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Abstract Five new sulfur-enriched alkaloids isatithioetherins A–E (1–5), and two pairs of scalemic
enantiomers (þ)- and (� )-isatithiopyrin B (6a and 6b) and isoepigoitrin and isogoitrin (7a and 7b), along
with the known scalemic enantiomers epigoitrin and goitrin (8a and 8b), were isolated and characterized
from an aqueous extract of the Isatis indigotica roots. Their structures were determined by extensive
spectroscopic data analysis, including 2D NMR and theoretical calculations of electronic circular
dichroism (ECD) spectra based on the quantum-mechanical time-dependent density functional theory
(TDDFT). Compounds 1–5 represent a novel group of sulfur-enriched alkaloids, biogenetically
originating from stereoselective assemblies of epigoitrin-derived units. Isolation and structure character-
ization of 6a and 6b support the postulated biosynthetic pathways for the diastereomers 9a and 9b via a
rare thio-Diels–Alder reaction. Compounds 2 and 4 showed antiviral activity against the influenza virus
A/Hanfang/359/95 (H3N2, IC50 0.60 and 1.92 μmol/L) and the herpes simplex virus 1 (HSV-1, IC50 3.70
and 2.87 μmol/L), and 2 also inhibited Coxsackie virus B3 (IC50 0.71 μmol/L).
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1. Introduction

The dried roots and leaves of Isatis indigotica Fort. (Cruciferae),
having names of “ban lan gen” and “da qing ye”, respectively, are
used in traditional Chinese medicine for the treatment of various
diseases. They are among the most common ingredients of
formulations used for treating influenza, cold, and fever1. Chemi-
cal and pharmacological studies demonstrated that extracts of these
drug materials contained diverse chemical constituents with
various biological activities2–24. Although the drug materials are
practically utilized by decocting with water, only few chemical
studies on the water decoctions were previously reported18–24.
Because the constituents of extracts are highly dependent upon
extraction methods, we consider that there must be unknown
bioactive chemical constituents in the decoctions. Therefore, the
water decoction of the I. indigotica roots was investigated as part
of a program to assess the chemical and biological diversity of
traditional Chinese medicines25–47. This has led to discovery of
many new chemical constituents with diverse structural types and
biological activities from “ban lan gen”48–61. A continuation on
the same decoction has resulted in structure characterization of
nine new sulfur-containing natural products (1�5, 6a, 6b, 7a,
and 7b Fig. 1). Among them, 1–5 possess unusual sulfur-enriched
structures, biogenetically associated with the co-occurring epigoi-
trin (8a, Fig. 1). The enantiomers 6a and 6b are diastereomers
of 9a and 9b (Fig. 1) possessing the unique indolin-2-one, dihydro-
thiopyran, and 1,2,4-thiadiazole ring system previously reported from
the same extract49 and recently synthesized via a rare thio-Diels–Alder
reaction62. Herein, we report isolation, structure elucidation, and
proposed biosynthetic relationship of the new isolates, along with
antiviral activities of 2 and 4.
2. Results and discussion

Compound 1, a colorless gum with ½α�20D þ38.8 (c 0.1, MeCN),
showed IR absorptions attributable to amino (3208 cm–1), carbonyl
(1702 cm–1), and thiocarbonyl (1542 cm–1) functionalities. Its
molecular formula was determined as C20H26N4NaO4S3 by HR-
ESI-MS and NMR spectroscopic data. The 1H NMR spectrum of 1
showed partially overlapping resonances attributable to a pair of
exchangeable amino protons at δH 9.57 and 9.62 (each 1H, brs); a
Figure 1 The structures
pair of disubstituted double bonds at δH 5.71 and 5.70 (each 1H, t,
J ¼ 5.0 Hz, H-20 and H-30) and 5.59 and 5.58 (each 1H, t,
J ¼ 6.0 Hz, H-20 0 0 and H-30 0 0); and a pair of terminal double
bonds at δH 5.53 (2H, d, J ¼ 17.5 Hz, H-7a/700a), 5.42 (2H, d,
J ¼ 10.0 Hz, H-7b/700b), 6.10 and 6.09 (each 1H, ddd, J ¼ 17.5,
10.0, and 8.0 Hz, H-6 and H-600). In addition, the spectrum
displayed partially overlapping resonances assignable to a pair of
heteroatom-bearing methines at δH 5.34 (2H, dt, J ¼ 10.0 and
8.0 Hz, H-5/50 0) and three pairs of heteroatom-bearing methylenes
at δH 4.47 (2H, t, J ¼ 10.0 Hz, H-4a/40 0a), 4.02 and 4.01 (1H each,
dd, J ¼ 10.0 and 8.0 Hz, H-4b and H-40 0b); 3.98 (2H, t, J ¼ 6.0
Hz, H2-40 0 0) and 3.94 (2H, t, J ¼ 5.0 Hz, H2-40); 3.23 (2H, d,
J ¼ 6.0 Hz, H2-10 0 0) and 3.14 (2H, d, J ¼ 5.0 Hz, H2-10). The

13C
NMR and DEPT spectra exhibited partially overlapping carbon
signals corresponding to the above units as well as those due to
two pairs of quaternary carbons at δC 186.4 (C-2/20 0) and 152.0 (C-
50/50 0 0). Especially differences of the chemical shifts for most of the
pairing signals were less than ΔδC 70.1. As compared with those
of the reported compounds from this plant48–61, these spectro-
scopic data suggested that 1 was an unusual asymmetric dimer of
alkaloid containing three sulfur atoms, of which the structure was
further elucidated by 2D NMR data analysis.

The proton and proton-bearing carbon resonances in the NMR
spectra were assigned by the HSQC experiment of 1. In the 1H–1H
COSY spectrum, the vicinal coupling cross-peaks of H2-4/H-5/H-
6/H2-7 (H2-400/H-500/H-60 0/H2-70 0) and the HMBC correlations
from H2-4 to C-2, C-5, and C-6 (H2-40 0 to C-20 0, C-500, and
C-60 0) (Fig. 2), in combination with comparison of the chemical
shifts of these proton and carbon signals with those of the co-
occurring epigoitrin (8a), revealed the presence of a pair of N- and
N0 0-substituted epigoitrin units in 1. In addition, the 1H–1H COSY
cross-peaks of H2-10/H-20/H-30/H2-40/N0H and H2-10 0 0/H-20 0 0/H-30 00/
H2-400 0/N0 0 0H, together with the HMBC correlations from H2-10 to
C-10 0 0 and from H2-100 0 to C-10 as well as their chemical shifts,
indicated that there were a pair of N0- and N0 00-substituted 40-
amino-but-20-enyl and 400 0-amino-but-20 0 0-enyl units, connecting
each other via a thioether bond between C-10 and C-10 0 0. Moreover,
the HMBC spectrum of 1 exhibited the correlations from both
H2-40 and H2-400 0 to the carbon resonance at δC 152.0 (C-50 and
C-50 0 0). This demonstrated that the amino groups of the sulfur-
bridged bis-butenamine moiety must connect via C-50 and C-500 0

with the two epigoitrin units to match requirement of the molecular
of compounds 1–9.



Figure 2 Main 1H–1H COSY (thick lines) and three-bond HMBC (arrows, from 1H to 13C) correlations of compounds 1�7.

Figure 3 ROESY/NOESY correlations (double arrows between
protons) of compounds 1–5.

Figure 4 The overlaid experimental CD (full lines) and calculated
ECD spectra (dash lines) of compounds 1–3.
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formula and N- and N0 0-substitution, though no three-bond
correlations from H2-4 and/or H2-40 0 to C-50 and C-500 0 were
observed in the HMBC spectrum. Accordingly, the planar
structure of 1 was determined as shown.

The ROESY spectrum of 1 displayed the NOE correlations
between H2-100 0 and H2-40 0 0 as well as between H2-10 and H-30 and
between H-20 and H2-40 (Fig. 3), suggesting a 20-trans-20 0 0-cis
geometric configuration for 1. The suggestion was supported by
the chemical shift rule for the α-alkyl carbons connecting to the
trans- and cis-double bonds (δtrans4δcis),

63 because the chemical
shift values of C-10 and C-40 (δC 32.9 and 42.2) were larger than
those of C-10 00 and C-40 0 0 (δC 27.5 and 37.9) in 1. The specific
rotation value of 1 was almost doubled as compared with that of
8a, ½α�20D þ21.6 (c 2.4, CHCl3), suggesting that the absolute
configuration at C-5 and C-50 0 in 1 are identical to that in 8a. This
was further supported by comparison of the experimental CD and
calculated ECD spectra of 1 (Fig. 4). Therefore, the structure of
compound 1 was determined and named isatithioetherin A.

Compound 2, a colorless gum with ½α�20D þ32.0 (c 1.7, MeCN),
showed similar spectroscopic data to those of 1, except that the
NMR spectra of 2 displayed only half the number of resonances
corresponding to the proton and carbon atoms expected from the
molecular formula. This suggested that 2 was an isomer of 1 with
the symmetric structure, which was supported by EI-MS data of 2
at m/z (%) 129 (100) and 225 (22) arising from cleavage of the
carbamide and thioether bonds, respectively (Supplementary
Information Fig. S30). Comparison of the spectroscopic NMR
data between 2 and 1 (Table 1) demonstrated that the 20 0 0-cis
double bond in 1 was absent in 2. Thus, 2 was assigned as the
20 00-trans isomer of 1, which was proved by 2D NMR data
analysis, especially by the HMBC correlation from H2-10 to C-10 0 0

(H2-10 0 0 to C-10) and the NOESY correlations between H2-10 and
H-30 (H2-10 0 0 and H-30 0 0) and H-20 and H2-40 (H-200 0 and H2-40 0 0)
(Figs. 2 and 3) as well as the chemical shifts of C-10 and C-40

(C-10 0 0 and C-40 0 0). The similarity of specific rotation and CD data
between 2 and 1 indicated that the two compounds had the same
absolute configuration, which was supported by comparison of the
experimental CD and calculated ECD spectra of 2 (Fig. 4). Thus,
the structure of compound 2 was determined and named
isatithioetherin B.

Compound 3 was obtained as a colorless gum with ½α�20D þ30.4
(c 0.2, MeCN). Its molecular formula C20H26N4O4S4 with one
more sulfur atom than 1 and 2 was determined by HR-ESI-MS and
NMR spectroscopic data. The UV, IR, and NMR spectroscopic



Table 1 NMR spectroscopic data for compounds 1�5a.

1 2 3 4 5
No.

δH δC δH δC δH δC δH δC δH δC

2 186.4 186.4 186.4 186.3 186.4
4a 4.47 t (10.0) 52.5 4.47 dd (11.0, 9.0) 52.5 4.47 dd (11.0, 9.0) 52.5 4.47 dd (11.0, 9.0) 52.5 4.47 dd (11.0, 9.0) 52.5
4b 4.02 dd (10.0, 8.0) 4.00 dd (11.0, 8.0) 4.00 dd (11.0, 8.0) 4.00 dd (11.0, 8.0) 4.00 dd (11.0, 8.0)
5 5.34 dt (10.0, 8.0) 80.3 5.35 dt (9.0, 8.0) 80.3 5.35 dt (9.0, 8.0) 80.3 5.35 dt (9.0, 8.0) 80.2 5.35 dt (9.0, 8.0) 80.3
6 6.10 ddd (17.5, 10.0, 8.0) 134.5 6.09 ddd (17.5, 10.5, 8.0) 134.5 6.09 ddd (17.5, 10.5, 8.0) 134.5 6.08 ddd (17.0, 10.5, 8.0) 134.5 6.08 ddd (17.0, 10.5, 8.0) 134.5
7a 5.53 d (17.5) 121.0 5.53 d (17.5) 121.0 5.53 d (17.5) 121.0 5.53 d (17.0) 121.0 5.53 d (17.0) 121.0
7b 5.42 d (10.0) 5.43 d (10.5) 5.42 d (10.5) 5.42 d (10.5) 5.42 d (10.5)
10a 3.14 d (5.0) 32.9 3.11 d (6.0) 32.3 3.37 d (6.0) 41.3 3.58 d (5.5) 40.9 3.74 dt (12.0, 7.0) 43.6
10b 3.14 d (5.0) 3.11 d (6.0) 3.37 d (6.0) 3.58 d (5.5) 3.57 dt (12.0, 7.0)
20 5.70 t (5.0) 129.6 5.65 t (6.0) 129.6 5.73 t (6.0) 128.1 5.79 t (5.5) 127.4 3.68 q (7.0) 53.5
30 5.71 t (5.0) 129.5 5.65 t (6.0) 129.5 5.73 t (6.0) 130.9 5.79 t (5.5) 131.5 5.76 ddd (17.0, 10.5, 7.0) 136.2
40a 3.94 t (5.0) 42.2 3.93 t (6.0) 42.2 3.96 t (6.0) 42.2 3.98 t (5.5) 42.2 5.30 d (17.0) 119.3
40b 3.94 t (5.0) 3.93 t (6.0) 3.96 t (6.0) 3.98 d (5.5) 5.23 d (10.5)
50 152.0 151.7 151.7 151.7 152.0
20 0 186.4 186.4 186.4 186.3 186.3
40 0a 4.47 t (10.0) 52.5 4.47 dd (11.0, 9.0) 52.5 4.47 dd (11.0, 9.0) 52.5 4.47 dd (11.0, 9.0) 52.5 4.47 dd (11.0, 9.0) 52.5
40 0b 4.01 dd (10.0, 8.0) 4.00 dd (11.0, 8.0) 4.00 dd (11.0, 8.0) 4.00 dd (11.0, 8.0) 4.00 dd (11.0, 8.0)
50 0 5.34 dt (10.0, 8.0) 80.3 5.35 dt (9.0, 8.0) 80.3 5.35 dt (9.0, 8.0) 80.3 5.35 dt (9.0, 8.0) 80.2 5.35 dt (9.0, 8.0) 80.3
60 0 6.09 ddd (17.5, 10.0, 8.0) 134.5 6.09 ddd (17.5, 10.5, 8.0) 134.5 6.09 ddd (17.5, 10.5, 8.0) 134.5 6.08 ddd (17.0, 10.5, 8.0) 134.5 6.08 ddd (17.0, 10.5, 8.0) 134.5
70 0a 5.53 d (17.5) 121.0 5.53 d (17.5) 121.0 5.53 d (17.5) 121.0 5.53 d (17.0) 121.0 5.53 d (17.0) 121.0
70 0b 5.42 d (10.0) 5.43 d (10.5) 5.42 d (10.5) 5.42 d (10.5) 5.42 d (10.5)
10 0 0 3.23 d (6.0) 27.5 3.11 d (6.0) 32.3 3.37 d (6.0) 41.3 3.58 d (5.5) 40.9 3.42 d (5.0) 41.8
20 0 0 5.58 t (6.0) 128.6 5.65 t (6.0) 129.6 5.73 t (6.0) 128.1 5.79 t (5.5) 127.4 5.74 t (5.0) 127.9
30 0 0 5.59 t (6.0) 130.2 5.65 t (6.0) 129.5 5.73 t (6.0) 130.9 5.79 t (5.5) 131.5 5.74 t (5.0) 131.2
40 0 0 3.98 t (6.0) 37.9 3.93 t (6.0) 42.2 3.96 t (6.0) 42.2 3.98 t (5.5) 42.2 3.97 t (5.0) 42.2
50 0 0 152.0 151.7 151.7 151.7 151.8
N0H 9.57 brs 9.61 brs 9.64 brs 9.64 brs 9.72 brs
N0 0 0H 9.62 brs 9.61 brs 9.64 brs 9.64 brs 9.64 brs

aData (δ) were measured in acetone-d6 for 1-5 at 500 MHz for 1H NMR and 125 MHz for 13C NMR. Coupling constants (J) in Hz are given in parentheses. The assignments were based on DEPT, 1H–1H
COSY, HSQC and HMBC experiments.
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Table 2 NMR spectroscopic data for compounds 6 and 7a.

6 (DMSO-d6) 6 (Acetone-d6) 7 (MeOH-d4)
No.

δH δC δH δC δH δC

2 176.7 177.6 177.2
3 48.4 49.5
3a 128.9 130.3
4a 7.04 brd (7.2) 124.3 7.07 dd (7.2, 0.6) 125.3 3.67 dd (10.2, 7.2) 50.0
4a 3.33 dd (10.2, 7.2)
5 6.91 ddd (7.8, 7.2, 0.6) 122.0 6.91 ddd (7.8, 7.2, 0.6) 122.9 4.46 dt (7.8, 7.2) 50.5
6 7.27 ddd (7.8, 7.8, 0.6) 129.8 7.26 ddd (7.8, 7.2, 0.6) 130.5 5.94 ddd (17.4, 10.2, 7.8) 137.2
7a 6.93 brd (7.8) 110.1 7.01 brd (7.2) 110.9 5.26 d (17.4) 118.0
7b 142.7 143.7 5.10 d (10.2)
30 126.6 128.5
40 7.42 dd (5.4, 3.0) 141.3 7.42 dd (4.8, 4.2) 142.0
50a 2.79 m 26.6 2.83 m 27.8
50b 2.79 m 2.83 m
60a 3.56 ddd (15.6, 10.8, 4.8) 21.1 3.75 ddd (13.2, 8.4, 6.6) 22.2
60b 2.77 m 2.74 ddd (13.2, 4.2, 3.6)
30 0 173.0 174.2
50 0 185.4 187.2
10 0 0a 2.81 dd (13.8, 7.2) 40.5 2.85 dd (14.4, 5.4) 41.4
10 0 0b 2.75 dd (13.8, 6.6) 2.82 dd (14.4, 7.2)
20 0 0 4.23 ddd (7.2, 6.6, 5.4) 70.0 4.37 dt (7.2, 5.4) 71.3
30 0 0 5.63 ddd (16.8, 10.8, 5.4) 140.9 5.70 ddd (16.8, 10.8, 5.4) 141.5
40 0 0a 5.02 dt (16.8, 1.8) 113.7 5.10 dt (16.8, 1.8) 114.1
40 0 0b 4.89 dt (10.8, 1.8) 4.90 dt (10.8, 1.8)
1-NH 10.74 s 9.69 s
20 0 0-OH 4.83 d (5.4) 3.68 d (5.4)

aData (δ) were measured at 600MHz for 1H NMR and 150MHz for 13C NMR. Coupling constants (J) in Hz are given in parentheses. The
assignments were based on DEPT, 1H–1H COSY, HSQC and HMBC experiments.
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features of 3 resembled those of 2. However, as compared the
NMR spectroscopic data between 3 and 2 (Table 1), the chemical
shifts of H2-10(H2-10 0 0) and C-10(C-10 00) in 3 were significantly
deshielded by ΔδH þ0.26 and ΔδC þ9.0, respectively. This
suggested replacement of the sulfide bond in 2 by a disulfide
bond in 3, which was verified by the 2D NMR data analysis
(Figs. 2 and 3), particularly by the absence of the correlation from
H2-10 to C-10 0 0 (H2-10 0 0 to C-10) in the HMBC spectrum of 3. The
presence of the disulfide bond was further proved by EI-MS data
of 3 at m/z (%) 129 (100), 225 (7), and 256 (29) due to breakdown
of the carbamide, carbon-sulfur, and disulfide bonds, respectively
(Supplementary Information Fig. S51). The 5 R,500R-configuration
of 3 was supported by the specific rotation and CD data as well as
by comparison of the experimental CD and calculated ECD spectra
of 3 (Fig. 4). Therefore, the structure of compound 3 was
determined and named isatithioetherin C.

Compound 4 was obtained as a colorless gum with ½α�20D þ28.0
(c 0.47, MeCN). The molecular formula of 4 was determined as
C20H26N4O4S5 with one more sulfur atom than that of 3
(Experimental Section 4.3 and Table 1). In addition, comparing
the NMR spectroscopic data between the two compounds
(Table 1), the chemical shifts of H2-10, H-20, and H-30 (H2-100 0,
H-20 00, and H-300 0) in 4 were changed by ΔδH þ0.21, þ0.06, and
þ0.06 respectively. These differences revealed that 4 was the
trisulfide derivative of 3, which was also proved by 2D NMR data
analysis of 4 (Figs. 2 and 3). Especially, the EI-MS data of 3 with
successive losses of two sulfur atoms at m/z (%) 320 (6), 288 (23),
and 256 (8) (Supplementary Information Fig. S66), further
confirmed a liner linkage of the three sulfur atoms in 4.
Consistency of the specific rotation and CD data as well as the
calculated ECD spectra of 4 and 3 (Figs. 4 and 5) indicated that
stereochemistry of the two compounds was identical. Thus, the
structure of compound 4 was determined and named
isatithioetherin D.

Compound 5, a colorless gum with ½α�20D þ39.2 (c 0.21,
MeCN), is an isomer of 3 as indicated by spectroscopic data
(Experimental Section 4.3 and Table 1). However, the NMR
spectroscopic data showed that 5 had an asymmetric structure.
Comparison of the NMR spectroscopic data between 5 and 3
(Table 1) demonstrated that a terminal double bond [δH 5.76 (1H,
ddd, J ¼ 17.0, 10.5, and 7.0 Hz, H-30), 5.30 (1H, d, J ¼ 17.0 Hz,
H-40a), and 5.23 (1H, d, J ¼ 10.5 Hz, H-40b); and δC 136.2 (C-30)
and 119.3 (C-40)] and a sulfur-bearing methine [δH 3.68 (1 H, q,
J ¼ 7.0 Hz, H-20) and δC 53.5 (C-20)] in 5 replaced one trans-
disubstituted double bond and one sulfur-bearing methylene in 3.
In addition, the resonances for one nitrogen-bearing methylene
changed from δH 3.96 (2H, t, J ¼ 6.0 Hz, H2-40) and δC 42.2
(C-40) in 3 to δH 3.74 and 3.57 (1H each, dt J ¼ 12.0 and 7.0 Hz,
H-10a and H-10b) and δC 43.6 (C-10) in 5. This demonstrated
replacement of the 40-amino-but-20-enyl unit in 3 by an 10-amino-
but-30-en-20-yl unit in 5. The deduction was proved by the 1H–1H
COSY cross peaks of NH/H2-10/H-20/H-30/H2-40, the HMBC
correlations from H2-10 to C-50, and the ROESY correlations
between H2-100 0 and H-30 0 0 and between H-20 0 0 and H2-40 00

(Figs. 2 and 3). The chemical shifts of H2-20, H2-20 0 0 and C-20

and C-20 0 0, together with the molecular composition, demonstrated
that a 10 0 0,20-disulfide bond must be formed in 5, which was further
supported by EI-MS data (Supplementary Information Fig. S82).
Similarity of the specific rotation and CD data between 5 and 3
suggested that they had the same 5 R,50 0R-configuration.



Figure 6 The experimental CD spectra of 6 (10 times reduced) and 7
(full lines) overlaid with the calculated ECD spectra of compounds 6a
(10 times reduced) and 7a (dash lines).

Figure 5 The overlaid experimental CD (full lines) and calculated
ECD spectra (dash lines) of compounds 4, 5, and (20R)-5.

Qinglan Guo et al.938
Especially, the experimental CD spectrum of 5 matched well with
the calculated ECD spectrum (Fig. 5), but significantly differed
from that of the 20-epimer of 5 (Supplementary Information Figs.
S10 and S12). This supported that 5 had the 20S,5R 0 0R-configura-
tion. Therefore, the structure of compound 5 was determined and
named isatithioetherin E.

Compound 6 was obtained as a colorless gum with ½α�20D þ15.2
(c 0.24, MeOH). Its spectroscopic data were similar to those of the
scalemic mixture of 9a and 9b in a 2:1 ratio from the same
decoction49 [herein, given trivial names (� )-isatithiopyrin A for
9a and (þ)-isatithiopyrin A for 9b, respectively]. However, TLC
and reversed-phase HPLC analysis indicated that 6 was different
from 9. Comparison of the NMR spectroscopic data between 6
(Table 2) and 9 in the same solvent DMSO-d6

49 demonstrated that
H-10 0 0a and 20 0 0-OH in 6 were shielded by ΔδH �0.05 and �0.10,
respectively, whereas H-10 0 0b, H-20 00, H-300 0, H-40 0 0a, and H-40 00b
were deshielded by ΔδH þ0.05, þ0.06, þ0.16, þ0.23, and þ0.12,
while differences of the chemical shifts for the other proton
resonances and all the carbon resonances were less than ΔδH
70.03 and ΔδC 70.3. Based on these changes and the optical
activity, 6 was deduced as either a diastereomer of 9a and 9b or a
scalemic mixture of the diastereomers of 9a and 9b, which was
further confirmed by 2D NMR data analysis of 6 in both the
solvents of acetone-d6 and DMSO-d6 (Fig. 2). Because the specific
rotation data of 6 was opposite to that of 9 with almost an equal
magnitude and because the later was proved as the scalemic
mixture of 9a and 9b in a 2:1 ratio49, 6 must be a mixture
containing two enantiomers in the same 2:1 ratio. Although
subsequent chiral HPLC separation proved the presence of two
partially resolved peaks with an integration of about 2:1 ratio in
the chromatogram of 6 (Supplementary Information Figs. S113
and S114), further isolation of the two components failed due to
decomposition of the sample in solid state storing at 10 1C for
6 months. Since two chiral centers exist in the structures, there are
only four stereoisomers including two pairs of enantiomers. With
the previous chiral separation and structural assignment of 9a and
9b as the (� )-(20 0 0S,3S)- and (þ)-(20 00R,3R)-enantiomers49,62,
respectively, 6 must be a mixture consisting of (20 0 0S,3R)- and
(20 00R,3 S)-enantiomers in the approximate 2:1 or 1:2 ratio and the
optical properties of 6 must be from the exceed enantiomer. The
experimental spectrum of 6 was in good agreement with the
theoretically calculated ECD spectrum of the (20 0 0S,3R)-enantiomer
(6a, Fig. 6), whereas mirrored to that of the (20 0 0R,3S)-enantiomer
(6b) (Supplementary Information Fig. S14). This supported that 6
consisted of 6a and 6b in the approximate 2:1 ratio and that the
positive specific rotation of 6 was from the exceed 6a. Accord-
ingly, 6b must has the negative specific rotation. Therefore, the
structures of compounds 6a and 6b were assigned and named as
(þ)-and (� )-isatithiopyrin B, respectively. It is worth noting that
the four stereoisomers were very recently synthesized by a
biomimetic thio-Diels–Alder reaction, a very rare reaction in
nature, and that the presence of 6a and 6b in the 2:1 ratio was
also predicted by density functional theory (DFT) calculations62.
Therefore, compounds 6a and 6b are new natural products, which
were chemically synthesized and theoretically predicted.

Compound 7 was obtained as a colorless gum with ½α�20D þ26.3
(c 0.1, MeOH). Its spectroscopic features was similar to those of 8
(the scalemic mixture of 8a and 8b in the 2:1 ratio64), indicating
that 7 was either an isomer of 8a and 8b or a scalemic mixture of
the isomers of 8a and 8b. As compared with those of 8, the H-5
and C-5 resonances in the NMR spectra of 7 were significantly
shielded by ΔδH �0.90 and ΔδC �30.0, respectively, while the
C-2 resonance was shielded by ΔδC �10.0. The differences
indicated isomerization of the oxazolidine-2-thione ring in 8 into
a thiazolidin-2-one ring in 7, which was proved by 2D NMR data
analysis of 7 (Fig. 2). HPLC analysis using a chiral column
(CD-ph) confirmed that 7 was a scalemic mixture of the
enantiomers 7a and 7b in the 2:1 ratio (Supplementary
Information Fig. S126). Although further preparative separation
of the enantiomers failed due to decomposition of the sample in
solid state during storage, similarity of the specific rotation and CD
curve between 7 with 8 and 8a indicated that the exceed
enantiomer in 7 had the same configuration as 8a. This was
further supported by comparing the experimental CD spectrum of
7 with the theoretically calculated spectra of 7a and 7b (Fig. 6).
Therefore, the structure of 7a and 7b were determined and named
as isoepigoitrin and isogoitrin, respectively.

Compounds 1�5 are the first example of natural products with
dimeric structure features likely deriving from epigoitrin (8a). Based
on our previous speculations, these sulfur-containing metabolites are
biosynthesized (Scheme 1) from the precursors glucosinolates49,55

including epiprogoitrin (10) and/or progoitrin (11) also, which are
abundant in the 2:1 ratio of 10:11 in I. indigotica64. Myrosinases
catalyzed hydrolysis of epiprogoitrin (10) and progoitrin (11)



Scheme 1 Proposed biosynthetic pathways of compounds 1–5, 7, and 8.

Sulfur-enriched alkaloids from the root of Isatis indigotica 939
liberates intermediate 12, which undergoes the Lossen rearrange-
ment, either via a direct process or via imidothioate 13, to yield
isothiocyanate 14. An intermolecular nucleophilic addition of 14
produces 865. Isolation of 7 indicates the possible presence of
enzyme-catalyzed hydrolysis and dehydration processes of 14 via an
unstable intermediate 15 to generate both 7 and 8, because the
proportion and configuration of the exceed enantiomers in the
scalemic mixtures are sustained. In a stereoselective manner, an
enzyme-catalyzed nucleophilic intermolecular addition between the
R-isomers of 8 and 14 would give the optically active intermediate
16. A further intramolecular addition of 16 generates an intermedi-
ate 17, which undergoes migration of the thiol group to the terminal
double-bond with simultaneous double bond rearrangement and
breakdown of the oxygen-bridge to afford the thiol carbamides 18
and 19 (geometric isomers). The thiol group in 17 would also be
migrated to the oxygen-bridged methine carbon to afford the thiol
carbamide 20, accompanying with reversion of the C-20 configura-
tion from 20R in 17 to 20S in 20. Condensation between 18 and 19
and between two molecules of 19 produces 1 and 2, respectively.
Meanwhile, a molecule of H2S would be simultaneously liberated as
a sulfur donor to form the disulfide 3 and trisulfide 4 from 19 as
well as to form disulfide 5 from 19 and 20. Moreover, together with
9a and 9b49, the isolation and structure determination of 6a and 6b
confirmed biosynthetic formation of the stereoisomers via a rare
thio-Diels–Alder reaction in nature62. The experimental data
demonstrate that the configuration at the spiro carbon (C-3) plays
a decisive role in the specific rotations and the CD spectroscopic
features of 6a, 6b, 9a, and 9b. The biogenetic speculations fully
support the structural assignments of 1–9.

Although the postulated biosynthetic precursors occur as the
stereoisomers epiprogoitrin (10) and progoitrin (11) in the
inequivalent amounts (2:1), 1–5 were obtained as the optically pure
forms and their diastereomers were not founded in the decoction. The
fact indicates that 1–5 are biosynthesized in a stereoselective manner,
implying the presence of specific enzyme(s) to control the stereo-
selectivity. Additionally, the precursors glucosinolates can thermally
be decomposed into diverse bioactive breakdown products65. There-
fore, influences of the decocting process on the bioactive components
as well as the pharmacological effects of the ban lan gen decoction
deserves further investigation in future studies.

In the preliminary in vitro assays, compounds 2 and 4 showed
antiviral activity against influenza virus A/Hanfang/359/95
(H3N2)66, with IC50 values of 0.60 and 1.92 μmol/L and SI values
of 9.62 and 3.61, respectively (the positive control RBV, IC50 ¼
0.97 μmol/L and SI ¼ 1200). These two compounds also
exhibited activity against the herpes simplex virus 1 (HSV-1)66

with IC50 values of 3.70 and 2.87 μmol/L and SI values of
5.20 and 2.68, respectively (the positive control acyclovir,
IC50 ¼ 0.71 μmol/L and SI ¼ 140.9). In addition, 2 inhibited
Coxsackie virus B3 replication66, with IC50 and SI values of
0.71 μmol/L and 9.04 (the positive control Pleconaril, IC50 ¼
0.41 μmol/L and SI ¼ 243.9; RBV, IC50 ¼ 222.22 μmol/L and
SI ¼ 9.0). Moreover, 2 and 4 reduced D,L-galactosamine (GAlN)-
induced hepatocyte (WB-F344 cell) damage67 with 70% and 73%
inhibition at 10 μmol/L, respectively, while the positive control
bicyclol gave 66% inhibition.
3. Conclusions

From the aqueous extract of the I. indigotica root, five novel
sulfur-enriched alkaloids isatithioetherins A�E (1�5), together
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with two pairs of scalemic enantiomers (þ)- and (� )-isatithio-
pyrin B (6a and 6b) and isoepigoitrin and isogoitrin (7a and 7b)
were isolated and structurally determined. Compounds 1–5 repre-
sent the first examples of sulfur-enriched natural products biogen-
etically assembled by four epigoitrin-derived units, while 6a and
6b having the unique structural feature are the scalemic mixture
(2:1), which were biomimetically synthesized by the rare thio-
Diels–Alder reaction and theoretically predicted by the DFT
calculations62. The relatively broad antiviral spectra of 2 and 4
demonstrate that the sulfur-enriched metabolites are potentially
active constituents responsible for the treatment of influenza and
other diseases in clinic application of the ban lan gen decoction,
though other compounds were not assayed due to limitation of the
sample amounts and/or decomposition of the compounds during
storage. The labile properties of the novel sulfur-enriched com-
pounds indicate that the decocting procedure must be an important
factor to significantly influence on content and composition of the
chemical constituents in the ban lan gen extracts. Therefore, the
extracting process must be taken into consideration in research and
evaluation of ban lan gen and da qing ye. This consideration
would also be valid for some of the other herbal medicines.
Additionally, our previous and present results48–61 reveal that, in
the ban lan gen decoction there are diverse active components
against different types of viruses and continuously provide novel
candidate for further studies of synthetic/biosynthetic and medic-
inal chemistry as well as pharmacology.
4. Experimental

4.1. General experimental procedures

Optical rotations were measured on a P-2000 polarimeter (JASCO,
Tokyo, Japan). UV spectra were acquired on a V-650 spectrometer
(JASCO, Tokyo, Japan). CD spectra were measured on a JASCO
J-815 CD spectrometer (JASCO, Tokyo, Japan). IR spectra were
obtained on a Nicolet 5700 FT-IR microscope instrument (FT-IR
microscope transmission, Thermo Electron Corporation, Madison,
WI, USA). NMR spectra were recorded at 600 or 500MHz for
1H NMR and 150 or 125MHz for 13C NMR, respectively, on
a SYS 600 instrument (Varian Associates Inc., Palo Alto, CA,
USA) or Bruker 500 NMR (Bruker Corp. Karlsruhe, Germany)
spectrometer in DMSO-d6, acetone-d6 or MeOH-d4 with TMS or
solvent peaks used as references. EI-MS data were measured on an
AutoSpec Ultima-TOF spectrometer (Micromass, UK). ESI-MS
and HR-ESI-MS data were taken on an Agilent 1100 Series LC-
MSD-Trap-SL and an Agilent 6520 Accurate-Mass Q-TOF LCMS
spectrometers (Agilent Technologies, Ltd., Santa Clara, CA,
USA), respectively. Column chromatography (CC) was carried
out on macroporous adsorbent resin (HPD-110, Cangzhou Bon
Absorber Technology Co., Ltd., Cangzhou, China), CHP 20 P
(Mitsubishi Chemical Inc., Tokyo, Japan), silica gel (200–300
mesh, Qingdao Marine Chemical Inc., Qingdao, China), Sephadex
LH-20 (Pharmacia Biotech AB, Uppsala, Sweden), or reversed
phase C-18 silica gel (W. R. Grace & Co., Maryland, USA).
HPLC separation was performed on an instrument equipped with
an Agilent ChemStation for LC system, an Agilent 1200 pump,
and an Agilent 1100 single-wavelength absorbance detector
(Agilent Technologies, Ltd.) using a Grace semipreparative
column (250 mm � 10 mm i.d.) packed with C18 reversed phase
silica gel (5 μm) (W. R. Grace & Co., Maryland, USA), an
analytical CD-Ph column (250 mm � 4.6 mm, Shiseido China
Co., Ltd., Shanghai, China) column, or a semipreparative Chir-
alpak AD-H or Chiralpak IC column (250 mm � 10 mm, Daicel
Chiral Technologies Co.). TLC was carried out on glass precoated
silica gel GF254 plates (Qingdao Marine Chemical Inc.). Spots
were visualized under UV light or by spraying with 7% H2SO4 in
95% EtOH followed by heating. Unless otherwise noted, all
chemicals were purchased from commercially available sources
and were used without further purification.

4.2. Plant material

The I. indigotica roots (ban lan gen) were collected in December
2009 from Bozhou, Anhui Province, China. Plant identity was
verified by Mr. Lin Ma (Institute of Materia Medica, Beijing,
China). A voucher specimen (No. ID-S-2385) was deposited at the
herbarium of Natural Medicinal Chemistry, Institute of Materia
Medica.

4.3. Extraction and isolation

The air-dried and pulvarized plant material (50 kg) was decocated
with H2O (150 L, 3 � 1 h). The aqueous extracts were combined
and evaporated under reduced pressure to yield a dark-brown
residue (32 kg). The residue was dissolved in H2O (122L), loaded
on a macroporous adsorbent resin (HPD-110, 19 kg) column
(200 cm � 20 cm), and eluted successively with H2O (50 L),
50% EtOH (125 L), and 95% EtOH (100 L) to yield three
corresponding fractions A, B and C. After removing the solvent
under reduced pressure, fraction B (0.9 kg) was separated by
column chromatography (CC) over MCI gel CHP 20P (5 L), with
successive elution using H2O (10 L), 30% EtOH (30 L), 50%
EtOH (20 L), 95% EtOH (10 L), and Me2CO (8 L), to give
fractions B1–B5. Fraction B2 (547 g) was subjected to CC over
silica gel, with elution by a gradient of increasing MeOH
concentration (0–100%) in EtOAc and then with 30% EtOH, to
yield fractions B2-1–B2-5 based on TLC analysis. Fraction B2-1
(16.3 g) was chromatographed over Sephadex LH-20 with elution
by a petroleum ether/chloroform/methanol (5:5:1) mixture to yield
B2-1-1–B2-1-10. Fraction B2-1-1 (2.5 g) was separated by silica
gel CC (CHCl3/Me2CO, 100:1) to give B2-1-1-1–B2-1-1-6.
Subsequent separation of B2-1-1-3 (54.3 mg) by reversed-phase
(RP) HPLC (63% CH3CN in H2O) gave 4 (15.2 mg) and 5
(2.3 mg). Fraction B2-1-1-4 (120.1 mg) was chromatographed over
Sephadex LH-20 (CHCl3/MeOH, 1:1) to give fractions B2-1-1-4-1
and B2-1-1-4-2, of which B2-1-1-4-1 (34.2 mg) was purified by
preparative TLC (mobile phase: CHCl3/Me2CO, 15:1) to yield 1
(2.6 mg), and B2-1-1-4-2 by RP HPLC (63% CH3CN in H2O) to
afford 2 (18.7 mg). Fraction B2-1-1-6 (122.7 mg) was separated by
RP flash CC (0–100% MeOH in H2O) to give 3 (8.2 mg). B2-1-2
(600 mg) was fractionated by RP flash CC with a gradient of
increasing MeOH concentration (0–100%) in H2O to yield B2-1-2-
1–B2-1-2-4. Separation of B2-1-2-4 (10.7 mg) by RP HPLC (60%
MeOH in H2O) afforded 6 (1.9 mg) and 9 (2.1 mg). Chiral HPLC
analysis of 6 using AD-H column (250 mm � 10 mm) and mobile
phase iPrOH–n-hexane (1:4, 2.0 mL/min) showed two peaks
(6a and 6b) with an approximate integration ratio of 2:1. B2-1-3
(7.6 g) was fractioned by silica gel CC (CHCl3/MeOH, 50:1) to
give B2-1-3-1�B2-1-3-3, of which B2-1-3-1 (5 g) was chromato-
graphed over silica gel CC (petroleum ether/Me2CO, 10:1) to yield
8 (3.5 g). Subsequent separation of 8 (20 mg) by HPLC using
Chiralpak IC column (250 mm� 10 mm) and mobile phase
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iPrOH–n-hexane mixture (1:6, 2 mL/min) yielded 8a (12.2 mg)
and 8b (6.1 mg). B2-1-3-2 (30.5 mg) was isolated by RP HPLC
(27% MeOH in H2O) to obtain 7 (2.5 mg). Chiral HPLC analysis
of 7 using CD-ph column (250 mm� 4.6 mm) and gradient
elution increasing MeCN in H2O (20:80–65:35 in 12.0 min,
1.5 mL/min) showed two peaks (7a and 7b) with an approximate
integration ratio of 2:1.

4.3.1. Isatithioetherin A (1)
Colorless gum; ½α�20D þ38.8 (c 0.1, MeCN); UV (MeOH) λmax

(logε) 258 (4.53) nm; CD (MeCN) 204 (Δεþ2.90), 242 (Δεþ0.29),
273 (Δε �0.24), 301 (Δε �0.54) nm; IR νmax 3338, 3208, 3040,
2919, 1702, 1542, 1477, 1403, 1350, 1233, 1200, 1094, 1047, 966,
859, 803, 753, 721, 651, 595 cm�1; 1H NMR (acetone-d6, 500
MHz) data Table 1; 13C NMR (acetone-d6, 125MHz) data Table 1;
(þ)-ESI-MS m/z 505 [M þ Na]þ, 521 [M þ K]þ; (� )-ESI-MS
m/z 517 [MþCl]�; (þ)-HR-ESI-MS m/z 483.1206 [MþH]þ

(Calcd. for C20H27N4O4S3, 483.1189), 505.1017 [MþNa]þ (Calcd.
for C20H26N4O4S3Na, 505.1008).
4.3.2. Isatithioetherin B (2)
Colorless gum; ½α�20D þ32.0 (c 1.7, MeCN); UV (MeOH) λmax

(logε) 257 (4.50) nm; CD (MeCN) 216 (Δε þ4.02), 254
(Δε þ0.34), 293 (Δε �0.75), 309 (Δε �0.81) nm; IR νmax

3210, 3042, 2916, 1703, 1541, 1477, 1403, 1350, 1233, 1196,
1094, 1045, 967, 858, 810, 753, 651, 594 cm�1; 1H NMR
(acetone-d6, 500MHz) data Table 1; 13C NMR (acetone-d6, 125
MHz) data Table 1; EI-MS m/z (%) 225 (22), 149 (13), 129 (100),
95 (63), 85 (45), 68 (61); (þ)-ESI-MS m/z 505 [M þ Na]þ,
521 [M þ K]þ; (� )-ESI-MS m/z 517 [M þ Cl]�; (þ)-HR-ESI-
MS m/z 483.1204 [M þ H]þ (Calcd. for C20H27N4O4S3,
483.1189), 505.1019 [M þ Na]þ (Calcd. for C20H26N4O4S3Na,
505.1008).
4.3.3. Isatithioetherin C (3)
Colorless gum; ½α�20D þ30.4 (c 0.2, MeCN); UV (MeOH) λmax

(logε) 257 (4.48) nm; CD (MeCN) 215 (Δε þ1.28), 305
(Δε �0.49) nm; IR νmax 3336, 3211, 3032, 2922, 1702, 1541,
1477, 1403, 1352, 1233, 1196, 1044, 950, 858, 753, 651,
590 cm�1; 1H NMR (acetone-d6, 500MHz) data Table 1; and
13C NMR (acetone-d6, 125MHz) data Table 1; EI-MS m/z (%)
256 (29), 225 (7), 149 (25), 129 (100), 118 (32), 96 (62), 85 (29),
69 (87); (þ)-ESI-MS m/z 515 [M þ H]þ, 537 [M þ Na]þ;
(� )-ESI-MS m/z 549 [M þ Cl]�; (þ)-HR-ESI-MS m/z 515.0918
[M þ H]þ (Calcd. for C20H27N4O4S4, 515.0910), 537.0736
[M þ Na]þ (Calcd. for C20H26N4O4S4Na, 537.0729).
4.3.4. Isatithioetherin D (4)
Colorless gum; ½α�20D þ28.0 (c 0.47, MeCN); UV (MeOH)
λmax (logε) 258 (4.40) nm; CD (MeCN) 218 (Δε þ3.53), 255
(Δε þ0.24), 291 (Δε �0.80), 312 (Δε �0.79) nm; IR νmax

3207, 3040, 2917, 1702, 1540, 1477, 1403, 1349, 1232, 1196,
1168, 1094, 1046, 965, 859, 812, 752, 650, 594 cm�1; 1H NMR
(acetone-d6, 500MHz) data Table 1; 13C NMR (acetone-d6,
125MHz) data Table 1; EI-MS m/z (%) 320 (6), 288 (23), 256
(8), 225 (12), 129 (100), 118 (11), 96 (23), 85 (32), 68 (52);
(þ)-ESI-MS m/z 569 [MþNa]þ; (þ)-HR-ESI-MS m/z 547.0639
[MþH]þ (Calcd. for C20H27N4O4S5, 547.0630), 569.0452
[MþNa]þ (Calcd. for C20H26N4O4S5Na, 569.0450).
4.3.5. Isatithioetherin E (5)
Colorless gum; ½α�20D þ39.2 (c 0.21, MeCN); UV (MeOH) λmax

(logε) 258 (4.56) nm; CD (MeCN) 208 (Δε þ6.37), 261
(Δε þ0.38), 292 (Δε �0.78), 314 (Δε �0.83) nm; IR νmax

3204, 3050, 2921, 2855, 1702, 1541, 1477, 1402, 1350, 1232,
1196, 1095, 1046, 965, 948, 859, 808, 753, 651, 593 cm�1;
1H NMR (acetone-d6, 500MHz) data Table 1; 13C NMR (acetone-
d6, 125MHz) data Table 1; EI-MS m/z (%) 320 (3), 288 (18), 256
(6), 223 (5), 129 (100), 118 (12), 96 (26), 85 (34), 68 (54);
(þ)-ESI-MS m/z 537 [M þ Na]þ, 553 [M þ K]þ; (� )-ESI-MS
m/z 549 [M þ Cl]�; (þ)-HR-ESI-MS m/z 515.0916 [M þ H]þ

(Calcd. for C20H27N4O4S4, 515.0910); 537.0732 [M þ Na]þ

(Calcd. for C20H26N4O4S4Na, 537.0729).

4.3.6. (þ)- and (� )-isatithiopyrin B (6a and 6b) in a 2:1 ratio
Colorless gum; ½α�20D þ15.2 (c 0.24, MeOH); UV (MeOH) λmax

(logε) 209 (4.37), 250 (sh, 3.56) nm; CD (MeCN) 231
(Δε �3.61), 259 (Δε þ2.87), 284 (Δε þ1.10) nm; IR νmax

3255, 3089, 3026, 2924, 2852, 1716, 1619, 1474, 1413, 1321,
1243, 1184, 1135, 1107, 1077, 1027, 997, 929, 835, 753, 721,
690, 633, 564, 492 cm�1; 1H NMR (acetone-d6, 600MHz) data
Table 2, 1H NMR (DMSO-d6, 600MHz) data Table 2, 13C NMR
(acetone-d6, 150MHz) data Table 2, 13C NMR (DMSO-d6, 150
MHz) data Table 2; (þ)-ESI-MS m/z 372 [M þ H]þ, 394
[M þ Na]þ, 410 [M þ K]þ; (� )-ESI-MS m/z 406 [M þ Cl]�;
(þ)-HR-ESI-MS m/z 372.0849 [M þ H]þ (Calcd. 372.0835 for
C18H18N3O2S2), 394.0667 [M þ Na]þ (Calcd. 394.0654 for
C18H17N3O2S2Na).

4.3.7. Isoepigoitrin and Isogoitrin (7a and 7b) in a 2:1 ratio
Colorless gum; ½α�20D þ26.3 (c 0.1, MeOH); UV (MeOH) λmax

(logε) 207 (4.12), 250 (sh, 1.22) nm; CD (MeCN) 233 (Δε þ0.08),
287 (Δε �0.04), 339 (Δε �0.02) nm; IR (KBr) νmax 3245, 3087,
2982, 2879, 1679, 1539, 1473, 1420, 1355, 1296, 1245, 1214,
1138, 1070, 989, 969, 930, 799, 723, 677, 614 cm�1; 1H NMR
(MeOH-d4, 600MHz) data Table 2; 13C NMR (MeOH-d4, 150
MHz) data Table 2; EI-MS m/z (%) 129 [M] � þ (63), 96 (27), 85
(64), 73 (100), 71 (61), 69 (90), 57 (40); (þ)-HR-ESI-MS m/z
130.0320 [MþH]þ (Calcd. for C5H8NOS, 130.0321), 152.0136
[MþH]þ (Calcd. for C5H8NOSNa, 152.0141).

4.3.8. ECD calculations of 1–5, 6a/6b, and 7a/7b
For details, see Supplementary Information. Briefly, conforma-
tional analysis and quantum computations were performed using
Gaussian 16 program package. The lowest energy conformers
whose relative energy within 4 kcal/mol were further optimized at
the B3LYP/6–31 g(d,p) level. The energies, oscillator strengths,
and rotational strengths were calculated using the TDDFT
methodology at the CAM-B3LYP/6–311þG (d,p) level.
Conductor-like polarizable continuum model (CPCM) was
adopted to consider solvent effects using the dielectric constant
of MeCN (ε ¼ 35.7) for 1–5 and 7 and MeOH (ε ¼ 32.6) for 6.
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