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Abstract: The characterization of nanostructured surfaces with sensitivity in the sub-nm range
is of high importance for the development of current and next-generation integrated electronic
circuits. Modern transistor architectures for, e.g., FinFETs are realized by lithographic fabrication of
complex, well-ordered nanostructures. Recently, a novel characterization technique based on X-ray
fluorescence measurements in grazing incidence geometry was proposed for such applications. This
technique uses the X-ray standing wave field, arising from an interference between incident and the
reflected radiation, as a nanoscale sensor for the dimensional and compositional parameters of the
nanostructure. The element sensitivity of the X-ray fluorescence technique allows for a reconstruction
of the spatial element distribution using a finite element method. Due to a high computational time,
intelligent optimization methods employing machine learning algorithms are essential for timely
provision of results. Here, a sampling of the probability distributions by Bayesian optimization is
not only fast, but it also provides an initial estimate of the parameter uncertainties and sensitivities.
The high sensitivity of the method requires a precise knowledge of the material parameters in the
modeling of the dimensional shape provided that some physical properties of the material are known
or determined beforehand. The unknown optical constants were extracted from an unstructured but
otherwise identical layer system by means of soft X-ray reflectometry. The spatial distribution profiles
of the different elements contained in the grating structure were compared to scanning electron
and atomic force microscopy and the influence of carbon surface contamination on the modeling
results were discussed. This novel approach enables the element sensitive and destruction-free
characterization of nanostructures made of silicon nitride and silicon oxide with sub-nm resolution.

Keywords: GIXRF; Bayesian optimization; periodic nanostructure

1. Introduction

Since nanotechnology and thus nanostructures of different kind are relevant in many
areas of science and technology, metrology techniques that can support design, research,
and fabrication of such nanostructures are of high importance. Especially in the semicon-
ductor industry, which is probably the most popular field of application for nanotechnology
as well as a strong driver for research in this field, complex 2D and 3D nanostructures
with feature sizes in the single-digit nanometer regime [1,2] are employed in order to keep
Moore’s law [3] alive. The performance of these nanostructures crucially depends on a
well-controlled fabrication, both in terms of targeted dimensional parameters and 3D ele-
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ment compositions (e.g., dopant distributions). Thus, there is a strong need for metrology
techniques that allow us to characterize these parameters with sufficient sensitivity [4].

Typical analytical or dimensional techniques used in this context are scanning and
transmission electron microscopy (SEM, TEM) [5,6], atomic force microscopy (AFM) [7],
and techniques that also address elemental distributions such as secondary ion mass
spectroscopy (SIMS) [8], atom probe tomography (APT) [9], and energy-dispersive X-ray
spectroscopy (EDX) combined with scanning electron microscopy (STEM) [10]. All of these
techniques have different advantages and disadvantages regarding sample preparation
and consumption, achievable spatial resolution, required duration, and other experimental
parameters (e.g., tip sizes). Optical metrology based on light–matter interaction has a
significant advantage in terms of measurement speed (with respect to slow techniques,
e.g., APT and STEM) and the ability to statistically measure large areas in contrast to
scanning techniques. Optical reflectometry, also known as optical critical dimension
(OCD) [11] metrology, is still used and is continuously improved despite the resolution
limits that have been reached. In order to keep pace with shrinking structures, intensive
research is being carried out to reduce the wavelength of the employed radiation and to
increase the sensitivity via the dispersion of the periodic nanostructured surface. This
is called deep ultraviolet (DUV) or extreme ultraviolet (EUV) scatterometry and can be
extended into the X-ray spectral range. In X-ray scattering techniques, a distinction is made
between measurements in transmission, also known as critical dimension small angle X-ray
scattering (CDSAXS) [12], and reflection mode, known as grazing incidence small angle
X-ray scattering (GISAXS) [13,14]. Both techniques have already shown that they allow
for the dimensional reconstruction of nanostructures with an uncertainty in the sub-nm
range [15,16]. CDSAXS can require a special sample thinning. Usually, these techniques
also employ rather high photon energy X-rays, which limits the optical contrast between
different materials within the investigated nanostructures.

In this paper, we employ the grazing incidence X-ray fluorescence analysis (GIXRF) [17]
method and soft X-rays (<1 keV) instead to analyze the nanostructured surface. This non-
destructive technique allows reconstructing the composition of the sample in terms of
both their dimensional properties as well as the distribution of different elements, since
the emitted X-ray fluorescence (XRF) is characteristic for each element. GIXRF uses the
X-ray standing wave (XSW) field [18,19], which results from the interference between
the incident and the reflected X-ray beam as a nanoscale sensor. The intensity modula-
tion inside the XSW field significantly influences the X-ray fluorescence intensity of an
element depending on its spatial position within the electromagnetic field distribution.
Recent studies have shown the potential of the GIXRF technique for the dimensional and
compositional nanometrology of periodic 2D [20] and 3D [21,22] nanostructures.

In this work, we further develop this approach toward being a reliable metrology
technique by employing a combined element sensitive reconstruction for the fluorescence
signals of oxygen, nitrogen, and, in parts, also carbon from within a silicon nitride grat-
ing structure. Artificial intelligence and machine learning (ML) techniques are studied
intensively for a wide range of applications [23–25]. These techniques can help to improve
the optimization of different materials. The integration of ML, such as the Bayesian opti-
mization [26] algorithm based on Gaussian processes in combination with a finite-element
Maxwell solver [27] allows to control the computational modeling effort and to derive first
estimates of the uncertainties of the parameterized nanostructure. For an even increased
reliability, we are experimentally determining the optical constants of the employed ma-
terials instead of using tabulated data, as these are often not realistic for nanolayers and
nanostructures [28]. Finally, we compare and validate the results against AFM and SEM
cross sections.
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2. Materials and Methods
2.1. Experimental

As an example of two-dimensional nanostructures, a lithographically patterned silicon
nitride grating on a silicon substrate was investigated. It was manufactured by means of
electron beam lithography (EBL) at the Helmholtz-Zentrum Berlin. The nominal pitch of
the grating is p = 100 nm, the nominal height is h = 90 nm, and the nominal line width of
the sample is w = 50 nm. For the manufacturing of the gratings, a silicon substrate with a
90 nm-thick Si3N4 layer was used. ZEP520A, a positive resist (organic polymer), was spin-
coated on the substrate and developed with a Vistec EBPG5000+ e-beam writer, operated
with an electron acceleration voltage of 100 kV. The grating was etched via reactive ion
etching using CHF3 and to remove the remaining resist an oxygen plasma treatment was
applied. A sketch of the cross-section is shown in Figure 1a). The total structured area of
the grating was 1 mm × 15 mm and the sample area outside the patterned region consists
of the originally deposited Si3N4 layer. Directly after fabrication, cross-section SEM images
have been recorded on a sister sample.

Figure 1. (a) Cross-section with the finite-element mesh grid showing the layout used for the
simulation. The height h, the width w, the sidewall angle swa, and the oxide layer thicknesses in
the groove tg and on the grating line tt were optimized as independent parameters. The oxide
layer on the substrate ts was kept constant during the optimization. (b) The calculated electric field
strength inside and outside the structure is shown for θ = 1.2◦ and ϕ = 1.6◦. For the nitrogen and
oxygen fluorescence, the electric field strength is integrated and the reabsorption is calculated with
the distance ydis the photon has to travel to leave the structure.

We performed GIXRF and X-ray reflectometry (XRR) measurements in PTB’s labo-
ratory [29] at the BESSY II electron storage ring using the plane-grating monochromator
(PGM) beamline [30] for undulator radiation. The sample was mounted in an ultrahigh-
vacuum (UHV) measurement chamber [31], where a nine-axis manipulator allows for
an accurate sample alignment with respect to the direction of incident X-ray beam. The
incidence angle θ is defined as the angle between the X-ray beam and the sample surface.
The azimuthal angle ϕ is defined as the angle between the incident beam and a plane,
which is normal to the sample surface and parallel to the direction of the grating lines such
that ϕ = 0◦ is defined as the orientation parallel to the plane of incidence. Both sample
rotation axes can be aligned with an uncertainty below 0.01◦.

As we have employed radiometrically calibrated X-ray fluorescence (XRF) instrumen-
tation, we can perform reference-free GIXRF [32] and gain a quantitative access to the
elemental mass depositions present on the sample [33]. At each angular position for θ and
ϕ, a fluorescence spectrum is recorded with a calibrated silicon drift detector (SDD) [34]
and the incident photon flux is monitored by means of a calibrated photodiode. The GIXRF-
measurements were performed at an incident photon energy of Ei = 680 eV, allowing for
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the excitation of N-Kα as well O-Kα fluorescence radiation, which mainly originates from
the surface oxide layer on the grating structure.

In addition, we have performed XRR experiments on the nonstructured Si3N4 layer
next to the grating at the same photon energy (Ei = 680 eV). From this, we can determine
the optical constants of the SiO2 layers and the Si3N4 layer, which are expected to be more
reliable in the soft X-ray spectral range than using only tabulated data as in [35].

For an independent validation of the dimensional GIXRF reconstruction results, addi-
tional AFM measurements were performed with an Nanosurf Nanite 25 × 25. The sample
was measured under tapping mode condition and a standard pyramidal shaped silicon
probe with a tip radius <10 nm was used, as it is commonly applied for the inspection
of diffraction gratings [36]. The AFM probe is characterized by a resonance frequency of
190 Hz and force constant of 48 N/m. The inspected sample area was 500 × 500 nm2 in
size covering about five grating lines.

2.2. Simulation and Optimization of Fluorescence Intensities

The GIXRF signals are directly related to the XSW field intensity distribution, which,
besides the incident photon energy and the incidence and azimuthal angles, depends on the
shape and material composition of the illuminated nanostructured surface. To reconstruct
these sample features from the experimental data, we applied a finite-element-method
(FEM)-based forward calculation of the XSW and optimized the structural parameters to
reproduce the experimental data.

In Figure 1, the basic principle of the FEM procedure is shown. The mesh grid and
the model parameters are displayed in Figure 1a. The FEM solver calculates the electric
near-field for a given structure (Figure 1b). The amount of fluorescence photons generated
at a given coordinate depends on the local electric near-field intensity (E(x, y)) and the
compositional and fundamental parameters of the respective material (mass fraction of
the fluorescent element in the material Wk, photoionization cross-section for the incident
photon energy τ(Ei), and the fluorescence yield ωk, taken from databases [37] or dedicated
experiments [38]). These photons can be reabsorbed on the path through the sample toward
the detector (Figure 1b) with a probability depending on the materials mass attenuation
coefficient µ(E f ) for the fluorescence photon energy E f , the density ρ of the material, and
the distance to the surface of the nanostructure ydis(x, y). Eventually, the fluorescence
photon will be detected with a given detection efficiency ε(E f ) if it is arriving within the
effective solid angle of detection Ω. The overall emitted fluorescence intensity also depends
on the incident photon flux N0.

Thus, the measured emitted fluorescence intensity Φ(θ, ϕ, Ei) (derived from the de-
tected count rate F(θ, ϕ, Ei)) can be modeled using the integration over the full area of
the fluorescent material of the nanostructure as described by the modified Sherman equa-
tion [20,22,39]:

Φ(θ, ϕ, Ei) =
4π sin θ

Ω
F(θ, ϕ, Ei)

N0ε(E f )︸ ︷︷ ︸
Iexp

=
Wkρτ(Ei)ωk

∑ dx
·∑

x
∑
y
|E(x, y)|2 · exp

[
−ρµ(E f )ydis(x, y)

]
dxdy︸ ︷︷ ︸

Imodel

. (1)

Equation (1) is applied for nitrogen and oxygen fluorescence and has been imple-
mented directly in the Maxwell solver to eliminate errors due to conversion to a regular
Cartesian grid. The calculated emitted fluorescence intensities Imodel are then compared
against the experimental value Iexp. An optimal set of the model parameters can then be
determined through use of a global optimization algorithm such as Bayesian optimization
(BO) [26,27]. BO uses a stochastic model, a Gaussian process, of an unknown objective
function to be minimized in order to determine promising parameter values [26,40]. The
mathematical background of Bayesian optimization can be found in [26]. The expected
improvement EI is crucial to find the best parameters to evaluate the function and identify
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the global minimum. The EI of an unknown function can be calculated with the Gaussian
process. The next sampling point is where the EI is at its maximum

xn+1 = argmax(EIn(x)). (2)

The EI is high where we have not evaluated the function or found values close
to a minimum of the function. In a previous work [27,41], it was shown that the BO
performs much better than other metaheuristic optimization approaches with respect to
the computing time needed to find the global minimum. Since BO considers all previous
function evaluations, it can be more efficient than other metaheuristic global optimization
strategies [27] and local optimization strategies [42]. This is a crucial benefit here, as one
model calculation takes several minutes on a standard desktop computer. For a detailed
benchmark study of the different optimizer methods in comparison to BO, see [27,41]. For
our problem, the BO gives good results in a reasonable amount of time [41]. Here, we use
an implementation of BO that is part of the JCMsuite software package [43].

The error function χ2

χ2( ~gp) = ∑
θ,ϕ

(Iexp(θ, ϕ)− Imodel( ~gp, θ, ϕ))2

σ2
N(θ, ϕ)

(3)

was minimized with respect to the different model parameters of ~gp described earlier
(see Figure 1a and model errors for the nitrogen εN and the oxygen fluorescence signals
εO). These model error parameters are introduced to consider potential errors, e.g., the
uncertainty of the employed atomic fundamental parameters or the influence of a thin
surface contamination layer into account. Even though material-dependent parameters
such as optical constants or material densities deviate most likely from the tabulated bulk
data for the grating materials (SiO2 and Si3N4), we do not include these as free parameters
in the model. Indeed, as this would drastically increase the number of model parameters
and thus prolong the necessary calculation times, we determine these parameters sepa-
rately using XRR (described in the next section). σN is the calculated experimental error
consisting of an error estimation for the effective solid angle of detection σΩ(θ) and the
error contributions originating from counting statistics

√
F

F for the respective fluorescence
line as well as for the spectra deconvolution σnum.

σN(θ)
2 =

(√
F(θ)

F(θ)

)2

+ σΩ(θ)2 + σnum(θ)
2 (4)

By inverting the Hessian matrix Hkj [44] of the error function,

Hkj =
∂2χ2( ~gp)
∂gpj∂gpk

(5)

at the minimum of χ2, it is possible to determine the confidence intervals (H)−1 of the
model parameters, if they are Gaussian distributed as assumed (Assumption 1).

The standard deviation or noise level at the global minimum parameter set is defined

as STD =
√

χ2

DOF , where DOF = N − M is the difference between the number of mea-
surement points N and the number of free model parameters M, and thus the degrees
of freedom.

The model parameter confidence interval can then be calculated as

σ~gp = STD
√

diag((H)−1) (6)

Based on the Gaussian process model of χ2( ~gp), we determine an estimate of the
Hessian matrix by computing all second derivatives of the Gaussian process model of χ2 at
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the minimum and can then estimate the error covariance matrix (H)−1 and the parameter
confidence interval.

3. Results and Discussion
3.1. Validation of the Optical Material Parameters

From the angle-dependent measurement of reflection intensities on a layered system,
information about layer thicknesses, densities, or even their optical constants can be
obtained [45]. This is well known and widely used. Figure 2b shows the experimental
data in comparison with the best simulation. The high frequency oscillation visible in
the XRR curve is a clear indication of a multilayer system. Due to the native oxide layer
of the Si substrate (Assumption 2) and the removal of the photo resist, resulting in an
oxidized surface on the Si3N4 layer, which is well known due to the oxygen plasma
cleaning [46], we apply a three-layer model for the XRR simulation (as shown in the inset
of Figure 2a). Since the calculation of the reflectivity for a 1D layer system is several
orders of magnitude faster than the FEM based 2D GIXRF modeling, statistical analysis
methods of the posterior distributions can be used for a large number of parameters
such as layer thickness, roughness, and optical constants. We applied the Markov chain
Monte Carlo method (MCMC) [47] to determine the individual parameter uncertainties
and to resolve possible interparameter correlation effects [48]. In Figure 2a, the posterior
distribution determined in this procedure is shown as projections of the refractive index
n(Si3N4) = 1− δ + iβ and thickness h of the Si3N4 layer. The almost perfect Gaussian-
like shape of the distributions, which is also present in all other parameters, allows the
determination of uncertainties directly from the measurements. The relative uncertainties of
the experimental data reconstructed with a linear error model (ax + b) are with (0.6± 0.2)%
exactly in the expected range.

Si3N4

Si

SiO2

Figure 2. Cont.
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Si3N4

Si

SiO2

Figure 2. (a) The posterior distributions for relevant parameters δSi3 N4 , βSi3 N4 , and the Si3N4 thickness
h obtained from the MCMC sampling. The red line marks the mean of the distribution and the dotted
black lines in the histogram indicates a 3σ interval. In the top right corner, a sketch of the used layer
stack is shown. (b) Comparison of the experimental data (black stars) and the model calculation (red
line) as obtained by the MCMC.

From this modeling, we derived optical constants for the top SiO2 (δ = (8.73± 0.03)10−4,
β = (2.58± 0.04)10−4) and the Si3N4 (δ = (12.59± 0.05)10−4, β = (2.58± 0.02)10−4) layers.
By comparing the experimentally determined optical constants with tabulated Henke
data [49], one can estimate the densities of the respective materials and their deviation
from the respective bulk densities. Relative densities of (0.89± 0.01) and (0.79± 0.01) were
found for Si3N4 and SiO2, respectively. This is in line with the already observed material
density reduction discussed in [20]. The reduced densities as well as the experimental
optical constants are used for the GIXRF reconstruction.

3.2. GIXRF Reconstruction Results
3.2.1. Virtual Experiment

Before we apply the reconstruction model to real experimental data, we apply it to
an artificial data set in order to test the reconstruction method and to study whether an
increased incident photon energy that is capable of also exciting an oxygen fluorescence
signal is beneficial. In our previous study [20], measurement data at Ei = 520 eV were
analyzed and an indirect sensitivity to the surface oxide layer was found, even though
no fluorescence signal originating from it was used for the reconstruction. The indirect
sensitivity was merely due to the attenuation behavior of the oxide layer; thus, we expect an
increased sensitivity if a direct signal originating from it is also used. For this purpose, we
generate artificial experimental data by calculating model curves using the reconstruction
model for a given set of parameters and the two incident photon energies of Ei = 680 eV
and Ei = 520 eV for the first time. To mimic experimental noise, we apply a Gaussian
disturbance with a width of 3% (see Table 1). By reconstructing the artificial data sets,
we can now analyze the influence of the increased incident photon energy on the recon-
struction results and their confidence intervals without the influence of any experimental
error contributions.

In Figure 3, the corresponding artificial GIXRF curves and reconstruction results are
displayed. They match the artificial data well for both photon energies and characteristic
features, e.g., the first local maxima are well retrieved. From the BO reconstruction, we are
able to calculate the confidence intervals of the reconstructed parameters and, as shown in
Table 1, they agree well with the initial parameters within the derived confidence interval.

From a comparison of the determined confidence intervals for the two different
configurations (Configuration A, Ei = 520 eV, only the nitrogen signal is modeled and
Configuration B, Ei = 680 eV, both nitrogen and oxygen signals are modeled; see Table 1),
the positive influence of also considering the oxygen fluorescence signal is obvious. Es-
pecially for the height and the groove oxide thickness, the achieved confidence intervals
are significantly smaller for configuration B. Nevertheless, for configuration A, the angle-
dependent nitrogen fluorescence contains all relevant information about the dimensional
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properties of the nanostructure and even the surface oxide layer, as already pointed out in
our earlier work [20], but here, we investigated it systematically with simulated data and
the calculation of the confidence intervals.

Table 1. The values of the geometrical parameters of the synthetic data from the GIXRF BO recon-
struction with the model parameter confidence intervals (CI) for Ei = 520 eV (Configuration A, only
the nitrogen signal is modeled) and Ei = 680 eV (Configuration B, both nitrogen and oxygen signals
are modeled). The pitch was set to p = 50 nm. (height h, width w, sidewall angle swa, oxide layer in
the groove tg, and oxide layer on the grating line tt)

Parameter Intial Config. Ratio
Name Value A CIA B CIB

CIB
CIA

h/nm 90 89.4 0.6 90.3 0.4 0.67
w/nm 25 24.87 0.07 25.08 0.06 0.85
swa/◦ 88 88.1 0.1 87.9 0.1 1.0
tt/nm 3 3.13 0.06 3.02 0.05 0.83
tg/nm 5 5.3 0.6 5.0 0.1 0.17

εN 1 1.02 0.01 1.00 0.01 1
εO 1 - 0.99 0.01

artificial model

Figure 3. Comparison of the expected artificial disturbed simulated N-Kα (green points) or O-Kα

(blue points) fluorescence intensities for the different excitation energies and the corresponding BO
reconstruction. Clearly visible is how the first peak in the nitrogen signal shifts with increasing
energy to smaller incident angles.

3.2.2. Real Experimental Data

Using the same model and methodologies, the real experimental data, measured
according to configuration B, were modeled. A comparison of the two experimental data
sets and the resulting modeled data is shown in Figure 4. The obtained and normalized
N-Kα (a) and O-Kα (b) fluorescence intensities for different angles θ and ϕ are shown. The
corresponding optimal parameters and confidence intervals are summarized in Table 2.
Again, the confidence intervals of the structure parameters derived from the BO posterior
distribution are similar to those determined in the virtual experiment.
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Figure 4. Comparison of the measured and simulated fluorescence maps for N-Kα (a) and O-Kα (b)
based on the reconstructed parameter set. (c) Comparison of the experimental N-Kα (green) or O-Kα

(blue points) fluorescence intensities for ϕ = 0◦ to the reconstructions from the Bayesian optimization
(red lines).

Table 2. The values of the geometrical parameters of the nanostructures from the GIXRF BO recon-
struction with the model parameter confidence intervals (one sigma). The parameters are height h,
width w, sidewall angle swa, oxide layer in the groove tg, and oxide layer on the grating line tt.

Parameter Reconstructed Confidence Intervals
Name Value Value

h/nm 97.5 0.5
w/nm 49.77 0.07
swa/◦ 83.54 0.09
tt/nm 2.84 0.03
tg/nm 5.82 0.09

εN 0.918 0.006
εO 1.059 0.007

Similar to the result from the virtual experiment, a higher sensitivity for the line width
is observed as compared to the height. This is expected to be a result of the relatively large
line height with respect to the achievable information depth in the soft X-ray regime. Thus,
the nitrogen fluorescence radiation from the bottom of the grating line does not contribute
significantly to the overall observed signal. Nevertheless, all calculated confidence intervals
are in the sub-nm regime.

It should also be noted that the two modeling error parameters εN and εO deviate
from unity within a range of 10%. This is the same magnitude that one would expect the
relative uncertainty of the employed fluorescence production cross-sections (product of
fluorescence yield and photo ionization cross section) to be in.

To validate whether the calculated confidence intervals are in a realistic magnitude,
we repeated a GIXRF measurement ten times at ϕ = 0◦ on the same sample and position
and applied the reconstruction for every single measurement. We calculated the standard
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deviation of all model parameters and found that it is in a similar regime as the calculated
confidence intervals. Parameter correlation cannot be identified from the Hessian matrix,
as we expected from previous investigation based on a Bayesian inversion study [50].
Systematic errors not taken into account will increase the final uncertainties. This problem
is often called model error and refers to the whole physical model or virtual experiment that
is applied and is not limited to the finite element model. The next section shows that these
modeling uncertainties can have a significant impact on the reconstruction parameters.

3.2.3. Influence of Model Errors

In addition to oxygen and nitrogen signals in the fluorescence spectra, carbon fluo-
rescence was also observed. A presence of carbon on the sample surface is likely as the
sample is stored under normal ambient conditions. A lateral scan of the sample (Figure 5a)
at a fixed incident angle θ = 15◦ reveals that this carbonaceous contamination is not
homogeneously distributed over the patterned area. In the center along the lines of the
grating area (x = −0.15 mm), a strong increase of the carbon signal and a slight increase
of the oxygen signal can be observed, whereas the nitrogen signal is practically constant.
This can be connected to a decrease in the reflected signal and it can be observed as a dark
line along the grating in a microscope image. In an earlier benchmark study, the sample
under investigation was measured in various scatterometers and electron microscopes
around the world. A contamination of the grating surface by these techniques can therefore
not be excluded. Here, we take advantage of this unintentionally created contamination
layer to demonstrate the sensitivity and the influence of model errors when using a model
without contamination layer. At each lateral position shown in the figure, we performed a
GIXRF angular scan (at ϕ = 0◦) and performed the reconstruction, including the confidence
interval calculation, without considering any contamination. By comparing the different
GIXRF scans (not shown here), a difference in the intensity of the fluorescence signal can
be observed for the different elements as a function of the angle of incidence.

Figure 5b shows the obtained differences between the reconstructed model parameters
at each position to the reference position at x = 0 mm (position where the data shown
in Figure 4 was taken). The model parameters at −0.15 mm, which is the position with
maximal carbon and oxygen contamination, differ clearly with respect to less contaminated
areas. The difference is larger than the calculated confidence intervals from the recon-
struction, and they are also much larger than the expected lateral inhomogeneities of the
sample. In addition, the nearly constant nitrogen fluorescence signal in the X direction
clearly indicates a homogeneous overall amount of Si3N4, which is in contradiction to the
larger cross-sectional area of the grating determined by the reconstruction from the GIXRF
model. The reconstructed heights and widths increase by more than 4 nm.

This behavior can be explained considering the XSW near-field distribution inside
the grooves. The slight increase of the oxygen due to the contamination signal can only be
incorporated by increasing the oxide layer thicknesses. However, an increase of the oxide
layer thickness weakens the penetrating field inside the Si3N4 and thus the emitted nitrogen
fluorescence. To compensate for this, a larger grating cross section is reconstructed. One
may think that the reconstruction algorithm could circumvent this by simply increasing
only the groove oxide layer thickness, which does not affect the nitrogen signal so much.
However, as shown in part (c) of the figure, where the angular oxygen fluorescence signal
contributions from the different parts in the structure model are shown, the groove oxide
has a significantly different angular behavior as compared to the oxide on the grating
line surface. The features at about 1◦ and 2.7◦ are especially distinct. For this reason, the
reconstruction algorithm must increase both in order to account for the higher oxygen
signal in the contaminated area throughout the angular range.

This shows for the first time not only how sensitive the GIXRF method is but also
how carefully the models have to be developed for a realistic uncertainty estimation. For a
complete uncertainty analysis, however, further influences must be investigated. Effects
such as roughness, alignment errors, and inhomogeneous atomic distributions within the
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structures may lead to larger uncertainty contributions. However, even if the model is not
accurate enough, a spatially resolved reconstruction can reveal flaws of the model.
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Figure 5. (a) Here, the C-Kα, N-Kα, and O-Kα fluorescence intensities at θ = 15◦ where no XSW
needs to be considered from different positions on the sample are compared. (b) The reconstruction
results for the width, the height, the thickness of the oxide in the groove, and the thickness of oxide
around the line for the different positions are plotted. (c) The various contributions from the line, the
groove, and the oxide layer of the silicon wafer to the total oxygen fluorescence are compared.

3.3. Comparison with SEM and AFM

For a validation of the dimensional and compositional parameters as derived from
the GIXRF modeling without the thick carbon contamination, we have performed AFM
measurements on the sample and also used SEM (on a witness sample). As AFM is an
established method to map the surface topology of nanostructures with sensitivities down
to the nm regime, we can use an AFM to verify the GIXRF reconstructed total line heights
(difference between top surface and groove surface). From the AFM data, we determined
a total line height of 98.4 nm. This is consistent with the GIXRF reconstructions within
the confidence intervals. Here, it should be noted that the AFM measurement is only
representative for the small area of the grating where it was performed whereas the GIXRF
result is averaged over a much larger area due to the elongated beam footprint. Due to the
interplay of the tip shape with the nanostructure, other dimensional parameters such as,
e.g., line width or sidewall angle are not deduced in a straightforward manner [51].
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In Figure 6 the GIXRF-reconstructed shape of the sample as well as the AFM profile,
obtained by averaging two in juxtaposition located AFM line profiles, is overlayed onto
the SEM cross-section. Therefore, the GIXRF line profile and the AFM were scaled to the
SEM image in order to match the line pitch while keeping the aspect ratios constant. As far
as the low contrast allows, the agreement with respect to line height, sidewall angle, line
width, and even the oxide layer thicknesses (assuming the bright areas in the SEM to be the
oxide, Assumption 3) is reasonably good. The reconstructed thicker groove oxide can also
be seen in the SEM picture. The difference is greater than expected from the confidence
intervals, but as stated before, the SEM image was taken from a witness sample. Therefore,
an exact match is unlikely due to inaccuracy in the deposition of the Si3N4 layer and in the
overall production process.

Figure 6. Comparison of the AFM data with the result of the GIXRF reconstruction and an SEM
picture from a witness sample.

4. Conclusions

Here, we have demonstrated how the GIXRF-based methodology for a dimensional
and compositional characterization of regular nanostructures can be enhanced with respect
to the achieveable sensitivities by incorporating fluorescence signals of different elements
from within the nanostructure. In addition, the incorporation of supporting experiments
such as, e.g., XRR for optical constant verification and machine learning techniques such
as Bayesian optimization decrease the necessary computational effort of the FEM-based
reconstruction. The BO allows for intelligent and fast scanning of the parameter space as
compared to other optimizer approaches.

For the reconstruction, we need to make the following assumptions. For the calculation
of the confidence intervals, we need to assume that the posterior distribution of the model
parameters are Gaussian distributed. For the used model, we assumed that the Si substrate
is oxidized and that any contamination is negligible. For the comparison of the shape of
the nanostructure, we assumed that the bright areas in the SEM image represent the oxide.

Initial steps toward determining a reliable uncertainty budget for the reconstructed
parameter set were taken by deriving confidence intervals for the parameters from the
Gaussian process model. We have shown how the incorporation of the oxygen signal shifts
the achievable sensitivities well into the sub-nm regime. This method can also be applied to
various systems as described in this paper [22]. The obtained GIXRF reconstruction results
agree well with results from SEM and AFM, indicating the validity of the methodology.

In addition, we have shown that the methodology is also somewhat sensitive toward
unexpected effects on the nanostructure using the example of the carbon contamination.
Notably, the element sensitivity of X-ray fluorescence and the behavior of the reconstruction
results indicate if unexpected effects are present on the nanostructure.
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By developing more sophisticated techniques to quantify the corresponding model
error influences on the final parameter uncertainties, this can be a promising technique for
nanostructure characterization. In fact, by combining it with techniques such as soft X-ray
scattering, one may even enhance the obtainable sensitivities and learn about important
quality parameters, e.g., line roughnesses [16].
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