions, such as Alzheimer’s and Pick’s diseases[33-36], scrapie[37], spinal cord injury [38],
axotomy [39], retinal ischemia [40], diabetic retinopathy [41] and retinal degeneration (RD)
[42-46] including light-induced retinal degeneration [47-49] and RP [26, 50]. In spite of these
various findings, the function of clusterin in these pathological conditions remains unknown.
In the past, efforts to reduce cell death with an application of clusterin have produced promis-
ing results in various pathological conditions. For example, clusterin has been reported to be a
cytoprotective protein in oxidative stress-induced cell death in the retinal pigment epithelial
(RPE) cells [51, 52], hypoxia-induced injury [53], diabetic retinopathy [54, 55], and cerebral
ischemic injury [56]. Furthermore, clusterin knockout mice have suggested that clusterin pro-
tects mice from the pathological consequences of inflammation [56, 57] and age-dependent
deposition of antibody-containing aggregates in the kidney [58]. These experiments suggest
that clusterin functions as the physiological defense to maintain cell viability and is involved in
the suppression of pro-death signals after increased cellular injury.

In the present study, we investigated the neuroprotective feature of clusterin in a transgenic
rat model of RP. We show for the first time that clusterin intravitreal treatment produced a
robust preservation of rod photoreceptors in S334ter-line3 retina and Bax activity was signifi-
cantly reduced. In addition, clusterin treatment induced Akt and STAT3 phosphorylation.

Materials and methods
Animals

The Veterinary Authority of University of Southern California’s Institutional Animal Care
and Use Committee approved all procedures. The homozygous S334ter-line-3 (albino Sprague
Dawley, SD), a transgenic RP prototype with a rhodopsin mutation caused by truncated
murine opsin gene at Serine residue 334 (S334ter-line-3). Female rats were obtained from
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Matthew LaVail, Ph.D. (University of California San Francisco, CA) and were mated with
Long-Evans (LE) male rats to generate heterozygous offspring. The heterozygous S334ter line
3 was designated as RP in this study. For controls, age-matched SD rats (Harlan, Indianapolis,
IN) were used. Female or male SD rats and RP rats were euthanized at postnatal (P) days 15,
16, 17, 30, 45, 60, and P75 (number (n) = 9~12 and n = 6, respectively for each stage). For all
experiments, animals were kept in cyclic 12-hour light/dark conditions with free access to
food and water.

Administration of clusterin

Clusterin (#2937-HS, R&D Systems, Minneapolis, MN) was prepared in phosphate buffered
saline (PBS). For adjustment of clusterin dosage, 2 ul of three concentrations (10, 20 and

50 pg/ml in PBS) were administered by intravitreal injection with a Hamilton syringe (Sigma-
Aldrich Corp) through the sclera on the temporal side of a P30 normal eye under anesthesia.
Induction of anesthesia was done by intraperitoneal (IP) injection of ketamine (20 mg/kg;
KETASET, Fort Dodge, IA, USA) and xylazine (5 mg/kg, X-Ject SA; Butler, Dublin, OH, USA)
with similar procedures as our published protocols [22, 59, 60]. Following injections, veteri-
nary ophthalmic antibacterial ointment was applied to prevent drying of cornea and infection.
After preliminary testing of clusterin dosages, 10 pg/ml was selected throughout this current
study. The developmental stage of RP for the intravitreal injection of clusterin or saline was
postnatal days (P) 15; a peak period of rod photoreceptor cell death [11]. We divided three
experimental groups: (1) RP animal injected with saline alone in both eyes, RP Saline; (2) RP
animal injected with saline in right eye, RP saline (Rt), and (3) clusterin in left eye, RP Clus-
terin (Lt). The Saline (Rt) and Clusterin (Lt) are eyes from the same RP animals. For all experi-
ments, clusterin and saline were injected at the same time of the day, Zeitgeber Time (ZT) 4
(ZT 0 defined as the moment lights were turned on), and tissues were isolated at each respec-
tive time point [61]. For all experiments, animals were kept in cyclic 12-hour light/dark
conditions.

Tissue preparation

Previous detailed protocols for tissue preparation were described [59, 60]. Briefly, animals
were anesthetized by IP injection of Euthasol (40 mg/kg; Virbac Corporation, Fort Worth, TX)
and the eyes were enucleated for collection of retinal tissue. Then, animals were euthanized by
administration of an overdose of Euthasol. For secondary method we performed thoracotomy
or decapitations. The lens and the anterior segment were removed and eyecups were fixed in
4% paraformaldehyde in 0.1 M phosphate buffer (PB), for 90 minutes at 4°C. Following fixa-
tion, the retinas were isolated from eye cups for whole mount staining and cryostat sectioning.
For cryostat sectioning, eye cups were first transferred to 30% sucrose in PB overnight at 4°C,
then were embedded in Optimal Cutting Temperature medium (OCT, Tissue-Tek, Elkhart,
IN), frozen in liquid nitrogen and subsequently vertically sectioned on a Leica cryostat (Leica
Biosystems Inc, Buffalo Grove, IL) at a thickness of 20um.

Immunohistochemistry

The detailed protocols for immunohistochemistry were performed as previously published
[21, 60, 62]. Briefly, sections were incubated with 10% normal donkey serum (NDS) (#017-
000-121, Jackson ImmunoResearch Laboratories, West Grove, Pennsylvania, dilution 1:10) for
1 hour at room temperature (RT), then incubated overnight with primary antibodies: goat
polyclonal antibody directed against clusterin o (#sc-6420, Santa Cruz Biotechnology, Dallas,
TX, dilution 1:1,000); rabbit polyclonal directed against glial fibrillary acidic protein (GFAP)
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(#G9269, Sigma-Aldrich Corp, St. Louis, MO, dilution 1:1,000); phosphorylated Signaling
Transducer and Activator of Transcription 3 (pSTAT3)(#9145S, Cell Signaling Technologies,
Danvers, MA, dilution 1:100); mouse monoclonal antibody against Glutamine Synthase (GS)
(#MAB302, Millipore, Billerica, Massachusetts, dilution 1:10,000); mouse monoclonal anti-
body directed against rhodopsin (rho 1D4[63], dilution 1:1,000). Then samples were washed
in PBS, and incubated for 2 hours at RT in corresponding secondary antibodies with carboxy-
methylindocyanine (Cy3)-conjugated affinity-purified donkey anti-rabbit IgG (Jackson
ImmunoResearch Laboratories, dilution 1:500), Cy3-conjugated affinity-purified donkey anti-
mouse IgG (Jackson ImmunoResearch Laboratories, dilution 1:500), Alexa 488-conjugated
donkey anti-mouse IgG (Molecular Probes, Eugene, OR, dilution 1:300), or Alexa 488-conju-
gated donkey anti-goat IgG (Molecular Probes, Eugene, OR, dilution 1:300). Next, sections
were washed three times for 10 minutes each with PB and cover-slipped with Vectashield
mounting medium (Vector Labs, Burlingame, CA). Similar procedures to the ones described
above were used for whole-mount immunofluorescence staining. Additionally, to enhance
antibody penetration, tissues were treated with 1% Triton X-100 in PBS before blocking proce-
dure with NDS, and primary antibodies were diluted in 0.5% Triton X-100 in PBS. For rho-
dopsin immunological staining in whole-mount retinas, the primary antibody incubation was
for 2 days and the secondary antibody incubation was for 1 day. For double immunolabeling,
vertical sections were incubated in a mixture of primary antibodies at 4°C for 24 hours, and
then rinsed three times for 5 minutes each with PBS. Afterward, they were incubated with a
mixture of corresponding secondary antibodies at RT for 2 hours. The images of sections and
whole mounts were saved and processed with the Zeiss LSM-PC software under a Zeiss LSM
710 confocal microscope (Zeiss, NY), then were adjusted using Adobe Photoshop 7.0 (Adobe
Systems, San Jose, CA). Photoshop adjustment was carried out equally across sections and
whole mounts.

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)

Cell death was tested using an In Situ Cell Detection kit (#11 684 795 910, Roche Diagnostics,
Mannheim, Germany) in line with the manufacturer’s recommendations. The vertical sections
were incubated with TUNEL reactive mixture for 90 minutes in 37°C. The sections were then
washed with 0.1M PB for 30 minutes and cover-slipped with Vectashield mounting medium.

Outer nuclear layer thickness measurement

For nuclear layer staining, we embedded the eyecups in OCT embedding medium (n = 5). Eye-
cups were sectioned along the vertical meridian on a cryostat at a thickness of 10 pm. TOPRO-
3 (Invitrogen, Carlsbad, CA; T3605, dilution 1:1,000) was incubated for 10 minutes and
washed for 30 minutes with 0.1 M PB and cover-slipped with Vectashield mounting medium.
The Zeiss LSM image browser software was used to measure the thickness of ONL. The mea-
surements were taken within 2 mm from the optic nerve.

Voronoi analysis

Voronoi analysis was used to quantify the distribution of rod cells stained with rhodopsin. The
detailed instructions for the Voronoi analysis were described in our previous study [60, 64].
Briefly, confocal micrographs of the retinas (n = 3-5 animals for each group) were taken at the
mid-peripheral region (2 mm away from optic disc) of the superior temporal retina, covering a
1 x 1 mm” area. At these locations we made serial optical sections using a confocal microscope.
By following each rhodopsin-positive rod throughout the sections, we ensured that every rho-
dopsin positive cell in the selected region was counted. Using these images, the Voronoi
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domain of each cell was generated. The coefficient of clustering (CC) was also analyzed by the
ratio between the global coefficient of variance and average local coefficient of variance in Vor-
onoi domain sizes.

Immunoblot analysis

Immunoblot analysis was performed on whole retinal cell lysate as previously reported [65,
66]. Briefly, each frozen retina was homogenized in ice-cold Radioimmunoprecipitation assay
(RIPA) buffer, supplemented with EDTA-free proteinase inhibitor cocktail (Roche, Basel,
Switzerland). After homogenization, samples were centrifuged at 16,000 g for 10 min and
supernatant was collected to measure protein concentrations using Pierce BCA assay kit
(Thermo Scientific, Rockford, IL). 45 ug of protein per retina were applied to electrophorese
on a 10 ~ 12% sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE), and then were trans-
ferred to nitrocellulose membranes (LI-COR Biotechnology, Lincoln, NE). After 1 hour of
blocking with Odyssey blocking buffer (LI-COR Biotechnology), membranes were incubated
overnight with antibodies for anti B-actin (#A5441, Sigma, dilution 1:5000) and either anti-
clusterin o (Santa Cruz, dilution 1:500), anti-pAkt (#4060S, Cell Signaling, dilution 1:500),
anti-Akt (#4691S, Cell Signaling, dilution 1:500), anti-STAT3 (#12640S, Cell Signaling, dilu-
tion 1:500), anti-pSTAT3 (Cell Signaling, dilution 1:500), anti-Bax (#14796S, Cell Signaling,
dilution 1:500) or anti-caspase-3 (#9664S, Cell Signaling, dilution 1:500). For detection of clus-
terin by immunoblot analysis, we used anti-clusterin o to observe not only the alpha subunit
as a part of mature form of clusterin, but also the clusterin precursor (~70 kDa, single polypep-
tide without disulfide links between alpha chain (36-39 kDa) and beta chain (34-36 kDa) [32].
Afterward, appropriate secondary antibodies conjugated to a fluorophore (680 nm or 800 nm)
were used for detection using an infrared detection system (GENESys, Syngene, Frederick,
MD). For all optical density analysis, we used National Institute of Health (NIH) Image ] soft-
ware version 1.50i to quantify the intensity of each band. Beta-actin was used as a loading con-
trol. Relative amounts of clusterin, pAkt, pSTATS3, caspase-3, and Bax were calculated by
dividing the immunological intensity of clusterin, pAkt, pSTAT3, caspase-3, and Bax protein
bands by the intensity of the B-actin protein. The average of the normal or saline-treated RP at
5 min was set as 100%.

Statistical analysis

All the statistics were expressed as mean * standard error of the mean (SEM). Student’s t-test
was used for comparison (GraphPad Prism 6, La Jolla, CA). One-way ANOVA, two-way
ANOVA and Fisher’s least significant difference procedure (LSD test) were used to examine
the differences among the group of means. The tests were performed by MATLAB version
8.2.0 (The MathWorks Inc., Natick, MA, USA) and graphs were generated by GraphPad
Prism 6. The difference between the means of separate experimental groups was considered
statistically significant at P < 0.05.

Results
Expression of clusterin in S334ter-line3 RP retina

Increased clusterin expression is associated with retinal degenerative diseases [42-46] includ-
ing light-induced RD [47, 48] and RP [50, 67]. To determine whether clusterin was up-regu-
lated in our RP rat model, we first investigated the expression levels of clusterin in retinal
extracts by immunoblot analysis using antibodies against clusterin-a. A clusterin-immunore-
active band was detected at ~70 kDa (clusterin precursor) and 36-39 kDa (clusterin-o). The
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Fig 1. Expression of clusterin in normal and RP retinas. Immunoblot analysis showed clusterin-
immunoreactive bands at ~70 kDa and ~36 kDa at P15, P30, and P60 normal and RP retinas (A). The
clusterin precursor-immunoreactive band of ~70 kDa was significantly upregulated in retinal extracts of P15,
P30, and P60 RP compared with retinal extracts from age-matched normal rat. Inconsistent expression of the
precursor and clusterin-a was observed in normal and RP retinas. Densitometry analysis of immunoblots for
clusterin precursor proteins was generated in histogram (B). Clusterin immunoreactivity was localized on
vertical sections of P30 normal and P30 RP retinas (C). No clusterin immunoreactivity was detected in normal
retina. In contrast, clusterin expression was observed in some processes in the INL of RP retina (arrows).
Vertical sections labeled with anti-clusterin (green) and anti-glutamate synthase (GS, red) in P30 RP retinas
(D). All clusterin immunoreactive processes in the INL were associated with processes of Milller cells (inset).
ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL,
ganglion cell layer; P, postnatal; N, normal; RP, Retinitis Pigmentosa. Data represents mean + SEM; ***
P<0.0001. Scale bar =50 pm, 10 ym in inset.

https://doi.org/10.1371/journal.pone.0182389.9001

result was consistent with previous studies showing multiple bands in a study when clusterin
was first cloned, in human blood and cerebrospinal fluid (CSF) of patients with Alzheimer’s
disease, and in colon cancer cells in vitro [68-70]. The clusterin precursor-immunoreactive
band of ~70 kDa (Fig 1A) was present in normal and RP retinal extracts of P15, P30, and P60.
However, the intensity of the clusterin precursor-immunoreactive band was stronger in RP
retinas than in normal retinas. In contrast, the level of clusterin-o. was relatively unchanged
among the experimental groups (S1 Fig, S2 Table). Relative clusterin precursor expression was
observed by measuring the optical density of clusterin-immunoreactive proteins in these reti-
nas (Fig 1B). The clusterin precursor levels were ~3.5 times higher (*** P<0.0001) in RP reti-
nas than in normal retinas. Our data indicated that clusterin expression was significantly
elevated in RP retinas.

In P30 normal retina, clusterin immunohistochemical labeling was not observed. In con-
trast, clusterin expression was noted in some processes in the inner nuclear layer (INL) of RP
retina (Fig 1C). To identify the immunoreactive profiles in the INL of RP, double immunohis-
tochemical labeling experiments using antisera against the clusterin and glutamine synthase
(GS, the Miiller cell marker) were performed [71, 72]. We found that clusterin immunoreac-
tive profiles co-localized with GS immunoreactivity (Fig 1D). These results verified that clus-
terin was present in processes of Miiller cells in RP retina.
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Saline

Fig 2. Gliosis was induced by clusterin at higher dose. Immunoreactivity of GFAP was localized on
vertical sections of normal retinas. GFAP immunoreactivity was localized in the NFL after 3 days (A, D), 1
week (B, E), and 2 weeks (C, F) of saline and 10pg/ml clusterin post-injection. Moderate gliosis was seen at
the dosage of 20ug/ml clusterin (H, I) at the NFL and inner retina. GFAP, glial fibrillary acidic protein; ONL,
outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL,
ganglion cell layer. Scale bar =100 pm.

https://doi.org/10.1371/journal.pone.0182389.9002

Clusterin treatment affects rod photoreceptor cell survival in RP retina

The induction of clusterin expression in pathological conditions is still controversial since
some reports suggest that clusterin is involved in apoptosis, whereas other reports demon-
strated that clusterin participates in a protective role. Thus, we investigated if an exogenous
application of clusterin could affect the rod survival in RP retina, with the hypothesis that clus-
terin was an “innate defender.” Before application of clusterin in RP, we tested three dosages
of clusterin in normal retinas. Either saline or 10, 20, and 50 pg/ml of clusterin was injected
and we observed the effects after 3 days (Fig 2A, 2D and 2G), 1 week (Fig 2B, 2E and 2H), and
2 weeks (Fig 2C, 2F and 2I). There was no detectable gliosis (Fig 2A-2F) or TUNEL positive
cells (data not shown) in normal retina throughout the experimental periods except at the dos-
age of 20 pug/ml of clusterin where moderate gliosis was detected (Fig 2H and 21, arrows). We
also observed moderate gliosis and no cell death in 50 pg/ml injected retina (data not shown).
Thus, we used 10pg/ml of clusterin as an appropriate dose to determine its influence on the RP
retina.

Intravitreal injection of clusterin (10 ug/ml) at P15, when rod photoreceptor cells show
peak cell death in RP [11], resulted in significant protection of rod photoreceptors (Fig 3H).
Additionally, we discovered that clusterin has a bilateral effect to rod cell survival and rod
cell distribution as shown in Fig 3C-3F, 3H and 3I. For quantitative analysis, we divided the
three experimental groups: (1) RP animal injected with saline alone, RP Saline; (2) RP animal
injected with saline in right eye, RP saline (Rt), and (3) clusterin in left eye, RP Clusterin (Lt).
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Fig 3. Clusterin delayed rod cell death and had bilateral effect. Confocal micrographs of whole-mounted
retina labeled with rhodopsin at P30. One group of RP animals was treated with saline alone (A) and another
group of RP animals was treated with saline in their right eye (C) and clusterin in their left eye (E) at P15.
Voronoi domains are shown for distribution of rod cells (B, D, F). Rhodopsin immunoreactivity was in the
segments, cell bodies, axon processes, and axon terminal of rods in whole mount RP Saline and RP Clusterin
(Lt) retinas (G). The outer segments were shortened and distorted. The length of axon processes was varied
among the rods. The overall morphology of rods was aquiline/curved. Rod cell number per 1 mm? in clusterin
treated left eyes was significantly higher than among the groups (H). Coefficient of clustering (CC) was
significantly lower in both RP Saline (Rt) and RP clusterin (Lt) treated retinas compared to RP saline. Data
presented as mean with SEM. *P = 0.01, **P =0.001. Scale bar =100 um.

https://doi.org/10.1371/journal.pone.0182389.9003

We performed rho 1D4 (rhodopsin) immunohistochemical staining on these retinas and
counted the rhodopsin positive cells from the individual optical sections that made up the
reconstructed stack from the whole-mounts. The S334ter rhodopsin mutant removes both the
trafficking signal to the outer segment and the rho 1D4 monoclonal antibody binding motif.
The antibody rho 1D4 recognizes residues in the carboxyl-terminus of rhodopsin and thus it
will detect only the endogenous rat rhodopsin and not the mutant rhodopsin, which lack the
well-established role of the C-terminal trafficking motif [73].
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In Fig 3A, 3C and 3E, we showed an example of a whole-mount retinas processed for rho-
dopsin immunohistochemical staining at P30 taken at the central part of the superior and tem-
poral region of RP Saline (Fig 3A), RP Saline (Rt) (Fig 3C) and RP Clusterin (Lt) (Fig 3E)
retinas. In RP retina, rhodopsin immunoreactivity was in the segments, cell bodies, axon pro-
cesses, and axon terminal of rods in RP Saline, RP Clusterin (Lt) (Fig 3G), and RP Saline (Rt,
data not shown). The outer segments were shortened and distorted. The length of axon pro-
cesses was varied among the rods. The overall morphology of rods was aquiline/curved [21].
The mislocalization of rhodopsin or opsins in RP was consistent with previous studies [74-78]
Thus, for quantitative analysis of rods, we counted the rhodopsin positive cell bodies from the
individual optical sections that made up the reconstructed stack from the whole-mounts. In
P30 RP Saline retinas, we observed holes in the rod mosaic (Fig 3A) [21]. In contrast, rod cells
in P30 RP Saline (Rt) and RP Clusterin (Lt) retinas were more homogenously distributed (Fig
3C and 3E). The distribution of rods was quantified using Voronoi analysis (Fig 3B, 3D and
3F). We observed groups of large domains and small domains in RP Saline retina (Fig 3B). In
contrast, RP Saline (Rt) and RP Clusterin (Lt) showed mixtures of large and small domains
(Fig 3D and 3F). The summary graph demonstrated the mean rod density (Fig 3H) measured
from the 1x1 mm? sampling areas (for details, see Materials and methods) of RP Saline, RP
Saline (Rt), and RP Clusterin (Lt). The mean rod cell density in RP Saline retinas at P30 was
4,104+343 cells/mm”. The density of rod cells changed with clusterin-treated RP. The density
from the RP Saline (Rt) and RP Clusterin (Lt) retinas showed higher numbers of 7,529+994
and 9,650+534 cells/mm” at P30, respectively. The one-way ANOVA analysis showed signifi-
cant differences in mean among the different groups (Fig 3H, RP Saline vs. RP Saline (Rt) *
P<0.01; RP Saline vs. RP Clusterin (Lt) ** P<0.001). There was no significant difference in the
mean between RP Saline (Rt) and RP Clusterin (Lt). These data clearly demonstrated that clus-
terin treatment delayed rod death in RP retina. We also examined the impact on the outer
nuclear layer (ONL) thickness in the different comparisons (i.e. RP saline vs. RP Clusterin
(Lt); S2 Fig). Intravitreal injection of clusterin at P15 resulted in significant protection of ONL
when examined at P21 and P30. The overall appearance of the ONL of RP Saline was thinner
than the RP Clusterin (Lt) until P30. Measurement of the ONL thickness showed that the
thickness in the RP clusterin retinas (P21, 14.5 + 0.3 um; P30, 12 + 0.3 um) is significantly
greater (P21, P = 0.0006; P30, P = 0.0001) than in RP Saline retinas (P21, 13.2 + 0.2 um; P30,
10 + 0.2 um). At P45 the appearance of the ONL of RP Saline (4.2 + 0.15 um) is similar to RP
Clusterin (Lt) (4.3 + 0.1 pum), differing slightly in the number of cells in ONL. Thus, to examine
the cell survival in the outer retina. we also counted the rhodopsin immunoreactive positive
cell bodies from the whole-mounts and demonstrated the difference in mean rod density (Fig
3H) of RP Saline and RP Clusterin (Lt) retina. Next, we quantified the correlation between the
sizes of neighboring domains by calculating the coefficient of clustering (CC). The details of
the methodology of the coefficient of clustering were published [60]; however, briefly, the CC
is the ratio of the global coefficient of variation to the average local coefficient of variation in
Voronoi domain sizes. If a random distribution of Voronoi domain were shown, the CC
would be close to 1. In contrast, small domains were neighboring other small domains and the
large domains were close to each other, the CC would be greater than 1. The CC was high in
RP Saline (1.93 * 0.04) and became significantly lower with RP Saline (Rt) (1.57 + 0.03)

(*p =0.0174) and RP Clusterin (Lt) (1.40 + 0.06) (**p = 0.0011) (Fig 31I). Therefore, the rods
were distributed more homogeneously in clusterin treated animals (i.e. RP Saline (Rt) and RP
Clusterin (Lt)).

The bilateral effects on the other eye of clusterin injected animals were also detected by
immunoblot analysis (Fig 4). Clusterin expression was examined by immunoblot analysis in
RP Saline, RP Saline (Rt), and RP Clusterin (Lt) retinas. Clusterin or saline was injected at P15
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Fig 4. Clusterin expression was examined by immunoblot analysis in RP Saline, RP Saline (Rt), and
RP Clusterin (Lt) retinas. Clusterin or saline was injected at P15 of RP, and then the retinas were collected
at 5 minutes, 30 minutes, 1 hour, 6 hours, 24 hours, and 48 hours. A significant increase in clusterin (i.e.
clusterin precursor and clusterin-a) was detected as early as 5 minutes in both RP Clusterin (Lt) and RP
Saline (Rt) compared to that of 5Sminutes RP Saline retinas. The expression of clusterin did not change among
the RP saline groups (i.e. 5 minutes, 30 minutes, 1 hour, 6 hours, 24 hours, and 48 hours, data not shown).
Furthermore, the expression of clusterin was higher in the RP Clusterin (Lt) retinas than in the RP Saline (Rt)
at 1hour after clusterin injection (A). Densitometry analysis of clusterin precursor (B) and clusterin alpha
subunit (C) was shown by measuring the intensity relative to control B-actin (B, C). Data represents

mean + SEM, **** P<(0.0001.

https://doi.org/10.1371/journal.pone.0182389.9004

of RP, and then the retinas were collected at 5 minutes, 30 minutes, 1 hour, 6 hours, 24hours,
and 48 hours. The expression of clusterin (i.e. 5 minutes) did not change among the RP saline
groups (i.e. 5 minutes, 30 minutes, 1 hour, 6 hours, 24 hours, and 48 hours, data not shown).
In contrast, a significant increase in clusterin expression (i.e. clusterin precursor and clusterin-
o) was detected as early as 5 minutes in both RP Clusterin (Lt) and RP Saline (Rt) compared to
that of 5 minutes RP saline retinas. The expression of clusterin continues to increase until 48
hours in both Clusterin (Lt) and RP Saline (Rt). Furthermore, the expression of clusterin was
higher in the RP Clusterin (Lt) retinas than in the RP Saline (Rt) at 1 hour after clusterin injec-
tion (Fig 4A). Densitometric analysis of clusterin precursor (Fig 4B) and clusterin alpha sub-
unit (Fig 4C) was shown by measuring the intensity relative to the control, f-actin. The two-
way ANOVA analysis showed significant differences in mean among the different groups,

% P<0.0001). Our results showed that more endogenous precursor of clusterin was pro-
duced after clusterin injection and suggested that the application of clusterin may have facili-
tated kinetically to the cleavage pathway. Furthermore, clusterin levels changed after clusterin
injection and the injection of clusterin on the left eye affected the right eye of the same animal,
suggesting that there is a bilateral effect on the other eye of clusterin injected animals.

We further investigated the impact of clusterin treatment on rod survival in a more
advanced stage of RP (Fig 5). We first performed a single injection at P15 and collected retinas
at P45, P60, and P75 (i.e. RP Clusterin Single (Lt)). For multiple injections, we injected clus-
terin at P15 and P30 and collected retinas at P45, P60, and P75 (i.e. RP Clusterin Multiple (Lt),
Fig 5A). Since clusterin showed some bilateral effects on the other eye of clusterin injected ani-
mal (Figs 3 and 4), from now on, we compared the RP animals between RP saline (RP animal
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Fig 5. Clusterin delays rod death. For single injection, saline or clusterin were injected at P15 and retinas
was collected at P45, P60, and P75. For multiple injections, saline or clusterin was injected at P15 and P30,
and retinas were collected at P45, P60, and P75 (A). Rod cell number per 1 mm? was significantly higher in
clusterin treated retinas compared to saline treated retinas at all ages (B). Multiple treatments of clusterin
improved rod survival better than that of single treatment of clusterin. Data represents mean + SEM,

*P =0.02, **P =0.002, ***P =0.0002, ****P <0.0001. P, postnatal. Scale bar = 100um.

https://doi.org/10.1371/journal.pone.0182389.9005

injected with saline alone) and RP Clusterin (Lt) (RP animal injected with clusterin in left eye).
We examined the rod photoreceptor cell density after collecting the retinas at P45, P60, and
P75, following single or multiple injections and compared the cell number with each group of
RP Saline retinas, P45, P60, and P75. Quantitative analysis was shown by counting rhodopsin
immunohistochemically stained cells taken at the central part of RP Saline, RP Clusterin Single
(Lt), and RP Clusterin Multiple (Lt) (Fig 5B) retinas at P45, P60, and P75. The cell density
graph illustrates the mean rod cell density (Fig 5B) measured from the 1x1 mm?” sampling
areas of RP Saline, RP Clusterin Single (Lt), and RP Clusterin Multiple (Lt) retinas. The mean
density of cells in saline—treated RP retinas at P45, P60, and P75 were 500+24/mm?, 18+2/
mm?, and 7+1/mm?, respectively. The density from the clusterin—single treated RP retinas at
P45, P60, and P75 were 7,094+391/mm?, 1,188+36/mm?, and 711+111/mm?, respectively. The
density from the clusterin—multiple treated RP retinas showed higher number of 8,790+337/
mm?, 3,988+31/mm?, and 2,181+298/mm?, respectively. The two-way ANOVA analysis
showed significant differences between the mean of different groups of retinas and the
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Fig 6. Induction of pAkt by clusterin in RP retina. Inmunoblot analysis of phosphorylated Akt (60kDa) was
examined in saline- and clusterin-treated RP retinas (A). Retinas were collected at 5 min, 1 hour, 6 hours, and
24 hours after injection at P15. Activation of Akt was detected as early as 5 min after clusterin injection. The
saline-treated retinas (-) showed lower activation of Akt at different time points, compared to the clusterin-
treated retinas (+). Densitometry analysis of immunoblots for phosphorylation of Akt by clusterin was
generated in histogram (B). Beta-actin served as the loading control to gain relative pAkt activation value.
Data represents mean + SEM, *** P<0.0001. P, postnatal. Akt, Protein kinase B; pAkt, Phosphorylated
Protein kinase B.

https://doi.org/10.1371/journal.pone.0182389.9006

different postnatal days (Fig 5B, *P = 0.02, **P = 0.002, ***P = 0.0002, ****P < 0.0001).). These
results indicated that clusterin treatment effectively delayed rod photoreceptor cell death in
RP. Furthermore, multiple treatments of clusterin improved rod survival better than that of
single treatment of clusterin.

Clusterin activates Akt phosphorylation in retina of RP

Studies have shown that activation of Akt by clusterin protects human RPE cells and cardio-
myocytes from the oxidative stress, and mesenchymal stem cells against ischemic injury [51,
53, 79]. In the present study, we also determined whether clusterin induces Akt phosphoryla-
tion in clusterin-treated retinas or not. Clusterin was applied at P15 of RP, and then the retinas
were harvested at 5 minutes, 1 hour, 6 hours, and 24 hours. A significant increase in phosphor-
ylation of Akt was detected as early as 5 minutes after clusterin injection (Fig 6A and 6B). In
contrast, the group of saline-treated retina showed weaker expression of pAkt at different time
points, compared to clusterin-treated group (***P<0.0001). Beta-actin and Akt served as the
loading control. These results supported that clusterin acts via Akt activation to play a role in
protection in RP retina.

PLOS ONE | https://doi.org/10.1371/journal.pone.0182389  August 2, 2017 12/27


https://doi.org/10.1371/journal.pone.0182389.g006
https://doi.org/10.1371/journal.pone.0182389

..@.' PLOS | ONE Clusterin delays rod death

C
A pSTAT3
5 min 1hr 6 hrs 24 hrs
Clusterin — &+ — + = + = +
(10 pg/ml) BE pSTAT3

~ (86/79 kDa)
X STAT3
—————— (s6kDa) RP

-actin Saline
(44 kDa)

. I RP Saline
RP Clusterin (Lt)

Relative pSTAT3 (%)

RP
Clusterin (Lt)

Smin 1hr  6hrs  24hrs

Fig 7. Up-regulation of STAT3 by clusterin in RP retina. The phosphorylated STAT3 immunoreactive
protein was examined by immunoblot analysis in saline- and clusterin-treated RP retinas (A). Retinas were
collected at 5 min, 1 hour, 6 hours, and 24 hours after injection at P15. Expression of pPSTAT3 was up-
regulated at 5 min. and peaked at 6hrs after injection of clusterin (+). In contrast, saline-treated retinas (-)
showed slight activation of STAT3 throughout the time points after injection. Densitometry analysis of pPSTAT3
was shown by measuring the intensity relative to control B-actin (B). Beta-actin and STAT3 served as the
loading control. Confocal micrographs of immunoreactivity of pSTAT3 (red) and GS (green) in vertical
sections of P15 RP retina, which were collected 6 hours after saline and clusterin injection (C). In saline-
treated RP retina, no pSTAT3 immunoreactivity was observed. In clusterin-treated RP retina, pPSTAT3
immunoreactivity was detected in the processes in the ONL and INL. Double-labeling experiments showed
that processes of Mdller cells and their cell bodies were co-localized with pSTAT3 immunoreactivity (arrows).
In addition, some processes of Milller cells in the ONL were also labeled with pSTAT3 (arrowheads). Bars
mean = SEM, *P =0.0224, **P = 0.0031, *** P<0.0001 ONL: outer nuclear layer; OPL: outer plexiform layer;
INL: inner nuclear layer. STAT3, Signal Transducer and Activator of Transcription 3; pSTATS3,
Phosphorylated Signal Transducer and Activator of Transcription 3; GS, Glutamate Synthase, Scale bar,

50 pm.

https://doi.org/10.1371/journal.pone.0182389.g007

Clusterin activates STAT3 phosphorylation

Previous studies have shown that activation of STAT3 pathways in Miiller cells promotes pho-
toreceptor survival in retinal degeneration [72]. We further investigated in this RP model the
impact of clusterin on the STAT3 pathway by examining the phosphorylation of STAT3 in the
retina after clusterin injection by immunoblot analysis. STAT3 phosphorylation was gradually
increased from 5 minutes and peaked at 6 hours after clusterin treatment (Fig 7A). In contrast,
in the saline treated group, pSTAT3 expression was weak. Fig 7B showed quantitative analysis
of phosphorylation of STAT3 that was performed by measuring the intensity relative to con-
trol. After clusterin application, the phosphorylation of STAT3 was significantly higher at 5
min, 1 hour, and 6 hours than that of saline treated retinas (*P = 0.0224, **P = 0.0031,
***P<0.0001). After 24 hours of post-clusterin injection, phosphorylation of STAT3 was
decreased. Beta-actin and STAT3 were shown as loading controls.

To localize clusterin-induced STAT3 phosphorylation, eyes were collected 6 hours after
saline and clusterin injection. In saline-treated RP retina, no phosphorylated STAT3 immuno-
reactivity was observed. In clusterin-treated RP retina, phosphorylated STAT3 immunoreac-
tivity was in the outer nuclear layer (Fig 7C, arrowheads) and some cells in the INL of the
retina (Fig 7C, arrows). Immunohistochemical dual labeling experiments using antisera
against both pSTAT3 and GS showed that some processes of Miiller cells in the ONL and their
cell bodies in the INL were co-localized with pSTAT3 immunoreactivity (Fig 7C). These results
suggest that clusterin induced STAT3 activation in Miiller cells.
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Clusterin affects survival of the rod photoreceptor cells via Bax
suppression

Several studies have reported that clusterin played a role in anti-apoptosis by suppressing Bax in
specific forms of cancer [80, 81]. It was also seen in the S334ter model that there was a higher
expression of Bax than other RP models such as rd1, rd2, rd10, P23H[82]. Taken together, we
examined Bax expression in the retina after clusterin treatment at P15 by immunoblot analysis.
A significant decrease in Bax expression was detected at 24 hours after clusterin injection, com-
pared to 24 hours of saline injection (Fig 8A). Quantitative analysis was performed by measuring
the intensity relative to control (Fig 8B). The expression of Bax was down-regulated by approxi-
mately 40% at 24 hours after clusterin treatment (*P = 0.0098) than saline treated retinas. We
also observed down-regulation of cleaved caspase-3 by clusterin in RP retina (S3 Fig), showing
the corresponding result of Bax down-regulation by clusterin at 24 hours, supporting that Bax-
dependent up-regulation of cleaved caspase-3 was the main determinant of apoptosis in neurons
[83]. Beta-actin was shown as a loading control to obtain relative Bax and cleaved caspase-3 (Fig
8, S3 Fig). Furthermore, intravitreal injection of clusterin at P15 resulted in significant reduction
of TUNEL positive cells in ONL when examined at 24 hours after clusterin injection compared
to 24 hours after saline injection (Fig 8C). Analysis of sections stained with TUNEL revealed
approximately 26.1 + 1.8 and 17.5 + 1.3 TUNEL positive cells per 150 pum field in the 24 hour
saline-treated and 24 hour clusterin-treated P15 retinas, respectively (Fig 8D). These results indi-
cated that clusterin played a role in rod survival in RP retina through Bax suppression.

Discussion
Clusterin expression is enhanced in S334ter RP rat retina

Clusterin is a well-known factor up-regulated in many diseases; however, as an enigmatic
chaperone protein with multiple actions, it may have previously unappreciated attributes that
will contribute to an effective treatment to slow photoreceptor loss and prevent visual loss.
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Fig 8. Suppression of Bax by clusterin in RP retina. Bax expression level was evaluated by immunoblot
analysis in saline- and clusterin-treated RP retinas (A). Retinas were collected at 5 min, 1 hour, 6 hours, and
24 hours after injection at P15. Bax expression was significantly decreased at 24 hours after clusterin injection
(+) compared to 24 hours of saline injection (-). Densitometry analysis of Bax expression was shown by
measuring the intensity relative to the control B-actin (B). Data represents mean + SEM, * P = 0.0098.
Confocal micrographs taken from vertical cryostat sections (10um-thick) processed for TOPRO-3 staining
(blue) and TUNEL staining (green) in the 24 hour saline-treated and 24 hour clusterin-treated P15 retinas.
TUNEL positive cells were more visible in the saline-treated retinas compared to clusterin-treated retinas (C).
Histogram showing the number of TUNEL positive cells in the different comparisons (i.e. RP 24hrs saline vs.
RP 24hrs Clusterin (Lt), n = 5). Counts refer to TUNEL positive cells encountered within a linear extension of
150 um at the mid-peripheral region of the retina. Data represents mean + SEM,*** P = 0.0009.

https://doi.org/10.1371/journal.pone.0182389.g008

PLOS ONE | https://doi.org/10.1371/journal.pone.0182389  August 2, 2017 14/27


https://doi.org/10.1371/journal.pone.0182389.g008
https://doi.org/10.1371/journal.pone.0182389

@° PLOS | ONE

Clusterin delays rod death

We observed enhanced expression of the clusterin precursor in the RP retinas compared to
normal retinas (Fig 1A and 1B). However, no significant differences in the expression levels of
clusterin-o were detected between the two groups (Fig 1A, S1 Fig, S2 Table). A possible expla-
nation for the inconsistent expression of the precursor and clusterin-o. is incomplete cleavage
into a heterodimer complex of o and B subunits due to oxidative stress, or alternatively, an
imbalance of potassium levels inducing stress-related genes [84-87]. Although the precise
mechanism that leads to this increased clusterin expression in RP retinas is currently unre-
solved, previous studies have shown compensatory properties of clusterin to defend against
oxidative stress, complement or chronic inflammation in other pathophysiologic conditions
involving the exocrine pancreas, pulmonary vasculature and renal glomerulus [88-90]. Fur-
thermore, a potential role to protect neurons from glutamate toxicity is known to induce clus-
terin expression in glial cells [38, 91]. Miiller cells have a high-affinity glutamate carrier and
convert glutamate to glutamine to clear the excess of glutamate after neuronal damage [92,
93]. Similarly, in RP, levels of excessive free glutamate are observed in the retina [94]. Thus, in
the RP retina, hyper-reactive gliosis is common because the Miiller glial cell is responding to
excessive glutamate levels [11]. Therefore, we suggest that up-regulation of clusterin expres-
sion in Miiller cells is due, in part, to glutamate toxicity in S334ter and helps maintain retinal
cell viability.

Clusterin effects on both eyes (bilateral effects) of the RP animal

We found that clusterin has a bilateral effect to rod cell survival and rod cell distribution (Fig
3). Furthermore, clusterin level changed in both control eye and clusterin injected eye of the
same animal (Fig 4). What could be the possible mechanisms of a bilateral effect with clusterin
treatment? We suggest that clusterin intravitreal treatment in one eye passes through the
blood-retinal-barrier and acts on the saline-treated retina. In fact, evidence exists that clusterin
may regulate the vascular smooth muscle cells, which in turn, may affect the blood-retinal bar-
rier [55, 95, 96]. Previous reports suggest that clusterin has a permeability effect on the blood-
brain-barrier in patients with Alzheimer’s disease (AD) [36, 86, 97]. Furthermore, bilateral
effects in both eyes have been shown for specific reagents being used for ophthalmic treatment,
including bevacizumab, a targeted anti-VEGF drug that has known effects on vascular perme-
ability and revealed a significant decrease in the macular thickness of both eyes [98, 99]. Thus,
clusterin treatment may have the ability to modify the vasculature of the blood-retinal-barrier,
to penetrate systemically, and to affect the saline-treated contralateral eye of RP (Figs 3 and 4).

Clusterin has impact on distribution of rods in RP retina

In S334ter-line3 RP retina, rods die in clusters and forms holes in the rod mosaic [21]. In this
study, we showed that the distribution of rod cells was more homogenous in clusterin-treated
retina at P30 (Fig 3). We also found that clusterin delays rod death (Figs 3 and 5). Thus, we
suggest that clusterin may compensate a local deficit of survival factors caused by RP mutation
[100] and decrease the probability of its neighbors to die (i.e. preventing cluster-form of rod
death and hole-formation in rod mosaic). Alternatively, clusterin affects the extracellular
matrix (ECM) through metalloproteinase matrix protein-9 (MMP-9) in RP retina to rearrange
rods. This hypothesis is supported by published data that SB-3CT, a specific inhibitor of
MMP-9 and MMP-2, is involved in modulating the cone distribution in RP retina through
ECM [22, 59, 60]. Additionally, it has been reported that clusterin interacts with MMP-9 to
reorganize the tissue by modulating ECM in corneal epithelial cells of the dry eye [101] and in
immune cells such as monocytes and macrophages in vitro [102].
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Clusterin has a protective effect in RP retinas

There are three isoforms of clusterin: (1) nuclear, (2) secretory, and (3) cytoplasmic. The
nuclear clusterin binds Ku70 to release Bax and induces apoptosis, whereas the cytoplasmic
and secretory clusterin inhibit apoptosis [103]. The secretory form of clusterin is synthesized
as a ~60kDa protein precursor and becomes heavily glycosylated and cleaved into an alpha
and beta chain, held together by disulfide bonds in the mature secreted heterodimer protein
form (~70kDa) [104, 105]. We observed a significant increase in clusterin in both precursor-
clusterin (~70kDa) and clusterin-o (36-39kDa) as early as 5 minutes and its enhanced expres-
sion continues to increase until 48 hours in both RP Clusterin (Lt) and RP Saline (Rt) com-
pared to that of RP saline retinas (Fig 4). These results clearly suggest that the secretion
pathway is facilitated kinetically relative to the cleavage pathway. In addition, up-regulation of
both precursor-clusterin and clusterin-o. after clusterin injection implies that more endoge-
nous precursor clusterin is produced in the retina and protected the rods (Fig 5). Our findings
have potential therapeutic implications, as these data suggest that single or multiple treatments
with clusterin improve rod survival (Fig 5). In addition, we hypothesize that clusterin’s benefi-
cial effect on rod survival is not driven by rods dying in clusters. In P30 RP saline, we observed
rod holes (Fig 3A). However, at P30 the rods were homogenously distributed throughout the
retina after injection of clusterin at P15 (Fig 3E). When we inject clusterin at P30 again (i.e. ret-
inas with homogenously distributed rods) and quantify the rod cells at P45, we observed more
rod survival than that of single treatment of clusterin. Therefore, our result demonstrates that
clusterin has effects on rod survival whether or not rod holes are present. The existence of dark
patches or “holes of photoreceptors” in cyclin D1 (cd1) mutant and P23H-linel rat has been
reported [106, 107]. In addition, human retinal dystrophy, inherited retinal degeneration, and
photo-pigment genetic perturbations in M-opsin cones showed a similar pattern in ONL
[108-111]. We believe that clusterin treatment will work on photoreceptor survival in these
and other degenerative retinas regardless of holes or rings. In the future, we will analyze poten-
tial survival effects of clusterin in long-term by developing clusterin-secreting microdevices
and implanting them intravitreally into the eyes of RP animals. In addition, we will also inves-
tigate the visual function to examine the retinal physiology of photoreceptor/retinal ganglion
cells [23] at different times after clusterin application.

What are the possible mechanisms underlying rod survival with the secretory form of clus-
terin? In our study, we did not observe clusterin expression in photoreceptor cells in RP retinas
(Fig 1) whereas previous papers showed clusterin expression in retinal neurons. The discrep-
ancies between previous studies and our study may be due to different immunological staining
protocols or using alternative clusterin antibodies. The up-regulation of clusterin was reported
in the animal models of retinal degeneration such as rds/rds mouse [42] and light-induced
damage [43, 44, 46, 48, 49, 104] in which photoreceptor death occurs by apoptosis. Oxidative
stress in RP retina leads to photoreceptor death. The production of reactive oxygen species
causes oxidative damage to proteins, lipids, and DNA [112, 113]. Furthermore, outer segment
membranes of rods are lipid rich and susceptible to oxidation [114]. Although we did not
observe clusterin expression in the photoreceptors in the RP retina, the application of clusterin
may minimize the effects of peroxidized membrane lipids [115]. This hypothesis is supported
by the presence of clusterin in the inner segments of the dying photoreceptors in degenerative
retinas [47]. In addition, oxidative metabolism occurs in the mitochondria in the inner seg-
ment of the photoreceptors [116]. Furthermore, there is evidence that clusterin localized to
mitochondria and inhibited apoptosis by interacting with activated Bax [80].

In S334ter RP retina, Bax is highly expressed in the early stage of retinal development [82].
Bax plays a role in mediating of apoptosis via the caspase cascade in outer membrane of
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mitochondria [117-119]. The mitochondrial function as an energy reservoir is important to
maintain photoreceptors against retinal degeneration [120-122]. Thus, increased expression
of Bax in RP retina and its down-regulation by clusterin treatment suggests that clusterin, may
in part, protect rod photoreceptors by suppressing the crucial mitochondrial pathway of the
cell death (Fig 8). Our results also showed that intravitreal treatment with clusterin reduces
TUNEL positive cells after 24hours of clusterin post-injection (Fig 8C and 8D). The results
indicate that down-regulation of Bax at 24 hours with clusterin may lead to reduction of cell
death. Furthermore, intravitreal injection of clusterin at P15 resulted in significant protection
of ONL when examined at P21 and P30. Our results clearly demonstrated that inhibition of
Bax after 24 hours of clusterin post- injection was significant enough to cause effects on the
number of rods at the later stage of S334ter retinas (Figs 3 and 5). Further support for the sug-
gestion comes from clusterin inhibiting mitochondrial apoptosis through up-regulation of Akt
phosphorylation in other systems [51, 80, 81, 123]. Thus, activation of Akt and suppression of
Bax with clusterin may contribute, in part, to protect rod photoreceptors in a later stage of
S334ter retinas. In support of these findings, photoreceptor cell death in the rd1 mouse retina
is associated with inactivation of the Akt survival pathway [118]. Future in vivo studies will
address the specific mechanisms by which clusterin promotes survival of rods.

In RP retina, we also observed up-regulation of pSTAT3 in Miiller cells after clusterin treat-
ment (Fig 7). In the past, efforts to rescue photoreceptors through manipulation of the STAT3
pathway in vitro or in vivo have produced encouraging results in animal models of retinal
degeneration [124, 125]. Activation of the STAT3 pathway in Miiller cells by trophic factors
such as IL-6 family members—including Oncostatin M (OSM), leukemia inhibitory factor
(LIF), cardiotrophin 1 (CT-1), and ciliary neurotrophic factor (CNTF)—regulates the photo-
transduction apparatus in photoreceptor cells and lead to rescue of photoreceptors [72, 125-
130]. In addition, activation of STAT3 and inhibition of Bax activity via clusterin has been docu-
mented in hypothalamus, plasma, and cancer cells [131-133]. Thus, our data suggest that exoge-
nous application of clusterin in RP activates STAT3 in Miiller cells that may promote survival
signaling and protect the rod photoreceptors. Miiller cells produce protective factors including
IL-6 and leptin in response to stress-induced retinal degeneration and regulate photoreceptor
protection [128, 130, 134]. Additionally, IL-6 and leptin cytokines have a synergistic effect on
retinal regeneration by stimulating STAT?3 activation in Miiller cells [134]. Thus, clusterin
which is known to have role in modulating IL-6/STAT3 activation by suppressing Bax in cancer
cells [131], enhancing leptin-induced STAT3 activation in hypothalamus [132] and regulating
leptin activity in plasma [133], may trigger the IL-6 and leptin pathways to allow survival of pho-
toreceptors in RP via STAT3 activation on Miiller cells. There is also evidence that clusterin
receptors are expressed in photoreceptors and Miiller cells. Identified clusterin receptors are the
Transforming Growth Factor (TGF) beta receptor type I and II [135] and clusterin binds with
high affinity to the multi-ligand receptors apolipoprotein E receptor 2 (ApoER2) and very low-
density lipoprotein receptor (VLDLR) [136]. The VLDLR is present in the photoreceptors [137].
In addition, TGF-beta 1 and—beta 2 have been found in the photoreceptor inner and outer seg-
ments, RPE cells, Miiller cells, ganglion cells, and vascular-associated cells [138-140]. Thus, clus-
terin’s cell survival action may be through these receptors [141, 142]. Alternatively, clusterin
may act as heat-shock proteins in the oxidative-stress condition because clusterin and small
heat-shock proteins are molecular chaperones that share many functional similarities [52, 143].

Conclusion

In this study, we investigated if an exogenous application of clusterin could affect the rod
survival in RP retina, with the hypothesis that clusterin was an “innate defender.” Our data
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showed neuroprotective features of clusterin in a transgenic rat model of RP. Our study
clearly demonstrated that clusterin treatment promotes rod cell survival by activating both
Akt and STAT3 while deactivating Bax. These effects are encouraging and so dramatic that
clusterin may be a potential therapeutic agent in slowing the progression of vision loss in
human RP.

Supporting information

S1 Fig. Densitometry analysis of clusterin-a bands. Densitometry analysis of clusterin-o
bands at P15, P30, and P60 in normal and RP retinas was shown by measuring the intensity
relative to the control B-actin. Data represents mean + SEM.

(TIF)

$2 Fig. TOPRO-3 staining in RP Saline and RP Clusterin (Lt) retinas. Confocal micro-
graphs taken from vertical cryostat sections processed for TOPRO-3 staining in P21-, P30-,
P45-RP Saline and P21-, P30-, P45-RP Clusterin (Lt) retinas. The thickness of the ONL

for P21, P30, and P45 RP Saline retinas was 13.2 £ 0.2 pm, 10 + 0.2 um and 4.2 + 0.15 pm,
respectively. The thickness of the ONL for P21, P30, and P45 RP Clusterin (Lt) retinas was
14.5+0.3 pm, 12 + 0.3 um and 4.3 £ 0.1 pm, respectively. ONL, outer nuclear layer; OPL,
outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell
layer; P, postnatal; N, normal; RP, Retinitis Pigmentosa. Data represents mean + SEM. Scale
bar = 20 um. Data represents mean + SEM, *** P<0.001.

(TIF)

S3 Fig. Expression of Cleaved caspase- 3 in saline- and clusterin-treated RP retinas.
Cleaved caspase-3 expression level was evaluated by immunoblot analysis in saline- and clus-
terin-treated RP retinas (A). Retinas were collected at 5 min, 1 hour, 6 hours, and 24 hours
after injection at P15. Cleaved caspase-3 expression was significantly decreased at 24 hours
after clusterin injection (+) compared to 24 hours of saline injection (-). Densitometry analysis
of cleaved caspase-3 expression was shown by measuring the intensity relative to the control B-
actin (B). Data represents mean + SEM, *** P<0.001.

(TIF)

S1 Table. Quantification of clusterin precursor expression in normal vs RP retinas by
immunoblot analysis. Legend: Intensity of immunoreactive bands of clusterin precursor in
RP retinas compared to normal retinas.

(DOCX)

$2 Table. Quantification of clusterin-a expression in normal vs RP retinas by immunoblot
analysis. Legend: Intensity of immunoreactive bands of clusterin- o in RP retinas compared to
normal retinas.

(DOCX)

$3 Table. Quantification of rhodopsin-immunoreactive rods in RP Saline, RP Saline (Rt)
and RP Clusterin (Lt) P30 retinas. Legend: The rhodopsin-immunoreactive rods were
counted from the 1 x 1 mm? sampling areas of whole-mount retinas (Fig 3H).

(DOCX)

$4 Table. The coefficient of clustering of rods in RP Saline, RP Saline (Rt) and RP Clus-
terin (Lt) P30 S334ter retinas. Legend: The coefficient of clustering was measured in all
groups (Fig 3I).

(DOCX)
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S5 Table. Quantification of clusterin precursor and clusterin-o. expression in RP Saline
(Control), RP Saline (Rt), and RP Clusterin (Lt) retinas by immunoblot analysis. Legend:
Immunoblot analysis shows up-regulation of clusterin precursor and clusterin-o in both RP
Saline (Rt) and RP Clusterin (Lt) retinas compared to RP Saline retinas. Beta actin was used

as loading control to obtain relative clusterin precursor (Fig 4B) and clusterin-o. expression
(Fig 4C).

(DOCX)

$6 Table. Quantification of rhodopsin-immunoreactive rods in RP saline, RP Clusterin
Single (Lt), and RP Clusterin Multiple (Lt) retinas. Legend: The rhodopsin-immunoreactive

rods were counted from the 1 x 1 mm? sampling areas of whole-mount retinas (Fig 5B).
(DOCX)

S7 Table. Quantification of pAKT expression in RP Saline vs RP Clusterin (Lt) retinas by
immunoblot analysis. Legend: Immunoblot analysis shows up-regulation of pAKT expression
in RP Clusterin (Lt) retina compared to RP Saline retinas from 5 minutes after injection at
P15. Beta actin was used as loading control to obtain relative pAKT expression (Fig 6B).
(DOCX)

S8 Table. Quantification of pSTAT3 expression in RP Saline vs RP Clusterin (Lt) retinas
by immunoblot analysis. Legend: Immunoblot analysis shows up-regulation of pSTAT3
expression in RP Clusterin (Lt) retina compared to RP Saline retinas at 5minutes, 1 hour, and
6 hours after injection at P15. Beta actin was used as loading control to obtain relative pSTAT3
expression (Fig 7B).

(DOCX)

S9 Table. Quantification of BAX expression in RP Saline vs RP Clusterin (Lt) retinas by
immunoblot analysis. Legend: Immunoblot analysis shows suppression of BAX at 24hours
after clusterin injection at P15. Beta actin was used as loading control to obtain relative BAX
expression (Fig 8B).

(DOCX)
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