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Abstract: This work investigates the use of an intelligent and unobstructive sensing technique for
maintaining vehicle cabin’s indoor air quality while simultaneously assessing the driver metabolic
rate. CO2 accumulation patterns are of great interest because CO2 can have negative cognitive effects
at higher concentrations and also since CO2 accumulation rate can potentially be used to determine
a person’s metabolic rate. The management of the vehicle’s ventilation system was controlled by
periodically alternating the air recirculation mode within the cabin, which was actuated based on the
CO2 levels inside the vehicle’s cabin. The CO2 accumulation periods were used to assess the driver’s
metabolic rate, using a model that considered the vehicle’s air exchange rate. In the process of the
method optimization, it was found that the vehicle’s air exchange rate (λ [h−1]) depends on the vehicle
speeds, following the relationship: λ = 0.060 × (speed) − 0.88 when driving faster than 17 MPH.
An accuracy level of 95% was found between the new method to assess the driver’s metabolic rate
(1620 ± 140 kcal/day) and the reference method of indirect calorimetry (1550 ± 150 kcal/day) for a
total of N = 16 metabolic assessments at various vehicle speeds. The new sensing method represents
a novel approach for unobstructive assessment of driver metabolic rate while maintaining indoor air
quality within the vehicle cabin.

Keywords: indoor air quality; carbon dioxide accumulation; metabolic rate; energy expenditure;
passive sensing

1. Introduction

Vehicle collisions have historically been one of the leading causes of preventable death in the
United States. Increased legal focus on punishing distracted and/or inebriated drivers has had a
surprisingly small effect on the annual number of vehicle-related casualties, as evidenced by the 7-year
high in fatalities caused by vehicle collisions within the United States in 2016 [1]. Vehicle collisions and
resulting injury are a serious burden to the U.S. healthcare system, with an estimated annual cost of
$99 Billion [2]. Recent developments in the field of air quality control have shown that CO2 buildup to
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1000 ppm and above frequently occurs in mid-size vehicles, especially with the use of recirculation
mode [3–7]. CO2 is produced as a natural product of human metabolism and its accumulation within
closed environments with insufficient ventilation can lead to accumulation. CO2 overexposure has
been associated with reduced cognitive performance. These effects have been shown to be present
at or above 1000 ppm CO2, and worsen significantly when CO2 concentration reached 2500 ppm or
higher in laboratory settings [8–11]. A recent study has evaluated the effect of similar CO2 levels
on commercial airplane pilots performing maneuvers in a flight simulator showing a correlation of
elevated CO2 concentrations with lower flight maneuver success, independent of ventilation [12].
As such, CO2 concentration monitoring within vehicles may be of great value to public health from a
safety perspective.

On a separate area, the air exchange rate (λ, referred to as AER or ACH in other works) from a
vehicle’s cabin have been extensively studied, as well as the effect of driving speed on air exchange
rate [13–17]. A major factor leading to CO2 accumulation in vehicle cabins is the use of recirculation
(RC) mode, since most of the CO2 exhaled by occupants is not vented outside when this ventilation
setting is selected. For comfort and energy efficiency purposes, in many vehicles the RC mode
is automatically turned on when the air conditioning is operating. The presence of additional
occupants within a vehicle further accelerates CO2 buildup [18]. CO2 accumulation patterns have
also been simulated using training data from a large set of vehicles in [4], which provides a guide
for predicting maximum CO2 concentrations during drives of various lengths while using RC mode.
However, other works rely on air exchange rate measurement in vehicles using tracer gas techniques,
previously SF6 has been documented in vehicles for this purpose [14], or on steady-state measurements
of CO2 concentration [13], which can be inconvenient. We report here a method of λ evaluation
from unsteady-state (transient) CO2 accumulation data that poses significant advantages over both
methodologies mentioned above. The new method does not require the use of exogenous trace gas and
allows accumulation of CO2 at the steady-state level, which can reach dangerous levels (e.g., 2548 ppm
for a single subject driving at 32 km/h [13]).

The present work strives to investigate the use of an unobstructive sensing method relying on
unsteady-state (transient) CO2 accumulation measurement for maintaining vehicle cabin’s indoor
air quality and assessing the driver’s metabolic rate, using a previously derived model [19] and
pre-calibrated car’s air exchange rate as a function of driving speed. This system could potentially
leverage the wealth of data collected and resulting general linear model in [13], which takes into
account a wide fleet of vehicles of various ages and manufacturers to estimate λ for a given vehicle
based on manufacturer and age.

In the field of nutritional medicine, CO2 production has a close mathematical relationship with
human metabolic rate, referred to as energy expenditure (EE), and expressed in kcal/day [20]. EE is the
key physiological metric used to take a medical intervention for clinically obese patients since it allows
medical doctors to make recommendations for calorie consumption on a given day based on their
patient’s rate of energy consumption [21]. This study probes the feasibility of EE determination by
quantifying the volumetric production rate of CO2 (VCO2), expressed in mL/min using only ambient
and non-wearable sensors. Measuring EE based on ambient CO2 production using only one portable
CO2 sensor within a vehicle is a promising approach. Methods for ambient VCO2 measurement do
exist, but depend on CO2 measurements in inlet and outlet ducts in a room with controlled mechanical
ventilation, making the system’s installation too cumbersome for widespread usage [22]. Other medical
devices require the use of breathing hardware that prevents free living EE determinations, are time
consuming and discourage repeated measurements [23]. This study describes initial step towards
validation of a medical device for EE quantification in a controlled indoor microenvironment. Overall,
the development of this device fits into a larger growing trend in the field of cutting edge biomedical
diagnostics which in coming years may be largely characterized by what can be described best as
“minimally invasive IoT (internet of things) medical devices and biosensors” [24–27]. The basic premise
of this growing field of biomedical diagnostics is to engineer minimally invasive medical devices that
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allow for clinically relevant biometrics to be collected repeatedly on the order of days, weeks, or months
in a manner that is minimally obtrusive (i.e., no blood sampling, minimal user time commitment for
collection, ambient sensing, use of wearables) and provides relevant health biometrics to clinicians
without sacrificing accuracy (or partially mitigating lower accuracy with massive sample size that
invasive devices fail to feasibly achieve for the everyday patient). However, IoT sensors are not only
promising for the field of medical devices, but also for the purpose of environmental data collection and
also, in some cases, (such as the method this work proposes) artificially intelligent closed-loop actuation
control. Following this line of reasoning, the ideal intelligent vehicle air quality optimization system
could be potentially multiplexed with a sensing approach that also considers outdoor toxic pollutants
such as NO2, and, therefore, an array of NO2 and CO2 using IoT sensors could be placed together
to make intelligent decisions in the utilization of RC mode or regular air conditioning (AC) mode
depending on air quality conditions and current concentrations of both chemical species to minimize
driver risk. With recent developments in triboelectricity-based NO2 sensors [28,29], this is a very real
possibility and may be the focus of future works.

A comprehensive assessment of CO2 levels inside a car cabin was conducted, including
experimental characterization and model simulation. Our team studied the CO2 production rate by
a single occupant (driver) and the cabin air exchange rate (λ) under one fan condition and driving
speeds. These results allowed for the assessment of the driver’s energy expenditure. A box model was
used to predict the CO2 concentration profile within a vehicle under various conditions.

2. Materials and Methods

2.1. Experimental Characterization

2.1.1. Experimental Setup

A set of tests was carried out by a single investigator driving a vehicle on residential streets
and highway within the greater Phoenix area, Arizona, USA, between August 2017 and July 2018.
The vehicle tested was a 2012 Hyundai Elantra. Its age at the time of the tests (5–6 years) and interior
volume (110 ft3, or 3.1 m3) (“2012 Hyundai Elantra Features & Specs,”) are very close to the median
values for the current US gasoline-fueled light duty vehicle fleet (8 years and 110 ft3, respectively) [4].
The study was approved by Arizona State University Institutional Review Board (IRB protocol #
STUDY00006547). The subject (car driver) was a healthy 27-year-old female. The test subject provided
written informed consent before participating in the study.

2.1.2. Sensing System

The custom-made measurement system consisted of a Telaire® 7001 CO2 sensor (Onset Corp,
Bourne, MA, USA) and a HOBO® temperature and humidity sensor (Onset Corp, Bourne, MA, USA),
as described in our previous publication [19]. The system was calibrated with CO2 gas samples of
different concentrations in the range of 0–3000 ppm. In addition, prior to each experiment, a quality
control procedure was applied for every measurement assuring the reading of outer CO2 concentration
roughly matched the expected value (~400 ppm), to ensure the outdoor environment was free of any
urban or biogenic source.

2.1.3. Measurements and Sensing Methods

During the test, the sensing system was placed on top of the front passenger seat, approximately
one meter from the driver. Real-time CO2 concentration, temperature, and humidity were recorded
with a resolution of 1 s−1. All tests were conducted at times of low traffic for consistent driving speed
and to avoid introducing CO2 by air exchange with the outside environment, since CO2 effluent
from surrounding vehicle exhaust could enter the vehicle cabin as car exhaust is a form of highly
concentrated CO2 (relative to regular atmospheric levels). Additionally, it is reasonable to postulate
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exhaust streams are at a higher pressure than the internal car cabin pressure (due to engine heat, among
other factors) and are high in CO2 concentration since they are fuel effluent which would serve as a
source of error for observed CO2 accumulation patterns if it were not controlled by driving at low
traffic times.

A picture of the vehicle model used in the study is shown in Figure 1a. Figure 1b shows the
AC dashboard, including fan speed level and an independent control to select between RC or air
exchange mode.

Figure 1. (a) Vehicle used in this study; (b) AC control panel; (c) Two different testing conditions, see
text for detail.

Two different ventilation methods were used with the car windows closed, as described in
Figure 1c:

Method #1–Continuous RC (recirculation) mode: In this method, the RC mode was on and the
fan was kept at level 1 during the tests. Five different driving speeds were tested under this condition:
0 MPH (miles per hour), 15–17 MPH, 33–35 MPH, 48–50 MPH and 68–70 MPH. To achieve different
level of speed, the tests were conducted on residential roads (Broadway and Rural road in Tempe, AZ,
USA) and highway (AZ Loop 101, Loop 202 and Interstate 10 in Arizona) accordingly. The speed log
of each test was recorded with the RunKeeper® app (ASICS Digital, Boston, MA, USA). The test was
stopped once the cabin CO2 concentration reached 2000 ppm or if the test had lasted 0.8 h. These tests
were performed 3 times at each speed. One growth curve is provided at each speed as an example.

Method #2–Continuous ventilation and intermittent RC mode: In this method, the RC Mode is
intermittently ON and OFF with the continuous ventilation ON at a fan level 1. The RC was turned
OFF and actuated based on the CO2 levels inside the vehicle’s cabin. These levels were between
baseline level of ~450 ppm for fresh air and threshold levels of 1000–1100 ppm for air resulting from
the CO2 accumulation due to the driver’s breathing. In other words, the RC mode was initially on
and was turned off for five minutes once the cabin CO2 concentration reached around 1000–1100 ppm,
to allow for air exchange with the external environment and reduction of CO2 levels within the vehicle
cabin. Under this condition, four different driving speeds were tested: 0 MPH, 15–17 MPH, 33–35 MPH
and 65–68 MPH. The roads taken for this set of tests were the same as condition #1. Each test was
performed within a single 1 h span. The RC mode was switched ON/OFF 4 times total within the hour
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for each speed tested. This rendered 4 separate growth curves (and, therefore, 4 separate metabolic
rate measurements).

2.1.4. Local Concentration Gradients within Vehicle

A previous computational fluid dynamics (CFD) study [30] has shown that, in theory, CO2

concentration gradients [ppm] within the occupied vehicle do not vary by greater than an order of
magnitude, in most cases and except at geometric boundary conditions. In our experimental conditions,
the effects of mixing and the presence of concentration gradients were examined with the vehicle at
rest, showing little variability.

2.2. Simulation and Data Analysis

2.2.1. Carbon Dioxide Accumulation Analysis

Ji et al. [31] has previously considered a model for human-generated CO2 accumulation. However,
the model applies only to conditions of a human inside a perfectly sealed small chamber, with no leakage
between the chamber and its surroundings. Using a model described in our previous study and which
accounts for air leakage in the environment, which are representative of realistic human free-living
conditions [19], a computational simulation was used to predict CO2 accumulation patterns for various
scenarios based on the solution of a total differential equation for changes in CO2 concentration with
respect to time. The developed model was simulated using MATLAB® (MathWorks Inc., Natick, MA,

USA) and assumes that d[CO2]
dt is first order with respect to CO2 concentration and 0th order with

respect to CO2 generation (i.e., the amount of CO2 generated by occupants does not depend on CO2

concentration). The solved differential equation for CO2 generation is as follows:

[CO2] = [CO2]0 +
Kgen

λ

(
1− e−λt

)
+ [CO2]ie

−λt (1)

where [CO2]0 is the ambient CO2 concentration (~400 ppm), [CO2]i is the difference between the initial
CO2 concentration at the beginning of the fitted curve and the baseline CO2 concentration, kgen is CO2

generation rate with units of ppm CO2 h−1, and λ is the air exchange rate in h−1. The volumetric
production rate of CO2 (VCO2 [mL/min] by the vehicle’s occupant can be calculated as follows and is
simply derived from the ideal gas law and a mass balance on CO2 within the cabin:

VCO2 = kgen × VRoom × CFSTPD/60 (2)

where VCO2 is the subject’s volumetric production of CO2 [mL/min], VRoom is the volume of the vehicle
cabin [mL] (taken from manufacturer-listed vehicle specifications), and CFSTPD [dimensionless] is a
correction factor to correct the VCO2 at ambient temperature and pressure conditions (ATP) to standard
temperature, pressure, and dry conditions (STPD). The correction factor was calculated as follows:

CFSTPD =
Pbar − PH20

760
×

273
T + 273

(3)

2.2.2. Effect of Car Occupant’s Metabolic Rate

The proportion of a person’s CO2 production rate (VCO2) to O2 consumption rate (VO2) is known
as the respiratory quotient (RQ) and its value depends on the ratios of metabolized energy sources
within a person’s body (e.g., RQ for carbohydrate metabolism = 1.0; fat metabolism = 0.71; protein
metabolism = 0.82) [32]:

RQ (Respiratory Quotient) =
VCO2

VO2
(4)
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The relationship between RQ, VCO2, and energy expenditure (EE) has been studied extensively
and is the basis of the field of indirect calorimetry. The fundamental equation that links these
3 parameters is known as Weir Equation and it is shown below [33]:

EE
(

kcal
day

)
= 1.44 ×

[
3.941 ×

VCO2

RQ
+ 1.11 × VCO2

]
(5)

For individuals following diets with relatively equal amounts of carbohydrates, protein, and fats,
an RQ equal to or near 0.85 should be expected [34–36]. In this case, Equation (5) can be simplified to
the following:

EE
(

kcal
day

)
= 8.273 × VCO2 (6)

2.2.3. Simulation Parameters

It is important to mention that EE assessment is solely possible when we have a single occupant in
the vehicle. For multiple occupants, VCO2 production will be representative of the driver + occupants.
The multiple occupants could be detected with pressure sensors in the seat, and a combination of
pressure sensors could discriminate if the occupant is a subject or an object. Under these conditions,
an averaged EE value per occupant could be assessed. However, the indoor air quality aspect of
the presented approach would be more relevant to assure the safety of the indoor air inside the
cabin. Therefore, for the purpose of informing public policy that governs domestic roadways, it has
great utility in the sense that this information can be used to build simulations detailing the CO2

concentration in various accumulation conditions (as done in Section 2.2.3 below) that are useful in
assessing driving safety relative to CO2 concentration within the vehicle cabin.

The simulation presented in this work has been developed to extend the experimental findings
introduced in this work’s assessment to several other conditions that could not be tested. The model
estimated the car cabin volume to be 3.1 m3, a baseline CO2 concentration of 400 ppm, a λ of 1 h−1

(unless indicated otherwise), a linear relationship between λ and car speed (validated by experimental
findings presented in this work), a linear relationship between CO2 generation and the number
of occupants within the vehicles, and an occupant energy expenditure EE = 1700 kcal/day (unless
indicated otherwise).

3. Results

3.1. Experiments under Method #1—Continuous RC (Recirculation) Mode

The purpose of this set of experiments was to examine the intrinsic air exchange condition
according to our group’s derived model and explore its relationship with driving speed. Figure 2
summarized the results together with the average recorded speed, while real-time speed data are
shown in Figure S2 (Supplementary Materials). Three experiments were performed at each speed on
different days as replicate measurements.

We hypothesize that the increased leakage at higher driving speeds is due to the pressure
difference between inside the cabin and the outside environment, generated by the vehicle movement,
and Bernoulli principle of differential negative pressure causing a net flux of air out to the vehicle and
into the surrounding environment due to the vehicle’s velocity. Thus, it is reasonable to assume that at
0 MPH (parked condition), there is significantly reduced leakage due to a negligible pressure difference.
As summarized in our previous publication [19], under this condition, the CO2 concentration profile
should follow a linear relationship. Applying linear fitting to 0 MPH data, we determined the
actual CO2 generation rate to be Kgen = 5344 ± 66 ppm/h. Additionally, to show that the vehicle’s
CO2 concentration is independent of engine operation (which of course, can be a source of CO2),
an experiment was performed to assess the cabin’s CO2 concentration with the vehicle’s engine on,
the vehicle stationary, unoccupied, and with recirculation mode on. Under these conditions, it could
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be clearly observed that there is no CO2 accumulated within the vehicle’s cabin from engine exhaust.
This error mitigation assessment is shown in Figure S1 of the Supplementary Materials.

Figure 2. CO2 concentration inside the vehicle cabin under different driving speed, all-time recirculation
(RC) on mode. (a) 0 MPH (parked); (b) 16 MPH; (c) 33 MPH; (d) 49 MPH; (e) 70 MPH.

In each of the replicate experiments, five tests at different speeds were carried out consecutively
in a 3 h period, during which the driver remained seated at the wheel. For that reason, the driver’s
energy expenditure was considered to be relatively constant over the course of the experiment. Using
the experimentally determined Kgen value and Equation (1), we determined the effective air exchange
λ for each speed.

The model fitted λ results are shown in Figure 3. The error bars for each speed is the standard
deviation from three replicates. It is observed that in the range of 0–18 MPH, λ is close to 0.
Thus, we define that when the speed is less than 17 MPH, the intrinsic air exchange is negligible.
By applying linear fitting for speeds > 17 MPH, we could calculate the relationship between λ and
driving speed, as presented in Figure 3. The regression coefficient (R2) equals 0.99, indicating a strong
correlation between the two parameters. As can be observed in the Supplementary Materials for this
work (Figure S2), vehicle speed did not remain constant during each nominal driving speed. In fact,
there was a moderate degree of variance. However, the average of the driving speed allowed the
output variables of λ or EE to be assessed, depending on the driving condition. Therefore, from the
collected data, it is not unreasonable to hypothesize that “the collected data suggests that even when
there is a moderate degree of variation within vehicle velocity, the proposed model still remains.

This result is also consistent with other reports showing that higher driving speeds resulted in
slower CO2 concentration growth profiles [4]. However, quantitatively, results differed from those
predicted in the model described in [13], where the predicted λ’s were at least 2x greater than the results
observed in the present study. Potential reasons for this discrepancy are the car manufacturer (Korean
manufacturer adjustment not available for the model, as such, Japanese adjustment was used instead)
and also that no vehicles from a 2012 fleet were tested in Fruin’s 2011 work. Additionally, in Fruin’s
2011 work, the technique for λ (referred to as AER in Fruin’s work) assessment relied on analysis of
concentration equilibrium conditions, whereas, the present work relies on analysis of unsteady-state
CO2 growth curves. In another work [14], characterizing λ using the constant injection SF6 tracer gas
technique, observed air exchange rates were within the normal range for the vehicle tested in the
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present study, indicating that the CO2 analysis technique used in the present work coincides well with
previous literature values for λ assessment using a different technique. One significant limitation of
the present work is that wind speed and outdoor concentration were not tested as in [13], as these
factors can have a significant effect, also shown in [14,15].

Figure 3. Relationship between the effective air exchange rate (λ) and driving speed (ν). Red line
indicates linear regression curve above 17 MPH.

3.2. Experiments under Method #2—Continuous Ventilation and Intermittent RC Mode

Under this condition, the CO2 concentration was kept under 1100 ppm by alternating RC on
and off, and the fan ventilation level at 1. Typically, in one measuring cycle, RC mode would be
left on for about 5 min and then turned off for 5 min once the CO2 concentration reached 1100 ppm.
The aim was to assess energy expenditure during the growth periods of CO2 buildup, and validate
the model (by comparing using EE measurements taken from a reference instrument) at a condition
where recirculating cabin air (RC mode) and outside air ventilation were alternated. Since regular,
non-RC mode ventilation consumes more of the vehicles fuel in operation in comparison with RC
mode [37], this condition is a practical solution to assure good quality levels in the air inside the car
cabins while minimizing the fuel efficiency losses due to car cabin ventilation. In addition, these
experimental conditions allow for the assessment of energy expenditure with the added benefit of
being able to perform multiple EE measurements within a single trip, which improves the system’s
accuracy with respect to assessment of the driver’s average energy expenditure. This is the true
highlight of the observed data, as it is already known that turning off RC mode will mitigate CO2

buildup within vehicles.
Real-time CO2 profiles are shown in Figure 4. The model was applied for a λ of 0.05 h−1, which is

a non-null but negligible value for speeds lower than 18 MPH. The assessment of this condition was
based on the experimental observation that at parked and at low speeds, the air exchange rate between
the vehicle cabin and the environment was negligible. For speeds greater than 18 MPH, the λ was
calculated from the regression equation shown in Figure 3 and used in Equation (1) to determine the
real Kgen for each CO2 growth period test cycle obtained during the periods of 36–48 min driving at a
certain speed. Real-time speed data are shown in Figure S3 (Supplementary Materials).
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Figure 4. Real-time CO2 concentration profile and the model fitted curve (red) under different driving
speed. (a) 0 MPH; (b) 16 MPH; (c) 37 MPH; (d) 64 MPH.

VCO2 values calculated using Equation (1) for fitting CO2 accumulation data and then decomposing
the Kgen term to provide an estimate for VCO2 via equation 2, were then used to calculate EE using
Equation (4) for each growth cycle, using results from four cycles obtained at each speed, and averaged
for that speed. For these four tests, the EE value ranged from 1420 kcal/day to 1730 kcal/day with
an average of 1620 ± 140 (kcal/day). The results are shown in Figure 5 for the averages with their
corresponding standard error. The coefficient of variation from four tests remained at 8.6%, indicating
there was no significant EE change during the test at each driving speed (36–48 min). This is consistent
with our hypothesis in Section 2.1 that the participant remained in a stable metabolic state over the
duration of the driving tests. Another important finding was that energy expenditure fluctuated
randomly within a relatively narrow range of values. The random variability (±15%) reflects the
typical clinical variability expected for an energy expenditure measured at free-living conditions [38].
These results confirm that energy expenditure is independent from vehicle velocity.

Energy expenditure measured during driving tests were compared with those determined with
conventional instrumentation. The subject’s energy expenditure (or metabolic rate) while sitting in a
computer and working was measured by indirect calorimetry using two different instruments: the
desktop Korr ReevueTM (www.korr.com, Salt Lake City, UT, USA) and the Breezing ProTM (https:
//breezing.com/, Tempe, AZ, USA), obtaining an average of (1550 ± 150) kcal/day for 10 measurements
utilizing both indirect calorimetry instruments (5 readings each). This represents only ~4% difference
in comparison with our calculated EE value. It should be noted that the participant did not perform
any intense activity on the days of tests, since strenuous exercise increase a person’s instantaneous
energy expenditure [38]. The results demonstrated that this model could be used to determine EE
of drivers, as the difference between mean values determined with each method was lower than the
relative error for each of them. However, it is of course important to note that the subject did not
perform the reference instrument EE assessments simultaneously while driving, due to safety concerns
regarding vehicle operation.

www.korr.com
https://breezing.com/
https://breezing.com/
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Figure 5. Energy Expenditure (EE) estimates generated from experimental data shown in Figure 4
(shown as black points with error bars) and corresponding reference instrument (Korr ReevueTM and
Breezing ProTM) measurements shown as horizontal redline (average) ±1 standard error.

3.3. CO2 Concentration Profile Modeling

To expand upon the experimental results shown in the previous sections of this work,
a computational simulation was developed using MATLAB® to generate model CO2 growth profiles
under various conditions that were not investigated experimentally in this study. Figure 6 simulates
CO2 concentration growth profiles inside a car cabin (RC mode on) with different number of occupants
under various speeds. A horizontal line has been drawn at both 1000 and 2500 ppm with a label to
indicate the corresponding time at which a vehicle with a single occupant reaches the aforementioned
CO2 concentration, used as a reference from recent cognitive performance studies [8–11]. The simulation
predicts that CO2 levels within the car cabin reach 1000 ppm for a single occupant in less than 15 min
with RC mode on. CO2 accumulation is significantly higher for car cabins where there is more than one
occupant; this is clearly evidenced in the simulation’s output where CO2 levels exceeding 2500 ppm
are reached in under 15 min when the vehicle is occupied with at least three occupants, regardless of
vehicle speed.

Figure 7a shows how a CO2 profile can be affected by changing the effective air exchange rate
from 1 to a higher value, up to 22 h−1, e.g., by alternating the RC mode on and off, and/or opening
windows. It is worth noticing that although the lower λ values of 1–3 h−1 represent the values assessed
in the experimental results of this work, which involved the car windows being closed, higher λ could
be obtained with car windows opened and were included since this work represents a generic model
that can be applicable to multiple other driving conditions.
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Figure 6. Modeled CO2 concentration profile for various driving speeds and number of occupants
within vehicle. (a) 0 MPH; (b) 33 MPH; (c) 49 MPH; (d) 71 MPH.

Figure 7. (a) Model CO2 concentration profile showing effect of air exchange rate on CO2 level; (b)
Modeled CO2 concentration profile showing effect of metabolic rate on growth rate.

Figure 7b demonstrates the effect of occupant metabolic rate on CO2 accumulation within a
vehicle. This parameter has a substantial influence on the CO2 concentration growth profile. A driver
with a relatively high EE of 2500 kcal/day will reach a CO2 concentration of 1000 ppm in just
6.8 min, as compared with virtually twice as long (13.7 min) for a driver spending only 1300 kcal/day.
The high-EE driver can reach a CO2 concentration of 2500 ppm in less than half an hour.

4. Conclusions

In the present work, we characterized transient CO2 buildup and the vehicle air exchange rates
under different driving speeds. Most importantly, we developed a new method to assess the air
exchange rate inside the car cabin under non-steady conditions by using the driver’s energy expenditure
rate as a known variable. This new method enabled the assessment of the air exchange rates and
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the car speed function, which further proved to be useful to assess the driver’s energy expenditure
repeated times under specific conditions of an on/off alternating ventilation. The results showed a
good regression fitting (R2 > 0.99) on a real-time CO2 concentration profile and accurate calculation
for a single driver’s EE (4.4% difference with respect to determination using standard methods).
Simulation results based on experimental data were also presented. The simulation serves to predict
CO2 accumulation patterns due to various factors such as number of occupants and occupant energy
expenditure. Overall, the investigations of this work allowed for the creation of an intelligent and
unobstructive sensing method for maintaining vehicle cabin’s indoor air quality and assessing the
driver’s metabolic rate.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/24/7202/s1,
Figure S1: Temperature, relative humidity (RH), and CO2 concentrations versus time within a car while driving
with the ventilation system closed, and the driver breathing in and out of the car cabin via a tubing system that
preclude from exhale carbon dioxide buildup; Figure S2: Raw CO2 monitor results together with real-time speed
log for condition #1; Figure S3: Raw CO2 monitor results together with real-time speed log for condition #2.
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